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In this proceeding, we review modified theories of gravity with a curvature-matter cou-
pling between an arbitrary function of the scalar curvature and the Lagrangian density of
matter. This explicit nonminimal coupling induces a non-vanishing covariant derivative
of the energy-momentum tensor, that implies non-geodesic motion and consequently
leads to the appearance of an extra force. Here, we explore the physical and cosmo-
logical implications of the nonconservation of the energy-momentum tensor by using
the formalism of irreversible thermodynamics of open systems in the presence of mat-
ter creation/annihilation. The particle creation rates, pressure, and the expression of
the comoving entropy are obtained in a covariant formulation and discussed in detail.
Applied together with the gravitational field equations, the thermodynamics of open
systems lead to a generalization of the standard ΛCDM cosmological paradigm, in which
the particle creation rates and pressures are effectively considered as components of the
cosmological fluid energy-momentum tensor. Furthermore, we also briefly present the
coupling of curvature to geometry in conformal quadratic Weyl gravity, by assuming a
coupling term of the form LmR̃2, where Lm is the ordinary matter Lagrangian, and R̃

is the Weyl scalar. The coupling explicitly satisfies the requirement of the conformal
invariance of the theory. Expressing R̃2 with the use of an auxiliary scalar field and of
the Weyl scalar, the gravitational action can be linearized in the Ricci scalar, leading in

the Riemann space to a conformally invariant f (R,Lm) type theory, with the matter
Lagrangian nonminimally coupled to geometry.

Keywords: curvature-matter couplings; modified gravity; irreversible thermodynamics of
open systems; matter creation; conformal quadratic Weyl gravity.

1. Introduction

The perplexing fact of the late-time cosmic acceleration1,2 has forced theorists and

experimentalists to pose the question if General Relativity (GR) is the correct rel-

ativistic theory of gravitation. The fact GR is facing so many challenges, such as:

(i) the difficulty in explaining particular observations; (ii) the incompatibility with

http://arxiv.org/abs/2203.03295v1
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other well established theories; (iii) and the lack of uniqueness, poses the question if

this is indicative of a need for new gravitational physics? Cosmology is also an ideal

testing ground for GR, in particular, the cause of the late-time cosmic acceleration,

where a promising approach is to assume that at large scales GR breaks down, and

a more general action describes the gravitational field. Indeed, many generaliza-

tions of the Einstein-Hilbert Lagrangian have been explored in the literature3–9,

with the inclusion of several of the following invariants: R2, RµνR
µν , RαβµνR

αβµν ,

εαβµνRαβγδR
γδ
µν , CαβµνC

αβµν , etc.

The physical motivations for these modifications of gravity include the possi-

bility of a more realistic representation of the gravitational fields near curvature

singularities, and to create some first order approximation for the quantum theory

of gravitational fields. Consider f(R) gravity10, for simplicity:

S =

∫

d4x
√−g

[

f(R)

2κ2
+ Lm(gµν , ψ)

]

, (1)

which combines an appealing feature, namely, it possesses mathematical simplicity

and a fair amount of generality. Here, the Ricci scalar is a dynamical degree of

freedom, which arises from the trace of the gravitational field equation, 3�F +

FR − 2f = κT , where F = df/dR. This introduces a new light scalar degree of

freedom and produces a late-time cosmic acceleration. But, the light scalar strongly

violates the Solar System constraints. However, the way out to this problematic

feature is through the ‘chameleon’ mechanism, i.e., the scalar field becomes massive

in the Solar System. Now, several approaches have been explored in the literature,

namely, the metric10, Palatini11, metric-affine formalisms and the hybrid metric-

Palatini formalism12–14. Another interesting approach to modified gravity consists

in an explicit nonminimal coupling between geometry and matter15–21. In fact, this

nonminimal coupling induces a non-conservation of the energy-momentum tensor,

that implies non-geodesic motion and consequently leads to the appearance of an

extra force.

Here, we explore the physical and cosmological implications of the non-

conservation of the energy-momentum tensor by using the formalism of irreversible

thermodynamics of open systems in the presence of matter creation/annihilation,

Indeed, we show that curvature-matter couplings offer a natural framework for

irreversible thermodynamics of open systems and gravitationally induced matter

creation processes. The systematic investigation of irreversible matter creation pro-

cesses in General Relativity and cosmology started with the pioneering work by Pri-

gogine and collaborators22,23. The description of particle creation is based on the

reinterpretation of the energy-momentum tensor in Einstein’s equations, by mod-

ifying the usual adiabatic energy conservation laws, and including an irreversible

matter creation. Thus, matter creation corresponds to an irreversible energy flow

from the gravitational field to the created matter constituents.

Even though at a phenomenological and formal level curvature-matter couplings

may be introduced in a search for the maximal extension of the Hilbert-Einstein
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action, with the help of the substitution
(

1/κ2
)

R+Lm → f (R,Lm)16, where f is an

arbitrary analytical function of its arguments, finding a physical principle that would

justify such a drastic change in the gravitational action would be of fundamental

importance. Such a principle does indeed exist, and it is the requirement of the

conformal invariance of the physical laws. The idea of the conformal invariance of

natural phenomena was first introduced in the works of Herman Weyl24,25 (see26

for a detailed historical presentation of the evolution of Weyl’s ideas). This will also

be briefly presented in this work.

In this proceedings, we will explore the need for new gravitational physics, focus

on going beyond GR, and analyse a specific extensions of f(R) gravity, namely, on

curvature-matter couplings and apply this theory to gravitationally induced particle

creation.

