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CURVATURE INVARIANTS, DIFFERENTIAL OPERATORS

AND LOCAL HOMOGENEITY

FRIEDBERT PRÜFER, FRANCO TRICERRI†, AND LIEVEN VANHECKE

Abstract. We first prove that a Riemannian manifold (M, g) with globally
constant additive Weyl invariants is locally homogeneous. Then we use this
result to show that a manifold (M, g) whose Laplacian commutes with all
invariant differential operators is a locally homogeneous space.

1. Introduction

A Riemannian manifold (M, g) is said to be locally homogeneous if its pseu-
dogroup of local isometries acts transitively on (M, g). Of course, every homoge-
neous space is locally homogeneous, but the converse does not hold. Moreover,
there exist examples of locally homogeneous spaces which are not locally isometric
to a globally homogeneous space (see [10], [18], [21] for explicit examples).

There are several special classes of Riemannian manifolds where only locally
homogeneous examples are known. For example, this happens for the classes of
harmonic spaces, spaces with volume-preserving geodesic symmetries, and ball-
homogeneous spaces. It remains an interesting open problem if there exist examples
in these classes which are not locally homogeneous. (See [3], [11], [12], [22] for a
survey and further references about these spaces.)

In order to attack this problem, it is important to have at our disposal a series
of necessary and sufficient conditions for local homogeneity. The main purpose
of this paper is to provide such a criterion. It stems from the fact that in the
study of the special Riemannian manifolds cited above, and in many other places,
the scalar curvature invariants play a fundamental role. These invariants are by
definition polynomials in the components of the Riemannian curvature tensor and
its covariant derivatives which do not depend on the choice of orthonormal basis of
the tangent space at each point. It is clear that such invariants are global constants
on a locally homogeneous space. We will prove that the converse holds. In fact,
we will show more, and prove that the converse also holds when we restrict to the
special set formed by the additive Weyl invariants. (See below for the definition.)
Therefore, we study the Weyl invariants in more detail and prove that each of them
can be represented as a product of additive ones.
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The second part of the paper contains an application and concerns differential
operators on a Riemannian manifold which are invariant under isometries. It origi-
nates from the fact that an (M, g) has volume-preserving geodesic symmetries if its
Laplacian ∆ commutes with a whole class of special invariant differential operators,
namely the class of Euclidean Laplacians. In this paper we will prove that (M, g)
is locally homogeneous if ∆ commutes with a special set of invariant second order
differential operators constructed by means of additive Weyl invariants. As a con-
sequence of this result, it turns out that a Riemannian manifold whose Laplacian
commutes with all invariant differential operators is a locally homogeneous space
with volume-preserving geodesic symmetries.

2. Curvature invariants and local homogeneity

Let (M, g) be an n-dimensional, smooth, connected Riemannian manifold and
let OM = (OM,π,M,O(n)) be the bundle of orthonormal frames over (M, g). An
element u = (q;u1, ..., un) of OM induces an isometry, also denoted by u, of V = Rn
on TqM defined by

u(ξ) = u(ξ1, ..., ξn) =
n∑
i=1

ξiui.

Let ∇ denote the Levi-Civita connection and R the corresponding Riemannian
curvature tensor of (M, g). For each s ≥ 0, the tensor field ∇sR defines a map Ks

from OM to ⊗s+4V ∗ given by

Ks(u)(ξ1, ..., ξs+4) = ∇sR|π(u)(uξ1, ..., uξs+4),

where ξ1, ..., ξs+4 ∈ V .
The orthogonal group O(n) acts on the left on the tensor product ⊗`V ∗ by the

rule

(aT )(ξ1, ..., ξ`) = T (a−1ξ1, ..., a
−1ξ`)

and it is easy to verify that Ks is an equivariant map with respect to the actions
of O(n) on OM and on ⊗s+4V ∗, that is,

Ks(ua) = a−1Ks(u)

for all u ∈ OM and a ∈ O(n).
Following [17] (see also [13]) we consider now the map φm : OM → Wm =⊕m
s=0(⊗s+4V ∗) defined by

φm(u) =
m∑
s=0

Ks(u).

