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Abstract 

The paper presents an analysis of sources of errors when estimating derivatives of numerical or noisy 

functions. A method of minimizing the errors is suggested. When being applied to the estimation of 

the curvature of digital curves, the analysis shows that under the conditions typical for digital image 

processing the curvature can rarely be estimated with a precision higher than 50%. Ways of 

overcoming the difficulties are discussed and a new method for estimating the curvature is suggested 

and investigated as to its precision. The method is based on specifying boundaries of regions in gray 

value images with sub-pixel precision. The method has an essentially higher precision than the 

known methods. 

 

 

1      Introduction 

The problem of calculating the curvature of a digital curve must be considered as estimating 

the curvature of its preimage which is supposed to be a smooth curve with a restricted 

curvature. Otherwise the solution of the problem is undefined. 

Since the curvature is proportional to the second derivative d²y/dx², the problem of estimating 

the curvature has much in common with that of estimating the derivatives of numerical 

functions, i.e. functions defined by a numerical algorithm. We shall show in Section 2 that an 

estimation of a derivative of a function whose values are specified with a limited precision 

(which is always the case in numerical computations) cannot be based on the classical 

definition of a derivative as a limit. We also shall present a method of minimizing the error of 

the estimate. The method may be directly used to minimize the error of estimating the 
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curvature of a digital curve whose preimage is known (or is supposed) to be a smooth curve. 

This approach is presented in Section 3.  

Since the desired estimate is an estimate of the preimage curvature, any solution of the 

problem must be based on estimations of the locations of some points of the preimage curve 

starting with the data contained in the digital image. All known methods of estimating the 

curvature in digital images have a common drawback: in the most practically relevant cases 

the precision of the estimates of the locations of preimage points is not sufficient to get 

satisfactorily precise estimates of the curvature. The reason is the loss of information during 

the digitization of the image. Even in a high resolution image of some thousand scan lines 

there may occur an arc with a curvature radius of say 20 pixels whose length is of the same 

order of magnitude. The precision of estimating the coordinates of points of the preimage is in 

the best case of the order of half a pixel. According to the results of Section 3, it is impossible 

to estimate the curvature of such an arc better than with an error of ±40%, which is mostly not 

sufficient.  

One of the best published methods of estimating the curvature is based on averaging the 

positions of the points [WS93, Wor93]. As it is known from the mathematical statistics, 

averaging N random values with constant weights reduces the RMS error by the factor of √N. 

When averaging with decreasing weights, e.g. according to a Gaussian kernel, the factor of 

reducing the RMS error is still less. Decreasing the coordinate errors by the factor of √N is in 

many cases not sufficient. Really, for radii under 30 pixels and arcs of 45° the authors have 

reported an RMS error greater than 22% (Fig. 12 in [WS93]) which means a maximum error 

of about 66% plus a bias.  

Such values of curvature errors are typical. Many attempts have been made to improve the 

results. Thus it was shown in [Via96] that the method of the Euclidean path, as suggested 

there, has a better precision. However, for a radius of 50 pixels and for arcs essentially shorter 

than 45°, as that used in [WS93], the RMS error is still up to 37%. This corresponds to a 

maximum error of about 100% which may be still greater due to the bias of up to 28% (Table 

1 of [Via96]). For the radius of 10 pixels the author reports an essentially smaller RMS error, 

namely up to 8.6%, which may be explained as follows. The same number of points (ca. 19 

points in the case of the last row and last column of Tables 1 and 2 of [Via96]) compose an 

arc of only about 22° in the case of radius 50 and of 108° in the case of radius 10. The arc 

with a greater angle enables a higher precision of curvature estimation. 

In [Hla94] a bias up to 492% due to systematic errors, when using the approach by [Low89], 

is reported. The authors have improved this method and report an error in estimating the 

curvature, which does not exceed 30%. However, it is the error of the mean of measurements 

performed at all points of a synthetic digital circle. There are no data about the errors of single 

measurements reported. 