2. Nonminimal curvature-matter coupling

2.1. Action and field equations

In this work, we explore a generalization of f(R) gravity that includes a nonminimal

curvature-matter coupling15

S =

∫
{

1

2
f1(R) + [1 + λf2(R)]Lm

}√−g d4x , (2)

where fi(R) (with i = 1, 2) are arbitrary functions of the Ricci scalar R, and Lm is

the matter Lagrangian density. Many applications in astrophysics and cosmology

have been explored in the literature (we refer the reader to14 for more details).

Varying the action (2) with respect to the metric gµν yields:

F1(R)Rµν − 1

2
f1(R)gµν −∇µ∇ν F1(R) + gµν�F1(R) = −2λF2(R)LmRµν

+2λ(∇µ∇ν − gµν�)LmF2(R) + [1 + λf2(R)]T
(m)
µν , (3)

where Fi(R) = f ′
i(R), with

′ = d/dR.

The matter energy-momentum tensor is defined as

T (m)
µν = − 2√−g

δ(
√−g Lm)

δ(gµν)
. (4)

2.2. Equation of motion for a perfect fluid

Now, taking into account the covariant derivative of the field equation, the Bianchi

identities, ∇µGµν = 0, and the identity

(�∇ν −∇ν�)Fi = Rµν ∇µFi , (5)

one finally deduces the relationship

∇µT (m)
µν =

λF2

1 + λf2

[

gµνLm − T (m)
µν

]

∇µR . (6)
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The nonminimal coupling between the matter and the higher derivative curvature

terms implies the non-conservation of the energy-momentum tensor, which describes

an exchange of energy and momentum between both. Note that analogous couplings

arise after a conformal transformation in scalar-tensor theories of gravity (and string

theory). In the absence of the coupling, one verifies the conservation of the energy-

momentum, which is also induced from the diffeomorphism invariance of the matter

part of the action.

In order to test the motion in the model, consider a perfect fluid. The equation

of motion for a fluid element takes the following form

Duα

ds
≡ duα

ds
+ Γα

µνu
µuν = fα , (7)

where fα is an extra-force, given by

fα =
1

ρ+ p

[

λF2

1 + λf2
(Lm − p)∇νR+∇νp

]

hαν . (8)

hµλ = gµλ + uµuλ is the projection operator; fα is orthogonal to the 4-velocity

of the particle, fαuα = 0. An intriguing feature is that depending on the choices

of the thermodynamic matter Lagrangian given by Lm = p or Lm = −ρ, which
are equivalent in GR, yield different dynamics in the presence of a nonminimal

curvature-matter coupling27.

2.3. Scalar-tensor representation

The analysis is rather simplified in the scalar-tensor formulation of the theory,

where one introduces two new fields φ and ψ(φ) ≡ f ′
1(φ), and the action (2) can be

reformulates as

S =

∫

d4x
√−g

[

ψR

2
− V (ψ) + U(ψ)Lm

]

, (9)

where the two potentials V (ψ) and U(ψ) of the theory are given by:

V (ψ) =
φ(ψ)f ′

1 [φ(ψ)] − f1 [φ(ψ)]

2
, (10)

U(ψ) = 1 + λf2 [φ(ψ)] , (11)

respectively. The function φ(ψ) is obtained by inverting ψ(φ) ≡ f ′
1(φ). The ac-

tions (2) and (9) are equivalent when f ′′
1 (R) 6= 0.

In the scalar-tensor representation, the divergence of the energy-momentum ten-

sor is given by

∇µT
µ
ν = − [∇µ lnU (ψ)]T µ

ν − 2V ′ (ψ)− U ′(ψ)Lm

U(ψ)
∇νψ. (12)

Assuming a perfect fluid, the energy balance equation is:

ρ̇+ 3H(ρ+ p) + ρ
d

ds
lnU(ψ) +

2V ′ (ψ)− U ′(ψ)Lm

U(ψ)
ψ̇ = 0. (13)
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3. Thermodynamics of open systems

3.1. Irreversible matter creation processes

The systematic investigation of irreversible matter creation processes in General

Relativity and cosmology started with the pioneering work by Prigogine and col-

laborators22,23. The description of particle creation is based on the reinterpretation

of the energy-momentum tensor in Einstein’s equations, by modifying the usual

adiabatic energy conservation laws, and including an irreversible matter creation.

Thus, matter creation corresponds to an irreversible energy flow from the gravita-

tional field to the created matter constituents.

Consider the flat isotropic and homogeneous FLRW metric:

ds2 = dt2 − a2(t)
(

dx2 + dy2 + dz2
)

. (14)

Taking into account the thermodynamical implications, where one considers that

the Universe contains N particles in a volume V , an energy density ρ and a thermo-

dynamic pressure p. For this cosmological system, the 1st law of thermodynamics,

in its most general form, is given by22

d

dt

(

ρa3
)

+ p
d

dt
a3 =

dQ

dt
+
ρ+ p

n

d

dt

(

na3
)

, (15)

where dQ is the heat received by the system during time dt, and n = N/V is the

particle number density.

We restrict our analysis to adiabatic transformations defined by the condition

dQ = 0, that is, ignore proper heat transfer processes in the cosmological system.

Thus:

ρ̇+ 3(ρ+ p)H =
ρ+ p

n
(ṅ+ 3Hn) . (16)

Hence, in the irreversible thermodynamics of open systems, one can consider that

the “heat” (internal energy), received/lost by the system is due to the change in

the particle number n.