Then φm is also equivariant, that is,

φm(ua) = a−1φm(u)

for all u ∈ OM, a ∈ O(n).
Next, let R[W ]O(n) denote the R-algebra of O(n)-invariant polynomial functions

on a representation space W . If p(w) is such a polynomial for W = Wm, then
p ◦ φm is constant along the fibers of OM :

(p ◦ φm)(ua) = p(a−1φm(u)) = p(φm(u)) = (p ◦ φm)(u).
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Therefore, there exists a unique C∞ map f : M → R such that

f ◦ π = p ◦ φm,(2.1)

that is, the following diagram commutes:

OM
φm−−−−→ Wm

π

y yp
M = OM/O(n)

f−−−−→ R.

We call f a scalar curvature invariant of order m of (M, g). Note that f is an
O(n)-invariant polynomial in the components of R,∇R, ...,∇mR with respect to
some fixed orthonormal basis of each tangent space TqM, q ∈M .

Since O(n) is compact, we have the following result of Hilbert [14], [15], [24] :

Proposition 2.1. The algebra R[W ]O(n) is finitely generated. If p1, ..., pt are gen-
erators, then the polynomial map p : W → Rt, w 7→ p(w) = (p1(w), ..., pt(w))
separates the orbits of O(n) in W .

This means that w and w′ are in the same orbit if and only if p(w) = p(w′).
As an immediate consequence we have:

Corollary 2.2. Let (M, g) be a Riemannian manifold such that all the scalar cur-
vature invariants of order m are global constants. Then φm(OM) is contained in a
single O(n)-orbit in Wm.

Proof. p ◦ φm is constant on the fibers in OM , and (2.1) shows that it does not
depend on the points q of M , either.

Note that for m = 0 we obtain that (M, g) is curvature homogeneous.
Now, we prove

Theorem 2.3. Let (M, g) be a Riemannian manifold of dimension n such that all

scalar curvature invariants of order m+ 1 with m+ 1 ≤ n(n−1)
2 are constant. Then

(M, g) is locally homogeneous. Moreover, (M, g) is uniquely determined by these
curvature invariants up to a local isometry.

Proof. φm+1 is contained in a single orbit for all m + 1 ≤ n(n−1)
2 . This implies

that (M, g) is infinitesimally homogeneous, since the Singer integer k(p) at a point
p ∈ M is not greater than 1

2n(n − 1)− 1 [17]. As a consequence, (M, g) is locally
homogeneous (see [17] for the global homogeneous case and [13] for a local version).
The last statement follows from Theorem 2.5 in [13].

Note that the converse is trivially true. Hence we obtain a criterion for local
homogeneity. Note also that another estimate for the Singer integer is given in [8,
p. 165] without proof, namely k(p) + 1 < 3

2n.

3. Weyl and additive Weyl invariants

Now we focus our attention on special scalar curvature invariants. It follows
from Weyl’s theory of invariants [24] (see also [1, p. 76]) that the invariant polyno-
mials are contractions in the components of the curvature tensor and its covariant
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derivatives, and hence, linear combinations of Weyl invariants. Here a (non-trivial)
Weyl invariant W (i.e., a product of traces [1]) is given by

W = tr(∇`1R⊗ · · · ⊗ ∇`νR)(3.1)

(`j ∈ N0, j = 1, ..., ν; ν ∈ N),∇0R = R and tr means the complete trace with
respect to some permutation of the indices.

Obviously, any Weyl invariant W given by (3.1) is defined for every Riemannian
manifold (M, g). For two Weyl invariants W1 and W2 we say W1 = W2 if and only
if W1(q) = W2(q) for each q ∈ M and every (M, g). Now, let λ ∈ R+. Then we
have W (λg) = λ−µW (g), and we call µ ∈ N the degree of W . So, for W in (3.1)
we get deg W = 1

2 (`1 + · · ·+ `ν) + ν. Then we have for W = W1W2 that deg W =
deg W1 + deg W2.