Thus we may conclude, that there are no known methods of estimating the curvature in digital 

images with an error not greater than say 20% and applicable in the very common case when 

the preimage of the curve is an arc of less than 45° with a radius less than 20 pixels. 
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To understand the cause of the difficulties we analyze at first, in Section 2, the possibility to 

increase the precision of estimating derivatives, including the second derivative, which is of 

importance for estimating the curvature. In Section 3 we consider the precision of estimating 

the curvature. We came to the conclusion, that the only way to increase the precision consists 

in increasing the precision of estimating the coordinates of preimage points. Therefore we 

consider in Section 4 the possibility of using the information about the location of the 

boundary of an object which is represented by a gray value image.  

An attempt to use this information is presented in [DF90]. The authors find the boundary of 

an object by means of Canny's edge detector. Then they estimate the gradient of the gray 

values near the boundary and use the finite difference of the gradients at two points lying 

close to each other to estimate the curvature of the boundary. We are using here another 

approach. 

Consider an analogous (i.e. not digitized) image AI containing a region with a high constant 

brightness against a dark background. During the digitization of AI some pixels of the raster 

are only partially covered by the light region. Such a pixel gets an intermediate gray level 

depending upon the area of its intersection with the region. Thus a gray value image GVI 

occurs. We solve the problem of reconstructing AI given the image GVI. Of course, it is only 

possible under certain suppositions about AI, e.g. that the boundaries of its regions are smooth 

curves with a restricted curvature. Thus we are looking for an image AI whose object 

boundaries have the minimal curvature while the result of digitizing AI is equal to GVI. The 

curvature of the boundaries of AI is then considered as the curvature estimates at the 

corresponding points of GVI. These values may be then transferred, if necessary, to the binary 

image resulting from the binarization of GVI. The solution of this problem is presented in 

Section 4; experimental results are given in Section 5. Section 6 contains the conclusions and 

a discussion of the perspectives. 

 

2      Optimal estimation of the derivatives of numerical functions. 

2.1 The first derivative 

The first derivative of a function f(x) is, according to its definition, the limit of (1) as dx tends 

to zero. Therefore one may tend to believe that to compute the derivative of a numerical 

function, e.g. of one given as a computer subroutine, with the maximum precision, one should 

compute the value  

(f(x+dx)−f(x))/dx                                                        (1) 

with as small value of dx as possible. However, this belief is erroneous. We shall demonstrate 

at first a simple example and then analyze the essence of the problem. Fig. 1 shows the results 

of computing the value of (1) for the case f(x)=x² in the interval [1.3, 1.7] with the values of 

dx=10−p, with p =16, 17, 18 and 19. As one may see, the results become at first inaccurate and 

then absolutely crazy.  
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The reason is the limited precision of representing the value of f(x) in the computer, which 

may be very high, however, still finite. 

To investigate this phenomenon consider the influence of errors in representing f(x) onto the 

value of (1): 

Estimate(f'(x))=(f(x+dx)+er1−f(x)−er2)/dx=(f(x+dx)−f(x))/dx+(er1−er2)/dx;          (2) 

where er1 and er2 are the errors in computing f(x+dx) and f(x) respectively.  

 

 

Fig. 1. Estimating the first derivative of y=x² as dy/dx with very small values of dx 

If these errors are limited by the value of ε then the worst case error E of the estimate is equal 

to 

Er=2·ε/dx.                                                                     (3) 

As soon as dx becomes of the order of magnitude of ε the error Er of the estimate becomes 

unacceptably great.  

According to (3) the error Er may be made arbitrarily small by increasing dx. However, there 

is another source of errors, which must be taken into account: if the desired derivative is not 

constant (i.e. f(x) is not a linear function) then the estimate (1) brings the average derivative in 

the interval [x, x+dx], which may be essentially different form the value of the derivative at 

the point x. It is known that the estimate (1) is equal to the exact value of the derivative at 

some unknown point in the said interval. When increasing dx we increase the precision of the 

desired estimate, however, we simultaneously decrease the precision of the location of the 

estimate. Thus equation (3) represents some kind of principle of uncertainty (which may have 

much in common with the famous Heisenberg uncertainty principle in the quantum 

mechanics): the greater the precision of the location of the estimate the smaller the precision 

of the estimate itself. 
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It is easy to see that there is an optimum value of dx yielding the highest precision. We 

consider here the maximum possible error of the estimate rather than an RMS error because 

knowing the maximum error gives us a guaranty that the actual error will never override the 

found limit. 