The time variation of the particle number density obtained as

ṅ+ 3nH = Γn, (17)

where Γ is the particle creation rate. Therefore, the energy conservation equation

can be reformulated in the alternative form

ρ̇+ 3(ρ+ p)H = (ρ+ p)Γ. (18)

For adiabatic transformations describing irreversible particle creation in an open

thermodynamic systems, the 1st law of thermodynamics can be rewritten as an

effective energy conservation equation,

d

dt

(

ρa3
)

+ (p+ pc)
d

dt
a3 = 0, (19)

or, in an equivalent form, as,

ρ̇+ 3 (ρ+ p+ pc)H = 0, (20)
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where we have introduced a new thermodynamic quantity, pc, denoted the creation

pressure and defined as

pc = −ρ+ p

3

Γ

H
. (21)

The inclusion of the matter creation processes into the Einstein equations lead

to the possibility of cosmological models that start from empty conditions and

gradually build up matter and entropy. Note that gravitational entropy takes a

simple meaning as associated with the entropy that is necessary to produce matter.

The matter creation is described macroscopically by introducing a negative pressure

due to matter creation. Thus, cosmological particle creation can take place from the

quantum vacuum, due to external conditions, which are caused by the expansion

or contraction of the Universe28–30.

We will explore the possibility that modified theories of gravity with a curvature-

matter coupling can provide a phenomenological description of particle production

in the cosmological fluid filling the Universe31.

4. Gravitationally induced particle creation

We consider the physical interpretation of the curvature-matter coupling by adopt-

ing the point of view of the thermodynamics of open systems, in which matter

creation irreversible processes may take place at a cosmological scale. The energy

conservation equation contains, as compared to the standard adiabatic conserva-

tion equation, an extra term, which can be interpreted in the framework of the

open thermodynamic systems as an irreversible matter creation rate. According

to irreversible thermodynamics, matter creation also represents an entropy source,

generating an entropy flux, and thus leading, in the presence of the curvature-matter

coupling, to a modification in the temperature evolution.

4.1. Particle creation rate and creation pressure

Therefore, from the point of view of the thermodynamics of open systems, the energy

balance equation, in the presence of a curvature-matter coupling, can be interpreted

as describing particle creation in an homogeneous and isotropic geometry, with the

time variation of the particle number density obtained as

ṅ+ 3nH = Γn, (22)

where the particle creation rate Γ is defined as

Γ = − 1

ρ+ p

{

ρ
d

dt
lnU(ψ) +

2V ′ (ψ)− U ′(ψ)Lm

U(ψ)
ψ̇

}

. (23)

Therefore, the energy conservation equation can be reformulated in the alterna-

tive form

ρ̇+ 3(ρ+ p)H = (ρ+ p)Γ. (24)
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As proven for adiabatic transformations, the 1st law describing irreversible par-

ticle creation in an open thermodynamic systems, can be rewritten as an effective

energy conservation equation,

d

dt

(

ρa3
)

+ (p+ pc)
d

dt
a3 = 0, (25)

or, in an equivalent form, as,

ρ̇+ 3 (ρ+ p+ pc)H = 0, (26)

where the the creation pressure, pc, is defined as

pc = −ρ+ p

3

Γ

H
. (27)

Therefore, the creation pressure, with a curvature-matter coupling, is given by

pc = − 1

3H

[

ρ
d

dt
lnU(ψ) +

2V ′ (ψ)− U ′(ψ)Lm

U(ψ)
ψ̇

]

. (28)

4.2. Entropy and temperature evolution

The basic principles of the thermodynamics of open systems state that the entropy

change consists of two components: deS =entropy flow term, diS =entropy creation

term. The total entropy S of an open thermodynamic system can represented

as22,23:

dS = deS + diS, (29)

where by definition diS > 0. In the case of a closed thermodynamic system and

for adiabatic transformations, we have dS = 0 and diS = 0. However, with a

curvature-matter coupling, leading to effective matter creation, there is a non-zero

contribution to S.

For a homogeneous and isotropic Universe the entropy flow term, we have deS =

0. But, matter creation represents a source for entropy creation, and the time

variation diS is23:

T
diS

dt
= T

dS

dt
=
h

n

d

dt

(

na3
)

− µ
d

dt

(

na3
)

≥ 0. (30)

Equation (30) gives the time variation of the entropy as

dS

dt
=
S

n
(ṅ+ 3Hn) = ΓS ≥ 0, (31)

so that the entropy increase due to particle production yields

S(t) = S0e
∫

t

0
Γ(t′)dt′ , (32)

where S0 = S(0) is a constant.
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With the use of Eq. (31), we obtain for the entropy creation in the scalar-tensor

representation of the linear coupling between matter and geometry the following

equation

1

S

dS

dt
= − 1

ρ+ p

{

ρ
d

dt
lnU(ψ) +

2V ′ (ψ)− U ′(ψ)Lm

U(ψ)
ψ̇

}

. (33)

The entropy flux four-vector Sµ is defined as

Sµ = nσUµ, (34)

where σ = S/N is the specific entropy per particle. Sµ must satisfy the second

law of thermodynamics, which imposes the constraint ∇µS
µ ≥ 0. Using the Gibbs

relation and the definition of the chemical potential µ, yields

∇µS
µ =

1

T
(ṅ+ 3Hn)

(

h

n
− µ

)

, (35)

The entropy production rate due to the particle creation processes, with the non-

minimal curvature-matter coupling, is given by

∇µS
µ =

n

T (ρ+ p)

{

ρ
d

dt
lnU(ψ) +

2V ′ (ψ)− U ′(ψ)Lm

U(ψ)
ψ̇

}

(

h

n
− µ

)

.