Clearly, we have

Corollary 3.1. Let (M, g) be a Riemannian manifold with globally constant Weyl
invariants. Then (M, g) is locally homogeneous.

Now, as usual, we write Ti1...ik = T (ei1 , ..., eik) for a tensor of type (0, k) with
respect to an orthonormal basis (e1, ..., en) of TqM at q ∈M . Then a Weyl invariant
W at q may be written, with respect to this frame, in the following form:

W =
∑

(a1)1,...,(aν)`ν+4

σ(δA1···Aν )(∇`1R)A1 · · · (∇`νR)Aν ,(3.2)

where Aκ = ((aκ)1, ..., (aκ)`κ+4), (∇`κR)Aκ = ∇`κ(aκ)1···(aκ)`κ
R(aκ)`κ+1···(aκ)`κ+4

, κ =

1, ..., ν, and σ(δA1···Aν ) = δσ(a1)1σ(a1)2 · · · δσ(aν)`ν+3σ(aν)`ν+4 , δij being the Kro-
necker symbol and σ a permutation of the indices (a1)1, ..., (aν)`ν+4.

Then we have

Lemma 3.2. Let W be a Weyl invariant of degree µ. Then W = W1W2, where
Wi, i = 1, 2, are Weyl invariants of degree µi < µ, if and only if there exists a
permutation σ in the expression (3.2) of W which restricts to a permutation of a
proper subset {Aα1 , ..., Aαr} of {A1, ..., Aν}.

Proof. Let W = W1W2 with degree Wi < µ. Then the result is obvious.

Conversely, suppose we can restrict σ in such a way. Put W1 = tr∇`α1R ⊗
· · · ⊗ ∇`αrR with the permutation σ1 in (3.2) given by the restriction of σ to
{Aα1 , ..., Aαν}. Then the restriction of σ to {Aβ1 , ..., Aβs} = {A1, ..., Aν}\{Aα1, ...,
Aαr} is also a permutation. Using σ2 in the expression (3.2), we obtain a second
Weyl invariant W2 = tr∇`β1R ⊗ · · · ⊗ ∇`βsR, and obviously W = W1W2. Since
µ = µ1 + µ2 we have µi < µ, i = 1, 2, and the result follows.

Next, a Weyl invariant W is said to be additive if for all M = M1×M2 we have

WM (q1, q2) = WM1(q1) +WM2(q2),

where (q1, q2) ∈ M1 ×M2 and where WM ,WM1 and WM2 are the corresponding
Weyl invariants of W for M,M1 and M2, respectively. For example, it is well-known
that the scalar curvature τ is an additive Weyl invariant, but τ2 is not additive.

Now we prove

Theorem 3.3. Every Weyl invariant is a product of additive Weyl invariants.
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Proof. Let (M = M1×M2, g) be the Riemannian product of (M1, g1) and (M2, g2)

and denote by ∇,
(1)

∇ ,
(2)

∇ their respective Levi-Civita connections and by R,
(1)

R,
(2)

R
the corresponding curvature tensors. Let dim M1 = n1 and dim M2 = n2, and put
I1 = {1, ..., n1}, I2 = {n1 + 1, ..., n1 + n2}. With a similar notation as for (3.2) we
have

(∇`R)A`(q) =


(
(1)

∇`
(1)

R )A`(q1) for A` ⊆ I1 × · · · × I1,

(
(2)

∇`
(2)

R )A`(q2) for A` ⊆ I2 × · · · × I2,

0 otherwise,

(3.3)

where q1 ∈ M1, q2 ∈ M2 and {a1, ..., an1}, respectively {an1+1, ..., an1+n2}, is an
orthonormal basis of Tq1M , respectively Tq2M2.

For a Weyl invariant W we have the following two possibilities:

(i) W = V1V2 where µi = degree Vi < µ = degree W, i = 1, 2;
(ii) W cannot be decomposed as such a product.