To find the optimum value of dx consider the worst case error of the estimate (2) while 

representing f(x) by its Taylor series up to the second order term: 

Estimate(f'(x))=(f(x+dx)+er1−f(x)−er2)/dx=f'(x)+0.5·f"(x+k·dx)·dx+(er1−er2)/dx; 

where k is a value between 0 and 1. 

The error Er of the estimate is then equal to: 

Er=Estimate(f'(x))−f'(x)=0.5·f"(x+k·dx)·dx+(er1−er2)/dx; 

To get the maximum absolute error we should substitute the maximum value F2 of f"(x) in the 

interval [x, x+dx] for f"(x+k·dx), ε for er1 and −ε for er2: 

maxEr=0.5·F2·dx+2·ε /dx;                                                         (4) 

To get the optimal value of dx we must find the minimum of (4) with respect to dx, i.e. to set 

the partial derivative of (4) with respect to dx equal to 0 and to solve the corresponding 

equation. It follows:  

optimal dx=2·√ε /F2;                                                            (5) 

where ε is the maximum possible error of specifying the values of f(x) and F2 is the maximum 

possible value of the second derivative of f(x) in the interval [x, x+dx]. Since we are mostly 

interested to know and to minimize the order of magnitude of the maximum error (4) rather 

than its exact value, the parameters ε  and F2 in the right hand side of (5) may be estimated 

rather coarsely.  

To illustrate the usage of (5) let us apply it to the case of Fig. 1. When computing f(x) as a 

double precision float with a mantissa of 53 bits the value ε is equal to the rounding error and 

is of the order of 2²·2−54=2−52≅10−16. Note that this is not the smallest number representable in 

the computer, which is much less. The smallest number is specified by the exponent, rather 

than by the mantissa. The optimal value of dx is, according to (5) of the order of 10−8. The 

error in computing the derivative at x=1.5 becomes unacceptably great when dx becomes 

comparable with or smaller than 2·ε =2·10−16 (since the second term in (4) becomes greater 

than 1.0), which situation we actually see in Fig. 1. 

The error may be made still smaller if we use a symmetrical estimate of the first derivative: 

Estimate1S=( f(x+dx)−f(x−dx) )/(2·dx);                                        (6) 

The optimal value of dx may be deduced in the same way as before, however, the Taylor 

series should be prolonged until the term with the third derivative, since the terms with the 

second derivative disappear.  

Then we obtain: 

Error=(1/6)·F3·dx
2+ε/dx;                                                         (7) 

and 

optim dx=(3·ε/F3)1/3;                                                           (8) 
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where F3 is the estimate of the maximum absolute value of the third derivative of f(x) in the 

interval [x−dx, x+dx]. A similar deduction may be found in [Bu92]. 

It is important to notice that in the case F3=0 the value of dx should be chosen as great as 

possible. To make this clear, the reader may persuade himself, that the estimate (6) yields the 

precise value of the first derivative at the point x with any value of dx if f(x) is a polynom of 

degree 2.  

Now we can specify the worst case error when using the optimal value of dx. We put the 

value (8) into (7) and obtain: 

minimax Error = ((1/6)·32/3+3−1/3)·ε2/3·F31/3≅1.04·ε2/3·F31/3.                          (9) 

 

2.2   The second derivative 

The estimate of the second derivative of a function whose values are specified with a limited 

precision may be derived in a similar way. We consider as the estimate the well-known 

expression for the second difference: 

Estimate2=( f(x+dx)−2·f(x)+f(x−dx) )/dx²;                                          (10) 

The worst case error of the numerator of (10) is obviously equal to 4·ε, where ε is as before 

the maximum error of calculating the values of f(x). After having replaced in (10) f(x+dx) and 

f(x−dx) by Taylor series up to the terms with the fourth derivative one obtains the value of the 

maximum error as: 