A general thermodynamic system is described by two fundamental thermody-

namic variables, the particle number density n, and the temperatures T , respec-

tively. If the system is in an equilibrium state, the energy density ρ and the ther-

modynamic pressure p are obtained, in terms of n and T , from the equilibrium

equations of state of the matter,

ρ = ρ(n, T ), p = p(n, T ). (36)

Therefore the energy conservation equation can be obtained in the general form

∂ρ

∂n
ṅ+

∂ρ

∂T
Ṫ + 3(ρ+ p)H = Γn. (37)

Using the general thermodynamic relation

∂ρ

∂n
=
h

n
− T

n

∂p

∂T
, (38)

the temperature evolution of the newly created particles due to the curvature-matter

coupling is given by the expression

Ṫ

T
= c2s

ṅ

n
= c2s (Γ− 3H) , (39)

where the speed of sound cs is defined as c2s = ∂p/∂ρ.

If the geometrically created matter satifies a barotropic equation of state of

the form p = (γ − 1) ρ, 1 ≤ γ ≤ 2, the temperature evolution follows the simple

equation

T = T0n
γ−1. (40)
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4.3. Validity of the second law of thermodynamics

Here, we consider the validity of the second law of thermodynamics in cosmology.

If one defines the entropy, S, measured by a comoving observer as the entropy of

the apparent horizon plus that of matter and radiation inside it, then the Universe

approaches thermodynamic equilibrium as it nears the final de Sitter phase. Then

it follows that S increases, and that it is concave, thus leading to the result that

the second law of thermodynamics is valid, as one should expect given the strong

connection between gravity and thermodynamics, for the case of the expanding

Universe.

For a spatially-flat FRW Universe filled with dust, one has

S = Sah + Sm =
π

H2
+

4π

3H3
n(t) , (41)

where we have used the fact that the radius of the apparent horizon is rah = H−1.

Therefore, the thermodynamic requirements S′ ≥ 0 and S′′ ≤ 0 impose specific

constraints on the particle creation rate Γ, and its derivative with respect to the

scale factor.

A particularly important case is that of the de Sitter evolution of the Universe,

with H = H⋆ = constant. In this case, we have

S′ =
4π

3H4
⋆

[Γ(a)− 3H⋆]

a
n(a) ≥ 0 , (42)

and

S′′ =
4πn(a)

3a2H5
⋆

{

Γ2(a) +H⋆ [aΓ
′(a) + 12H⋆]− 7H⋆Γ(a)

}

≤ 0 , (43)

respectively.

Accordingly, the constraints

Γ ≥ 3H⋆, Γ′(a) ≤
[

7Γ(a)− Γ2(a)/H⋆ − 12H⋆

]

/a , (44)

are imposed on the particle creation rate Γ. For Γ = 3H⋆, we obtain S = const,

showing that in this case the cosmological evolution is isentropic. Here, H⋆ denotes

the expansion rate of the final de Sitter phase.

4.4. Cosmological applications

Using the scalar-tensor representation of the theory, we have obtained the particle

creation rate, the creation pressure and the entropy associated to the gravitational

energy transfer to matter. The gravitational field equations corresponding to these

choices have a de Sitter type accelerating solution. This cosmic acceleration is trig-

gered by the particle creation process, which generates a negative creation pressure.

The late-time cosmic acceleration may be considered as an empirical evidence for

matter creation, and a viable alternative to the mysterious dark energy.



March 8, 2022 2:6 ws-procs961x669 WSPC Proceedings - 9.61in x 6.69in PUIC˙curvature˙matter˙coupl˙arXiv page 10

10

The potentials V (ψ) and U(ψ), that characterize the curvature-matter coupling,

can be provided by fundamental quantum field theoretical models of the gravi-

tational interaction: this opens the possibility of an in-depth comparison of the

predictions of the theory with cosmological and astrophysical observational data31.

4.5. Extended geometry-matter couplings

4.5.1. f(R,Lm) gravity

The linear curvature-matter coupling theory was generalized in the so-called

f(R,Lm) gravity16. The gravitational field equations in the metric formalism, as

well as the equations of motion for test particles, which follow from the covariant

divergence of the energy-momentum tensor, were obtained. Generally, the motion

is non-geodesic, and takes place in the presence of an extra force orthogonal to

the four-velocity, as in the linear curvature-matter coupling analysed above. The

gravitational field equations and the equations of motion for a particular model in

which the action of the gravitational field has an exponential dependence on the

standard general relativistic Hilbert–Einstein Lagrange density were also derived.

The action is given by the following action16:

S =

∫

f (R,Lm)
√−g d4x . (45)

The gravitational field equation is given by:

fR (R,Lm)Rµν + (gµν∇µ∇µ −∇µ∇ν) fR (R,Lm)

−1

2
[f (R,Lm)− fLm

(R,Lm)Lm] gµν =
1

2
fLm

(R,Lm)Tµν . (46)

Note that for the Hilbert-Einstein Lagrangian: f(R,Lm) = R/2κ2+Lm, we recover

the standard Einstein field equations. For f (R,Lm) = f1(R)+ [1 + λf2(R)]Lm, we

recover the field equations with an arbitrary linear curvature-matter coupling. We

refer the reader to16–18 for more details.

4.5.2. f(R, T ) gravity

Another related theory is f(R, T ) gravity, which is given by the following action19

S =
1

16π

∫

f (R, T )
√−g d4x+

∫

Lm

√−g d4x . (47)

where f (R, T ) is an arbitrary function of the Ricci scalar, R, and of the trace T of

the energy-momentum tensor of the matter, Tµν .