In case (ii), Lemma 3.2 yields that the possible permutation σ in the representation
(3.2) of W cannot restrict to a proper subset of (A1, ..., Aν). But then it follows at
once from (3.2) and (3.3) that in the corresponding sum we have only terms with
indices belonging either to I1 or to I2, that is, W = W1 +W2 and W is additive.
In case (i) we may make a similar consideration for V1 and V2 as for W . After a
finite number of steps we get W = V̄1 · · · V̄r , µ = µ1 + · · ·+ µr, 1 ≤ µi < µ, where
each V̄α, α = 1, ..., r, cannot be decomposed further. Then, as in case (ii), it follows
that each V̄α is additive, and so the proof is complete.

From Corollary 3.1 and Theorem 3.3 we get at once

Corollary 3.4. Let (M, g) be a Riemannian manifold such that each additive Weyl
invariant is globally constant. Then (M, g) is locally homogeneous.

Finally, we give a criterion for the additivity of a Weyl invariant by means of the
irreducibility of the polynomials p ∈ R[W ]O(n). We start with

Lemma 3.5. Let f be a scalar curvature invariant. Then f = f1f2 with scalar
curvature invariants fi, i = 1, 2, if and only if there exists a reducible polynomial
for f in the representation (2.1).

Proof. First, let f ◦ π = p ◦ φm with p = p1p2. This gives

f ◦ π = (p1p2) ◦ φm = (p1 ◦ φm)(p2 ◦ φm) = (f1 ◦ π)(f2 ◦ π) = (f1f2) ◦ π
and hence f = f1f2.

Conversely, let f = f1f2. Put f1 ◦ π = p1 ◦ φm1 , f2 ◦ π = p2 ◦ φm2 . Then we can
find suitable p̃1, p̃2, m̃ such that f1 ◦ π = p̃1 ◦ φm̃, f2 ◦ π = p̃2 ◦ φm̃; and we get

f ◦ π = (f1f2) ◦ π = (f1 ◦ π)(f2 ◦ π) = (p̃1 ◦ φm̃)(p̃2 ◦ φm̃) = (p̃1p̃2) ◦ φm̃.
Therefore we can choose p = p̃1p̃2 for f in the representation (2.1).

From this we get

Corollary 3.6. Let W be a Weyl invariant. If all possible polynomials p in W ◦π =
p ◦ φm are irreducible, then W is additive.
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Proof. The hypothesis implies that W cannot be equal to W1W2 where W1 and W2

are Weyl invariants. Then the result follows from Theorem 3.3.

To prove the converse of this corollary, and hence to obtain the required criterion,
we shall use three lemmas which we consider first.

Lemma 3.7. Let W =
∑`
i=1 aiWi be an additive Weyl invariant, where the ai are

all non-zero and the Wi are linearly independent Weyl invariants. Then each Wi

is additive.

Proof. Following Theorem 3.3 we put Wi =
∏κi
j=1 Uij , i = 1, ..., `, where each Uij is

an additive Weyl invariant. Hence, we have

W =
∑̀
i=1

ai

κi∏
j=1

Uij .

Now, let (q, q) ∈M ×M where M is an arbitrary Riemannian manifold. Then we
have

WM×M (q, q) = 2WM (q) =
∑̀
i=1

ai

κi∏
j=1

UijM×M (q, q) =
∑̀
i=1

ai2
κi

κi∏
j=1

UijM (q),

and thus

W =
∑̀
i=1

ai2
κi−1

κi∏
j=1

Uij

or ∑̀
i=1

ai(2
κi−1 − 1)Wi = 0.

The hypotheses now imply that κi = 1 for i = 1, ..., `, and hence Wi = Ui1, where
Ui1 is additive.

Lemma 3.8. Let W be a non-vanishing additive Weyl invariant such that W =∏κ
j=1 Uj where each Uj is a Weyl invariant. Then κ = 1.

Proof. It follows from Theorem 3.3 that Uj =
∏κj
i=1 Uji where each Uji is an additive

Weyl invariant. Thus, we have

W =
κ∏
j=1

Uj1 · · ·Ujκj .