Error = (1/12)·F4·dx
2+4·ε/dx²;                                     (11) 

where F4 is the estimate of the upper bound of the absolute value of the fourth derivative of 

f(x) in the interval [x−dx, x+dx]. By setting the partial derivative of (11) with respect to dx² 

equal to 0 we obtain the optimal value of dx: 

optim dx=(48·ε/F4)1/4                                                (12) 

and the minimax error: 

minimax Error = ((1/12)·481/2+4·48−1/2)·ε1/2·F41/2≅1.15·(ε·F4)1/2.               (13) 

The values of F3 (respectively F4) may be estimated rather coarsely since the value of (8) 

(respectively (12)) is a minimum and it depends upon F3 (respectively F4) as a rather low 

power. Thus, it may be shown that when multiplying F4 by a factor of 3.0 the value of (12) 

changes only by 50% and that of (13) by 34%.  

Coarse estimates of the values of the third and the fourth derivatives, which one needs for the 

calculation of the above expressions, may be also obtained by means of symmetric finite 

differences of the corresponding order: 

F3≅( f(x+2·dx)−2·f(x+dx)+2·f(x−dx)−f(x−2·dx) )/(2·dx
3);                              (14) 

F4≅( f(x+2·dx)−4·f(x+dx)+6·f(x)−4·f(x−dx)+f(x−2·dx) )/dx
4;                        (15) 

where dx is the half length of the interval in which these values are supposed to retain their 

order of magnitude. 
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3      Estimates of the curvature 

The well-known expression for the curvature of a curve specified by y=f(x) is: 

C=f"(x)/(1+f'(x)²)3/2;                                                    (16) 

Unfortunately, it is not so easy to find the optimal estimate for this expression in the way 

described above. Instead we consider a coordinate system, whose X-axis is the tangent to the 

curve at the point with a given x, and the Y-axis is the normal. Then the first derivative f '(x) 

becomes zero in this coordinate system and the curvature becomes equal to the second 

derivative: 

C=f"(x);                                                                     (17) 

Thus we can use the estimates (12) and (13) to approximately specify the optimal value of dx 

and to get an idea of the precision which may be reached. To estimate the curvature of a given 

digital curve (i.e. the minimum curvature of its preimage) we must take three points on the 

curve, whose projections onto the tangent are spaced by the value dx calculated by (12). Then 

we may expect to estimate the curvature with an error not exceeding the value (13).  

By means of these estimates we can demonstrate that it is rather difficult (or perhaps 

impossible) to reach practically acceptable estimates of the curvature in binary images. In 

such images the maximum error in measuring the coordinates is on the order of 0.7 pixel. 

Suppose, we want the guarantee that the minimax error dC not exceeds a modest value of 

10%. If the curve may be supposed to have the fourth derivative on the same order of 

magnitude as a circle of the same curvature, i.e. F4≅3·C
3, then according to (17) and (13) one 

arrives at the following demand: 

dC/C =1.15·(0.7·3·C
3)1/2/C≤0.1 implies C≤0.0036 pixel−1; 

which corresponds to a radius of at least 277 pixels. When calculating the optimal dx, for 

which this precision may be reached, one arrives by (12) at dx=(48·0.7/3)1/4·C
−3/4=125 pixels 

which corresponds to an arc of 53°. In the cases of curves with greater curvatures the error is 

always greater than 10%. For instance, for C=1/16≅0.063 (i.e. R=16) and F4=3·C
3 the 

minimax error is according to (13) equal to 1.15·√0.7·3·16−3 ≅0.024 which corresponds to 

38% of the value of C. This rather modest precision may be reached if the value of dx may be 

chosen near the optimum value which in this case, according to (13), is equal to 

(48·0.7·R3/3)1/4 ≅15 pixels. This value corresponds to a chord length of 30 pixels and is rarely 

possible to choose for a curve of radius 16. Therefore even a precision of ±38% may be 

hardly reached in the case of ε=0.7 and R=16.  

Thus, we may conclude that if ε is about 0.7 pixel a precision higher than 10% may be only 

reached for long curves (about 250 pixels) of great radius (at least 270 pixels) which 

corresponds to a circular arc of about 50°. 