Note that the dependence from T may be induced by exotic imperfect fluids

or quantum effects (conformal anomaly). This theory may also be considered a

relativistically covariant model of interacting dark energy. We refer the reader

to14,19 for further details.



March 8, 2022 2:6 ws-procs961x669 WSPC Proceedings - 9.61in x 6.69in PUIC˙curvature˙matter˙coupl˙arXiv page 11

11

4.5.3. Further generalization: f(R, T,RµνT
µν) gravity

A further generalization to f(R, T ) gravity was explored in20,21 in the so-called

f(R, T,RµνT
µν) gravity, where the effective Lagrangian of the gravitational field is

given by an arbitrary function of the Ricci scalar, R the trace of the matter energy-

momentum tensor, T , and the contraction of the Ricci tensor Rµν with the matter

energy-momentum tensor, Tµν .

In20, the theory was presented in detail, and the Newtonian limit of the model

was also considered, and an explicit expression for the extra-acceleration which

depends on the matter density was obtained in the small velocity limit for dust

particles. The Dolgov-Kawasaki instability was analysed, and the stability condi-

tions of the model with respect to local perturbations was obtained. A particular

class of gravitational field equations was also be obtained by imposing the conserva-

tion of the energy-momentum tensor, where the corresponding field equations was

derived for the conservative case by using a Lagrange multiplier method, from a

gravitational action that explicitly contains an independent parameter multiplying

the divergence of the energy-momentum tensor. The cosmological implications of

the model were investigated for both the conservative and non-conservative cases,

and several classes of analytical solutions are obtained. We refer the reader to20,21

for more details.

5. Future outlook: conformal invariance, Weyl geometry and

curvature-matter coupling

The idea of the conformal invariance of natural phenomena was first introduced in

the works of Herman Weyl24,25 (see26 for a detailed historical presentation of the

evolution of Weyl’s ideas). Weyl’s approach to gravitational phenomena is based

on the observation that Maxwell’s equations in vacuum are conformally invariant.

Hence, if the laws of nature are unitary, it is natural to suggest that the gravitational

field equations as developed by Einstein must have the same symmetry. In order

to systematically implement the idea of conformal invariance Weyl constructed a

geometry in which the covariant derivative of the metric tensor does not identically

vanish, and has the property ∇λgµν = Qλµν = ωλgµν , where Qλµν is the nonmetric-

ity, while ωλ is the Weyl vector field25. In Weyl geometry the parallel transport

of a vector does not maintain its length constant. Due to this geometric property

Einstein criticized the physical interpretation of the new geometry as proposed by

Weyl, pointing out that if the running of the atomic clocks would depend on their

past evolution, it would be impossible for the sharp spectral lines to exist in the

presence of an electromagnetic fields.

However, even though Weyl’s geometry has been abandoned as a unified candi-

date for a unified field theory, the idea of the conformal invariance of the physical

laws proved to be very attractive, and it opened some new perspectives on the inter-

pretation and foundations of some physical theories. In particular, if one requires the

conformal invariance of the gravitational action in the presence of matter, the only
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possibility to add a conformally invariant matter term would be through a curvature

matter coupling. In the following we will briefly present a particular gravitational

model with geometry-matter coupling, in which conformal invariance uniquely fixes

the form of the coupling term.

5.1. Weyl geometry in a nutshell

We define Weyl geometry as the classes of equivalence (gαβ, ωµ) of the metric gαβ
and of the Weyl vector gauge field ωµ. The two elements of the equivalence class

are related by the Weyl gauge transformations32,

g̃µν = Σngµν = [g̃µν ] , ω̃µ = ωµ − 1

α
∂µ lnΣ,

√

−g̃ = Σ2n√−g, φ̃ = Σ−n/2φ,

(48)

where n is the Weyl charge. We also have
[

R̃µν

]

= 1,
[

Γ̃µ
νρ

]

= 1,
[

R̃
]

=
1

Σn
,
[

R̃µ
νρσ

]

= 1, [Fµν ] = 1, [Lm] = 1, [Tµν ] = Σn,

[T µν ] = Σ−n, [ρ] = 1, [p] = 1, [T ] = 1, [uµ] = Σn/2, [uµ] = Σ−n/2, [jµ] = Σ−n/2,

where the square brackets [...] denote the degree of Σ in the conformal transforma-

tion of the geometrical and physical quantities.

The Weyl gauge vector field can be obtained from the Weyl connection Γ̃, which

is defined as a solution of the system of equations

∇̃λgµν = −nαωµgµν , (49)

where α is the Weyl gauge coupling. By using the standard definition of the covari-

ant derivative we find

∇̃λgµν = ∂λgµν − Γ̃ρ
νλgρµ − Γ̃ρ

µλgνρ. (50)

One of the important properties of Weyl geometry is its non-metric nature. Equiv-

alently, Eq. (49) can be reformulated as
(

∇̃λ + nαωλ

)

gµν = 0.

We can obtain gauge invariant expressions in Weyl geometry by replacing the

ordinary derivative with Weyl covariant derivative. For example, the expression

obtained through the substitution ∂λ → ∂λ + weight × α × ωλ is gauge invariant.

From Eq. (49) we obtain the expression of the Weyl connection as

Γ̃λ
µν = Γλ

µν + α
n

2

(

δλµων + δλνωµ − ωλgµν
)

, (51)

where

Γλ,µν =
1

2
(∂νgλµ + ∂µgλν − ∂λgµν) , (52)

is the Levi-Civita metric connection, and Γ̃λ
µν = gλσΓ̃λ,µν . The trace of Eq. (51) is

given by Γ̃µ = Γµ + 2nαωµ.