Next, using the same procedure as in the proof of Lemma 3.7, we now get

2W = 2
∑κ
j=1 κjW

and so,
∑κ
j=1 κj = 1. The result now follows at once since κj ≥ 1, j = 1, ..., κ.

Lemma 3.9. Let W =
∏k
i=1 fi be an additive Weyl invariant where each fi, i =

1, . . . , k, is a scalar curvature invariant. Then κ = 1.
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Proof. Since every scalar curvature invariant is a sum of Weyl invariants, we may
put

fi =

µi∑
`i=1

ai`iUi`i

where the Ui`i are Weyl invariants. This yields

W =

µ1∑
`1=1

· · ·
µk∑
`k=1

a1`1 · · · ak`kU1`1 · · ·Uk`k .(3.4)

Now, if some of the products U1`1 , ..., Uk`k are linearly dependent, then we may
always write

W =
∑
· · ·
∑

ã1`1 · · · ãk`kU1`1 · · ·Uk`k
where we sum here only over the linearly independent products. Then Lemma 3.7
implies that each of these products is an additive Weyl invariant, and hence all the
products in (3.4) are also additive. Then Lemma 3.8 implies that each of these
products can only contain one factor, and so µ1 = µ2 = · · · = µk = k = 1.

From these lemmas we obtain

Corollary 3.10. Let W be an additive Weyl invariant. Then all the possible poly-
nomials p in W ◦ π = p ◦ φm are irreducible.

Proof. Put p = p1 · · · pk, where each pi, i = 1, . . . , k, is irreducible, and p ◦ φm =
(p1 ◦ φm) · · · (pk ◦ φm) = (f1 ◦ π) · · · (fk ◦ π). Then W = f1 · · · fk, and Lemma 3.9
yields k = 1, which proves the required result.

4. Commutativity of invariant differential operators

Before giving an application of these results we start with some motivating con-
siderations. Let q ∈ (M, g) and let ξ be a unit vector of TqM . γ : t 7→ expm(tξ)
denotes the geodesic through q with tangent vector ξ at q. We always suppose
t < i(q), where i(q) denotes the injectivity radius at q. Now, let {e1, ..., en} be
an orthonormal basis of TqM and (x1, ..., xn) the corresponding system of normal

coordinates centered at q and with ∂
∂xi

(q) = ei, i = 1, ..., n. Further, let θq be the
volume density function of expq given by

θq = (det(gij))
1/2,

where gij = g( ∂
∂xi

, ∂
∂xj

). Then the local geodesic symmetry sq : expq(tξ) 7→
expq(−tξ) is a volume-preserving (up to sign) local diffeomorphism if and only
if

θq(expq(tξ)) = θq(expq(−tξ))
for all unit ξ ∈ TqM and all q ∈ M . The study of these spaces has been initiated
in [6], and such spaces have been called D’Atri spaces [23]. We refer to [11] for an
extensive survey. They may also be characterized by using a commutativity relation
for some special differential operators. More precisely, define a local differential
operator ∆̄q by

∆̄qf =
n∑
i=1

∂2f

∂x2
i
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and put

∆̃(k)f(q) = (∆̄q)
kf(q).

Then ∆̃(k) is a global differential operator on M , called the Euclidean Laplacian of
order 2k [7]. They can be expressed as a function of ∆k, the curvature tensor and its
covariant derivatives (see [7] for more details). We have [20]: a) (M, g) is a D’Atri

space if the Laplacian ∆ commutes with all ∆̃(k), k ∈ N, and b) (M, g) is a D’Atri

space if and only if ∆ commutes with all differential operators f 7→ ∆̃(k)(θqf). (See
also [16].)

Now we prove

Theorem 4.1. Let (M, g) be a Riemannian manifold such that the Laplacian ∆
commutes with all second order differential operators L = ηij∇2

ij , where η is a

tensor field such that ηij are polynomials in the components of R and its covariant
derivatives and such that α = ηii is an additive Weyl invariant. Then (M, g) is
locally homogeneous.