Ways to increase the precision consist either in increasing dx, which is not always possible 

because of limited size of the curve segment whose curvature must be estimated, or in 

decreasing the value of ε. As already mentioned in the Introduction, some published methods 
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of estimating the curvature are based on averaging the coordinates of subsequent points of the 

digital curve. If the digitization errors in the coordinates may be considered as random values 

then the RMS error of the coordinates may be reduced by the factor of √N in the case of 

averaging N points. This is true for averaging without weights. Otherwise the reduction is 

smaller. As we have seen in Section 1, this way yields a rather modest improvement since N is 

mostly a small number. Another method of essentially increasing the precision of the 

coordinates is suggested in the next section. 

 

4        The sub-pixel boundary and its detection method  

The estimation of the curvature is mostly being performed in binary images obtained by 

binarizing gray level images. The latter are produced either by CCD cameras or by scanners. 

Sometimes a scanner produces a binary image, however, this means that the binarization is 

performed inside the scanner.  

There are cases when an image of a high contrast is being digitized, e.g. a technical drawing, 

or a map, or a machine part. In these cases the original objects of interest possess a sharp 

boundary whose location is specified in the original analog image with a relatively high 

precision. During the digitization and the following binarization a great deal of this 

information is lost. Therefore it is reasonable to try to get this information before the 

binarization, i.e. from the gray level image. 

To solve this problem let us look, how a gray level image is produced in the case of an object 

having a sharp boundary. The object is being projected onto a set of light sensitive elements, 

e.g. CCD cells. Each cell is partially covered by the projection of the object. The amount of 

light received by a cell is a function of the area of the intersection of the projection with the 

light sensitive area of the cell. The amount of light is encoded as the gray level of a pixel 

corresponding to the cell. 

If we know the function specifying the dependence of the encoded gray level from the said 

area of intersection and we suppose the boundary of the object to be a smooth curve with a 

limited curvature, then we can try to reconstruct the exact location of the boundary from the 

gray levels of adjacent pixels. 

Let us consider the simplest model relevant to this problem. Consider a light object against a 

dark background and a rectangular grid of light sensitive cells. Let the light sensitive area of 

each cell be a square. Let us take the length of the square's side as the length unit. Thus the 

area of a cell is equal to 1. Suppose, there is no empty space between adjacent cells (or the 

space is negligible) and the cells do not overlap. Suppose that the curvature of the boundary of 

the object is so small, that the part of the boundary inside a cell may be considered as a 

straight line. We understand well that this model is too primitive to exactly describe the 

properties of the light sensitive elements of a scanner or a CCD camera. However, the model 

works, as we shall see in what follows. 
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Let us consider pairs of adjacent cells one of which has the intersection area with the object's 

projection less than 0.5 and the other one greater or equal to 0.5. Denote these two 

intersection areas by SA (small area) and GA (great area). The cells correspond to two 

adjacent pixels of the digitized image, composing a pair. We consider the pixels as squares of 

unit area in a plane which is a copy of the plane containing the idealized light sensitive cells 

with the projection of the object on it (Fig. 2; the light object is represented here and in Fig. 3 

as a shaded area to make the figures nicer).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. An array of pixels with the projection of an object on it 

The areas of the intersection of the pixels of a pair with the projection of the object are 

obviously equal to SA and GA correspondingly. If the gamma characteristic of the scanner is 

linear and the background has a zero brightness then the gray values of the pixels of a pair are 

proportional to the intersection areas SA and GA. Since an image produced by a scanner or by 

a CCD camera may contain some shading we normalize the said gray values:  

SA=(GVs−GVmin)/(GVmax−GVmin);  

GA=(GVg−GVmin)/(GVmax−GVmin);  

where GVs and GVg are the gray values of the pixels of a pair, GVmin and GVmax are the 

minimum and the maximum gray values in a 7×7 window around the pair.  

Let us specify a gray value threshold lying in the middle between the minimum and the 

maximum gray values in the image. Then the gray value of the first pixel is below the 

threshold and that of the other one is greater or equal to the threshold.  