The field strength F̃µν associated to the Weyl vector ωµ is defined as

F̃µν = ∇̃µων − ∇̃νωµ = ∂µων − ∂νωµ. (53)
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With the help of the Weyl connection we can construct the curvature tensor as

follows,

R̃λ
µνσ = ∂νΓ̃

λ
µσ − ∂σΓ̃

λ
µν + Γ̃λ

ρν Γ̃
ρ
µσ − Γ̃λ

ρσΓ̃
ρ
µν , (54)

and its first contraction,

R̃µν = R̃λ
µλν , R̃ = gµσR̃µσ, (55)

respectively. The Weyl scalar is given by

R̃ = R− 3nα∇µω
µ − 3

2
(nα)2 ωµω

µ. (56)

It is easy to check that R̃ transforms covariantly, and
√−gR̃2 is invariant with

respect to the gauge transformations. The Weyl tensor, an important geometric

and physical quantity, can be obtained as

C̃2
µνρσ = C2

µνρσ +
3

2
(αn)2 F̃ 2

µν , (57)

where Cµνρσ is the Weyl tensor defined in the Riemannian geometry33. The tensor√−gC̃2
µνρσ is invariant with respect to the conformal transformations of the metric.

For C2
µνρσ we find

C2
µνρσ = RµνρσR

µνρσ − 2RµνR
µν +

1

3
R2. (58)

For the Weyl charge n in the following we will adopt the value n = 1.

5.2. Coupling curvature and matter in Weyl geometry

With the help of the fundamental scalars of Weyl geometry
(

R̃, F̃ 2
µν , C̃

2
µνρσ

)

, one

can construct the conformally invariant gravitational action32,34–36 gravitational

field,

S0 =

∫

[ 1

4!

1

ξ2
R̃2 − 1

4
F̃ 2
µν − 1

η2
C̃2

µνρσ

]√−gd4x, (59)

where ξ and η are dimensionless coupling parameters. However, to obtain physically

realistic gravitational models the effect of the matter must also be included in the

action (59) by using a conformally invariant Lagrangian density L̃m.

The simplest possibility for adding a conformally invariant matter Lagrangian

is by adopting for the matter contribution the form L̃m = LmR̃
2/4!γ2, where Lm

is the ordinary matter Lagrangian density, satisfying [Lm] = 1, and γ is a coupling

constant. Hence we obtain for the conformally invariant action for gravity in Weyl

geometry the expression

S =

∫

[ 1

4!ξ2
R̃2 − 1

4
F̃ 2
µν − 1

η2
C̃2

µνρσ +
1

4!γ2
LmR̃

2
]√−gd4x

=

∫

[ 1

4!ξ2

(

1 +
ξ2

γ2
Lm

)

R̃2 − 1

4
F̃ 2
µν − 1

η2
C̃2

µνρσ

]√−gd4x. (60)
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By introducing now an auxiliary scalar field φ0, defined according to R̃2 ≡
−2φ20R̃− φ40

32, after substitution in the action (60), we obtain

S = −
∫

{

1

2ξ2

(

1 +
ξ2

γ2
Lm

)

[

φ20
6
R− α

2
φ20∇µω

µ

−α
2

4
φ20ωµω

µ +
φ40
12

]

+
1

4
F̃ 2
µν +

1

η2
C̃2

µνρσ

}

√−gd4x. (61)

We perform now a conformal transformation of the metric with the help of the

conformal factor Σ = φ20/
〈

φ20
〉

, where
〈

φ20
〉

is the (constant) vacuum expectation

value of the field φ0
32. The determinant of the metric tensor transforms a

√−g =
(

〈

φ20
〉2
/φ40

)√−ĝ, while the Ricci scalar becomes R̃ =
(

φ20/
〈

φ20
〉)

R̂. Moreover, the

Weyl vector transforms as ωµ = ω̂µ + (2/α) ∂µφ0/φ0, and we also impose the gauge

condition ∇µω̂
µ = 0.

Hence, after using the gauge freedom of the theory, the Weyl geometry action

containing a curvature-matter coupling becomes

S = −
∫

{

(

1 +
ξ2

γ2
Lm

)

[

1

2
M2

pR− 3α2

4
M2

pωµω
µ

+
3

2
ξ2M4

p

]

+
1

4δ2
F̃ 2
µν +

1

η2
C2

µνρσ

}

√−gd4x, (62)

whereM2
p =

〈

φ20
〉

/6ξ2 and 1/δ2 = 1+6α2/η2, and, to keep the notation simple, the

hats are not written out explicitly on the conformally rescaled geometrical quanti-

ties. It is important to point out that in action (62) the physical and geometrical

quantities are defined in the Riemann space. We can further rescale the matter

Lagrangian by defining a new effective matter variable Lm, given by

Lm = 1 +
ξ2

γ2
Lm. (63)

Thus, we obtain the action of the conformally invariant f (R,Lm) theory as

S = −
∫

{

Lm

[

1

2
M2

pR− 3α2

4
M2

pωµω
µ +

3

2
ξ2M4

p

]

+
1

4δ2
F̃ 2
µν +

1

η2
C2

µνρσ

}

√−gd4x.