Proof. Following [19], L∆ = ∆L implies ∇2
ijα = 0 and moreover, if M is lo-

cally irreducible, then α is a global constant. Hence the result follows from Corol-
lary 3.4. Next, let M be locally reducible and put M = M1 × · · · ×Mr. Then
∇2
ABα = ∇2

AB(α1 + · · · + αr) since α = α1 + · · · + αr, where αi, i = 1, ..., r, are
the corresponding Weyl invariants on Mi. This implies ∇2

abαi = 0, where a, b are
indices on Mi. Since Mi is irreducible, we get that αi is constant on Mi, i = 1, ..., r,
and so α is a global constant. Hence, the result follows again from Corollary 3.4.

We note that, given an additive Weyl invariant α, then L = 1
nαg

ij∇2
ij = α

n∆ is
a second order differential operator as in Theorem 4.1, although there are several
other possibilities as one can see immediately from (3.2). One just deletes one of
the δ in the summation to produce other examples. By using a similar proof one
then obtains

Corollary 4.2. Let (M, g) be a Riemannian manifold such that the Laplacian ∆
commutes with all differential operators α∆, where α is an additive Weyl invariant.
Then (M, g) is locally homogeneous.

Further, we have

Corollary 4.3. Let (M, g) be a Riemannian manifold and denote by Isomloc(M)
the pseudogroup of local isometries of M . Further, let Dloc(M) denote the algebra
of all Isomloc(M, g)-invariant differential operators. Let Z be its center. Then if
∆ ∈ Z we have

(i) (M, g) is locally homogeneous;
(ii) (M, g) is a D’Atri space;
(iii) (M, g) is a C-space.

Here a C-space is an (M, g) such that the eigenvalues of the Jacobi operators
Rγ′·γ

′ are constant along the unit speed geodesic γ for each γ [4].

Proof. (i) follows from Theorem 4.1. (ii) follows from [16], [20] because the Eu-

clidean Laplacians ∆̃(k) (and also the operators ∆̃(k)(θq·)) belong to Dloc. Finally,
(iii) follows from a result of Sumitomo as in [4].
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Corollary 4.4. Let (M, g) be a four-dimensional Einstein space with the property
that ∆ commutes with all second order operators as in Theorem 4.1 (or Corollary
4.2), where α is an additive Weyl invariant of order m + 1 ≤ 6. Then (M, g) is
locally symmetric.

Proof. It follows from Theorem 4.1 (or Corollary 4.2) and Theorem 2.3 that (M, g)
is locally homogeneous. Then a well-known result of Jensen implies that (M, g) is
locally symmetric.

A commutative (in the broader sense) Riemannian manifold is a homogeneous
(M, g) such that D is a commutative algebra (see [3], [11] for more details). Hence
we have

Corollary 4.5. A complete, simply connected (M, g) such that D is a commutative
algebra is a homogeneous space.

Moreover, we have

Corollary 4.6. Let (M, g) be a complete, simply connected Riemannian manifold
of dimension 2 or 3 or an Einstein space when dimM = 4. Then (M, g) is a
commutative space if and only if ∆ belongs to the center of D.

Proof. First we note that two- or three-dimensional, complete, simply connected
spaces are D’Atri spaces if and only if they are commutative [6], [9]. Then, the
required result follows from this and Corollary 4.3. For four-dimensional Einstein
spaces the result follows at once from Corollary 4.4 since symmetric spaces are
commutative spaces.

Note that (M, g) is locally isometric to a commutative space in Corollary 4.6
when we delete the words “complete” and “simply connected” in the hypothesis.

We finish with

Corollary 4.7. There exist D’Atri spaces such that ∆ /∈ Z.

Proof. The non-symmetric harmonic spaces discovered by Damek and Ricci [5] are
D’Atri spaces but are not C-spaces [2], [3]. Hence, Corollary 4.3 implies that ∆
does not belong to Z.

References

1. M. Berger, P. Gauduchon and E. Mazet, Le spectre d’une variété riemannienne, Lecture Notes
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