It is easy to see that under the said conditions the boundary (which we suppose to be 

approximately a straight line inside a pixel) always crosses the segment S between the middle 

points of the pixels of a pair. Let us denote the crossing point having sub-pixel coordinates by 

SP and the distance from SP to the middle point of the pixel with GA by t. The values of SA 

and GA depend on t and on the angle α between the tangent to the boundary and S. 
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There are 6 possible cases differing by the numbers of corners of the polygons corresponding 

to SA and GA as shown in Fig. 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. The six possible cases of the intersections; 

the SP's are marked by crosses, the length of the arrow is the parameter t  

In each case the intersection areas SA and GA may be specified as different functions of t 

and α: 

Case 0: SA=0; and GA=t+0.5;  

Case 1: SA=t−0.5; and GA=1.0;  

Case 2: SA=0.5·L²·cot α and GA=1.0−0.5·K²·cot α; 

with L=0.5+(t−0.5)·tan α   and   K=0.5−(t−0.5)·tan α;                       (18) 

Case 3: SA=0.5−(1.0−t)·tan α; and GA=0.5+t·tan α; 

Case 4: SA=0.5−(1.0−t)·tan α and GA=1.0−0.5·K²·cot α; 

 with K=0.5−(t−0.5)·tan α; 

Case 5: SA=0.5·L²·cot α and GA=0.5+t·tan α; 

with L=0.5+(t−0.5)·tan α. 

In each case we have a system of two equations in two unknowns t and α. We have solved the 

equations and thus specified t and α as functions of SA and GA. However, it is not enough: it 

is necessary to recognize, given SA and GA, which of the cases takes place. The solution of 

this problem was more complicated than the solution of the equations. It was found with the 

aid of a computer simulation. Nevertheless, the solution is an analytical one: 

Case 0 Case 1 Case 2 

Case 3 Case 4 Case 5 

t  

t  

t  t  

t  
t  
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If GA=1 then case 1; 

else if SA=0 then case 0; 

      else if SA>max(GA/3, 3·(GA−3/4)+1/4) then case 3; 

else if SA≥4·(GA−0.5)² and GA<3/4 then case 5;                                           (19) 

       else if SA>0.5−0.5·√1−GA) and GA>3/4 then case 4; 

   else case 2. 

 

This rather complicated relations are illustrated by Fig. 4. 

 
Fig. 4. Recognition of the six cases of dependencies  

between the intersection areas and the parameters t and α 

 

The solution of equations (18) together with the recognition algorithm (19) yields for each 

pixel pair a sub-pixel point SP lying in the segment S between the middle points of the pixels. 

To find the pixel pairs it suffices to implicitly binarize the given gray value image with the 

threshold as specified above and to trace the crack boundary as described e.g. in [Kov92]. 

Each boundary crack found during the tracing separates two pixels composing a pair. Thus we 

can find for each boundary crack a corresponding sub-pixel point SP as shown in Fig. 5. 

Definition SPB: The sub-pixel boundary of a region R in a gray value image (without 

shading) is the polygon whose vertices are the sub-pixel points and whose edges connect 

every two sub-pixel points corresponding to two adjacent boundary cracks of the usual 

boundary of the binarization of R with the threshold lying in the middle between the minimum 

and maximum gray values in the vicinity of the boundary of R. 

The solution of (18) consists of six different pairs of analytical formulas: one for α and one 

for t for each of the six cases. We have proved that the solution is continuous on the 

boundaries of the regions corresponding to the six cases in the plane (GA, SA) shown in 

Fig. 4. However, it is not continuous at the point GA=SA=0.5. At this point the equations are 

ill-conditioned with respect to t. We shall consider this case in the next section. 
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5      Estimating the curvature of the sub-pixel boundary  

An estimate of the curvature may be computed for each boundary crack Ci by finding the 

circle running through the sub-pixel point SPi assigned to Ci and through two other points 