(64)

5.3. Gravitational and Weyl field equations

We vary first the gravitational action (64) with respect to the Weyl vector ωµ, and

thus we obtain the generalized system of Maxwell-Proca type equations for ωµ,

given by

∇µF̃
µν +

3

2
M2

pα
2δ2

(

1 +
ξ2

γ2
Lm

)

ων = 0, (65)
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or,

∇µF̃
µν +

3

2
M2

pα
2δ2Lmω

ν = 0. (66)

In Riemann geometry the Weyl field strength F̃µν satisfies identically the equa-

tions

∇σF̃µν +∇µF̃νσ +∇νF̃σµ = 0. (67)

By varying the action (64) with respect to the metric tensor g|muν we obtain the

conformally invariant gravitational field equations with curvature-matter coupling

in the form

M2
p

[

LmRµν + (gµν∇α∇α −∇µ∇ν)Lm − 3α2

2
Lmωµων

]

− 1

2
M2

pTµν
(

R − 3α2

2
ωαωβg

αβ + 3ξ2M2
p

)

+
8

η2
Bµν − 2T̃ (ω)

µν = 0, (68)

where

Tµν = gµν +
ξ2

γ2
Tµν , (69)

T̃ (ω)
µν =

1

2δ2

(

−F̃µλF̃
λ

ν +
1

4
F̃λσF̃

λσgµν

)

, (70)

is the electromagnetic type energy-momentum tensor associated to the Weyl field,

and Bµν , is the Bach tensor, given by

Bµν = ∇λ∇σC
σ λ

µ ν +
1

2
C λ σ

µ ν Rλσ. (71)

Note that Tµν may be interpreted as an effective metric tensor that also func-

tionally depends on the thermodynamic properties of matter. In four dimensions

the Bach tensor is trace free, and also T̃
(ω)µ
µ = 0. Hence, by taking the trace of the

field equations (68) we arrive at the scalar relation
(

LmR+ 3∇α∇αLm − 3α2

2
Lmω

2

)

− 1

2
T
(

R− 3α2

2
ω2 + 3ξ2M2

p

)

= 0, (72)

where we have denoted ω2 = ωµω
µ. The trace equation can be also formulated as

(

Lm − 1

2
T
)

R+ 3∇α∇αLm − 3α2

2

(

Lm − 1

2
T
)

ω2 −
3ξ2M2

p

2
T = 0. (73)

By eliminating the term ∇α∇αLm between Eq. (68) and Eq. (72) we find

1

2
M2

p

[

Lm

(

Rµν − 1

3
gµνR

)

− 3α2

2
Lm

(

ωµων − 1

3
gµνω

2

)]

− 1

4
M2

p

(

Tµν − 1

3
gµνT

)(

R− 3α2

2
ω2 + 3ξ2M2

p

)

− 1

2
M2

p∇µ∇νLm +
4

η2
Bµν − T̃ (ω)

µν = 0. (74)
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With the help of the Einstein tensor the field equations can be written as

Rµν − 1

2
gµνR+

8

η2M2
pLm

Bµν +
1

Lm
Σ̂µνLm +

1

2

(

gµν −
Tµν
Lm

)

R

= −3

2

1

Lm

(

α2

2
ω2 − ξ2M2

p

)

Tµν +
3α2

2
ωµων +

2

M2
p

1

Lm
T̃ (ω)
µν , (75)

where we have denoted Σ̂µν = gµν∇α∇α −∇µ∇ν .

5.4. Generalized Poisson equation, and corrections to the

Newtonian potential

By assuming that the coupling constant η is large, we can neglect in the gravitational

field equations the Bach tensor. Hence, Eqs. (68) become

Rµ
ν = − 1

Lm
(δµν∇α∇α −∇µ∇ν)Lm +

1

2Lm
T µ
ν

(

R− 3α2

2
ω2 + 3ξ2M2

p

)

+
3α2

2
ωµων +

2

M2
pLm

T̃ (ω)µ
ν . (76)

We investigate now the weak field and low velocity limit of Eqs. (76), by following

the approach of33. We assume that ~v2 ≪ 1, and thus we can neglect the spacelike

components in uµ, which in this limit has the components u0 = u0 = 1, and

ui = 0, i = 1, 2, 3, respectively. The matter energy-momentum tensor T µ
ν = ρuνu

µ

has only one non-zero component, T 0
0 = ρ, and in the weak field limit only the

g00 = 1 + 2ϕ metric tensor component, where ϕ is the Newtonian gravitational

potential, is different from the Minkowskian values of the metric33. In the same limit

we have R0
0 ≈ R ≈ ∆ϕ33, and we can neglect in the gravitational field equations

all the derivatives with respect to the time. Furthermore, we take Lm = ρ, Lm =

1+
(

ξ2/γ2
)

ρ, and we assume that the time-like component of the Weyl vector field

is dominant, so that ω2 ≈ ω0ω0. We also assume that the Weyl vector have a small

spacelike variation, at least on the scale of the Solar System

Therefore, under these approximations, Eq. (76) gives
(

1 +
ξ2

γ2
ρ

)

∆ϕ =
3ξ2

γ2

(

α2

2
ω2 + ξ2M2

p

)

ρ+ 6

(

ξ2M2
p − α2

2
ω2

)

ϕ+
2ξ2

γ2
∆ρ

+3

(

α2

2
ω2 + ξ2M2

p

)

. (77)

Eq. (77) gives the generalized Poisson equation in the conformally invariant

f (R,Lm) theory.