SPi−d and SPi+d assigned to Ci−d and Ci+d correspondingly where d is a parameter specifying 

the half length of the chord. It is easy to see that the parameter t is ill-conditioned when α 

tends to zero: a small inaccuracy in the values of SA and GA may lead to a great error in t. The 

situation takes place when a boundary crack is almost perpendicular to the tangent of the 

boundary of the preimage region R. (Fig. 6).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. An example of a boundary with sub-pixel points 

marked by crosses 

 

In such cases it is better to discard the sub-pixel point corresponding to such a "bad" crack: its 

presence may only disturb the estimate of the curvature.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. An example of a boundary crack almost perpendicular to the tangent  

of the preimage boundary; the SP marked by a cross is ill-conditioned 

 

Fortunately, there are few "bad" cracks in an image. Really, if the preimage boundary is a 

smooth curve with a restricted curvature then the "bad" cracks are singular. This means, there 

are at least N "good" cracks following a "bad" one, where N=floor(cot α) (floor(x) is the 

greatest integer less or equal to x) and α is as before the angle between the tangent to the 

boundary and the segment S connecting the middle points of the pixels of a pair. In the case of 

a "bad" crack, α is small and cot α is large. Thus we may improve the precision of the 

curvature estimate while discarding a small number of boundary cracks. 
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Important is the choice of the parameter d defining the distance between the points in the 

triple (SPi−d, SPi, SPi+d) specifying the curvature circle. Here we have again, as in the case of 

estimating the first derivative of a function (Section 2), to do with an uncertainty similar to 

that by Heisenberg: the greater d the higher the precision of the curvature estimate, however, 

the greater the segment of the curve for which the curvature will be averaged and, therefore, 

the smaller the precision of estimating the location of the measurement. 

If the curve under consideration is known to have a continuous curvature then the value of d 

may be chosen relatively great, e.g. 4 to 20 pixels. We suggest to choose the value of d 

automatically, as described below. The program first calculates the points of the sub-pixel 

boundary and stores them in an array. Then the program averages the coordinates of the 

points by calculating the convolution with a Gaussian kernel with the standard deviation σ of 

about 2 or 4 pixels. It calculates at first the curvature at each point with a relatively great 

value of d, e.g. equal to 1/8 of the number of cracks in the boundary of the object. Then the 

program reads the array of the sub-pixel points again, estimates coarsely the second derivative 

of the curvature with respect to the arc length (as an estimate of F4 in (12)) and calculates the 

optimal value of d for each point. Then the program calculates the curvature with the optimal 

value of d. The results are demonstrated in Fig. 7 to 10. 

 

 

 

Fig. 7. The curvature of an artificial image of an ellipse (see text); 

the maximum relative error is about 6% 

 

Fig. 7 shows the calculated curvature of the sub-pixel boundary of an artificial image of an 

ellipse with the half-axes of 53.11 and 20.86 pixels. The gray values of this image were 

calculated as being proportional to the intersection area of the ellipse with the corresponding 

pixel (regarded as a unit square). The gray values were rounded to integers in the range 

between 0 and 255 and saved each in one byte. The calculated curvature is represented by a 
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solid line; the true curvature, calculated analytically, is shown by a dashed line (which is only 

visible at the peaks). The errors in this case are only due to rounding the intersection areas and 

to the approximation of the parts of the ellipse inside a pixel by the tangent. The maximum 

error is about 6% of the maximum curvature. 

Note, that it is not expedient to characterize the accuracy of a method of measurement by the 

maximum relative error since in the case when the result is near zero the relative error may 

become arbitrarily great. We prefer to use the relation of the maximum absolute error to the 

length of the interval in which the results produced by the method with fixed parameters lie. 

Fig. 8 shows the curvature of the same ellipse represented as an image printed on a sheet of 

paper with a laser printer with a resolution of 300 DPI.  

 

 

 

Fig. 8. The curvature of a printed and scanned image of an ellipse (see text); 

the dashed line shows the true curvature; the maximum relative error is about 26% 

 

The image was scanned with a resolution of 25 DPI to make the pixel size essentially greater 

than the irregularities of the boundary due to the limited resolution of the printer. The errors 

are essentially greater than in the case of Fig. 7 although the parameters of the program and of 

the ellipse were the same. The cause is the irregularity of the boundary in the printed image: 

such an image is not a true analog image. 