If the curvature-matter coupling is weak, the constant γ is very large. Therefore,

if the matter density is low density, and in vacuum, the generalized Poisson equation

(77) becomes

∆ϕ = 6

(

ξ2M2
p − α2

2
ω2

)

ϕ+ 3

(

α2

2
ω2 + ξ2M2

p

)

. (78)
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When the Weyl vector and the effective cosmological constant ξ2M2
p do vanish,

we obtain the standard Newtonian vacuum Poisson equation ∆ϕ = 0, which has

the unique spherically symmetric solution given by ϕ(r) = −C/r, where C is an

integration constant. In the following for the sake of simplicity we neglect the term

proportional to the potential in Eq. (78), by assuming

φ≪
α2ω2/2 + ξ2M2

p

2
(

ξ2M2
p − αω2/2

) . (79)

holds. The above condition can be also formulated as

r ≫ rg

∣

∣

∣

∣

∣

ξ2M2
p − αω2/2

α2ω2/2 + ξ2M2
p

∣

∣

∣

∣

∣

, (80)

where we have assumed for the potential its Newtonian form φ(r) = |GM⊙/r|, and
rg = 2GM⊙ ≈ 3 × 105 cm, is the gravitational radius of the Sun. For αω2/2 ≫
ξ2M2

p , the approximation is valid for r ≫ rg, that is, it works well in the standard

Newtonian regime.

Therefore, Eq. (78) takes the form

1

r2
d

dr

(

r2
dϕ(r)

dr

)

=
3α2

2
ω2(r) + 3ξ2M2

p , (81)

where we have assumed spherical symmetry. Its general solution is given by

ϕ(r) = −C
r
+

3α2

2

∫ r

dς
1

ς2

∫ ς

θ2ω2 (θ) dθ +
ξ2M2

p

2
r2. (82)

By approximating ω2 by a constant, an approximation that may be valid for

some (astronomically) small regions of the spacetime, the gravitational potential is

obtained as

ϕ(r) = −C
r
+

1

2

(

α2ω2

2
+ ξ2M2

p

)

r2. (83)

Therefore, the Weyl vector induces important modifications into the gravita-

tional potential, and these corrections may lead to experimental or observational

tests that may prove or disprove the presence of Weyl geometric effects in the Uni-

verse.

6. Summary and Conclusion

In this proceedings, we considered modified theories of gravity with a linear cou-

pling between matter and geometry. An interesting characteristic of these theories

is the non-conservation of the energy-momentum tensor, indicating that matter and

energy fluxes can be generated by the conversion of curvature into matter. While

these theories offers an alternative explanation to the standard cosmological model

for the expansion history of the universe, they offer a paradigm for nature funda-

mentally distinct from dark energy models of cosmic acceleration, even those that

perfectly mimic the same expansion history.
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A fundamental concept in theoretical physics, initially discussed by Weyl25, is

the requirement of the conformal invariance of the physical laws. Conformal in-

variance is a highly attractive idea, analogous to the gauge principle in elementary

particle physics that played such an important role in the development of modern

physics. The global transformations of units are similar to the global gauge trans-

formations, or, equivalently, to global internal-symmetry transformations. Once we

extend the units transformations to the local level, and we require the conformal

invariance of physical laws we obtain a situation comparable to the requirement of

gauge and internal invariance at the local level, a problem which is solved in elemen-

tary particle physics by the introduction of gauge fields. On the other hand, the

fundamental laws of physics, including Maxwell’s equations, the electromagnetic,

weak, and strong interactions, the massless scalar field equation, and the massless

Dirac equation, respectively, are all conformally invariant. Hence, the world of

microscopic physics is conformally invariant, while Einstein’s gravity is not.

Therefore, there is one more fundamental difference between the microcosm of

particle physics, and the macrocosm of the gravitational interaction. Abandoning

the requirement of the conformal invariance of elementary particle physics is not

an acceptable choice. But then a bridge between elementary particle physics and

gravity can be built up by introducing the principle of conformal invariance in

Einstein’s general relativity. But this avenue would necessarily lead to the use of

Weyl geometry to describe gravitational phenomena.

In the present paper we have presented the basic ideas and approach for one of

the simplest conformally invariant models with curvature-matter coupling, with the

field equations fully satisfying this requirement. To construct a conformally invari-

ant gravitational action in presence of matter a coupling between matter and geom-

etry is essentially necessary. The simplest possible conformally invariant matter-

curvature coupling is expressed by a term having the simple form LmR̃
2, leading to

a theory that is quadratic in the Weyl scalar R̃. However, by using the linear/scalar

representation of the quadratic Weyl gravity32,34–36, one can formulate the the-

ory in the standard Riemannian geometry as a particular version of the f (R,Lm)

gravity theory16, in which the gravitational action is formulated in terms of an

arbitrary analytic function of the (Riemannian) Ricci scalar R, and of the matter

Lagrangian Lm. The theory that we have briefly reviewed in the present paper

imposes a specific requirement on the general theory, namely, the condition of its

conformal invariance at the level of the action, and of the field equations.

Conformally invariant Weyl type gravity theories can be also tested at cosmo-

logical scales, as done in37, where it was shown that they can represent attractive

alternatives to the standard ΛCDM cosmological model. It is fundamental to un-

derstand how one may differentiate these modified theories of gravity from dark

energy models (for instance, through structure formation). Tests from the solar

system, large scale structure and lensing essentially restrict the range of allowed

modified gravity models.
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Surveys such as the EUCLID space telescope, the Square Kilometre Array (SKA)

radio telescope, the Dark Energy Survey (DES), and the Extended Baryon Oscil-

lation Spectroscopic Survey (eBOSS) as part of the Sloan Digital Sky Survey III

(SDSS) will provide new opportunities to test the different cosmological models.

Indeed, with the wealth of unprecedented high precision observational data that

will become available by these upcoming and planned surveys, we are dawning in a

golden age of cosmology, which offers a window into understanding the perplexing

nature of the cosmic acceleration, dark matter and of gravity itself.
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