The results are much better when scanning a photograph or a real object like that shown in 

Fig. 9. It represents a  link of a bicycle chain. The object is 21.0 mm long and 8.25 mm wide. 

The curvature radii of the outer  boundary are equal to  4.125 mm at the left and right side and 

to  −6.6 mm in the middle.  The image was scanned by a digital camera  with  a  resolution of 
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155 DPI.   Thus  the radii in pixels are equal  to 25.19 and −40.32 pixels  respectively, which 

corresponds to curvatures of 0.0397 and −0.0248 pixel−1.  

 

 

 

Fig. 9. The gray value image of a real object used in the experiments 

Fig. 10 shows the curvature of the outer boundary of the object of Fig. 9 calculated by our 

method. The errors in this case are only due to rounding of the intersection areas during the 

scanning and to the limited precision of the method. 

 

Fig. 10. The curvature of the outer boundary of the object shown in Fig. 9; 

the dashed lines show the true values of the minimum and maximum curvature 

 

It was impossible to calculate the error at each point of the boundary, as we have done in the 

case of the ellipse, since we don't know the exact shape of the object. We only could measure 

the curvature radii at the points of extrema. In the neighborhood of these points the maximum 

absolute error is about (0.0220−0.0248)=−0.0028 pixel−1. Being divided by the interval length 
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of 0.0397−(−0.0248)=0.0645 it results in the relative error of about 4%. We hope that Fig. 10 

gives a general impression of the accuracy of the method as applied to real objects. 

 

 

6      Conclusion and Discussions 

We have shown that the naive belief, that to estimate the derivative of a numerical function 

y=f(x) one should calculate the value of dy/dx with as small value of dx as possible, is wrong. 

It may lead to great errors. We also have shown how to choose the value of dx optimally. 

The same considerations being applied to the calculation of the second derivative enable one 

to find the optimal distance between the three points on a curve, which distance minimizes the 

maximal possible error in estimating the curvature of the curve. 

We have suggested a new method of defining and calculating the sub-pixel boundary of a 

region in a gray value image and we have developed a new method of estimating the 

curvature of boundaries of regions in gray value images. It was demonstrated that the method 

being applied to a gray value image obtained by scanning a scene containing a dark object on 

a light background (or vice versa) yields an essentially higher precision of estimating the 

curvature as the known methods. 

However, there are cases, in which the boundary of a region in the preimage is a continuous 

curve consisting of some smooth pieces while the tangent to the curve is not continuous at the 

border of a piece. In such cases the digital curve must be segmented into pieces whose 

preimages are supposed to have a continuous tangent. We see two possibilities to solve the 

segmentation problem. One of them is based on the polygonal approximation (or subdivision 

into digital straight line segments). The other solution is based on the recognition of digital 

circular arcs [Kov90]. According to this method a digital curve must be traced, and its 

segment between the starting and the running point must be tested, whether it may be 

considered as the result of the digitization of a continuous circular arc. When this condition is 

no more fulfilled, the part of the digital curve between the starting point and the point before 

the last one is a digital circular arc (DCA). The curvature at all points of the DCA can be 

estimated by the sub-pixel method as described above, without crossing the end points of the 

DCA. The suggested methods of segmentation may improve the estimates of the curvature at 

locations where the curvature of the preimage has a jump, e.g. at a location where two circular 

arcs of different radii have a common tangent. The investigation of the methods of 

segmentation is, however, a topic for a separate publication. 

The suggested approach may also be applied to estimate the curvature of a surface in the 3D 

space if the surface is given as the boundary of a connected set of voxels while each voxel 

contains a non-binary density value as this is the case e.g. in computer tomography. It is well-



 17

known from differential geometry that the principal curvatures and their directions are 

solutions of quadratic equations whose coefficients may be expressed through the first and 

second partial derivatives of the radius-vector with respect to the parameters of the parametric 

equation of the surface. The derivatives may be estimated on the basis of the densities in 

adjacent voxels in a way similar to that described in Section 4.  
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