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Curvature ofn-Dimensional Space Curves
in Grey-Value Images

Bernd Rieger and Lucas J. van Vliet

Abstract—Local curvature represents an important shape pa-
rameter of space curves which are well described by differential
geometry. We have developed an estimator for local curvature of
space curves embedded in -dimensional ( -D) grey-value images.
There is neither a segmentation of the curve needed nor a para-
metric model assumed. Our estimator works on the orientation
field of the space curve. This orientation field and a description of
local structure is obtained by the gradient structure tensor. The ori-
entation field has discontinuities; walking around a closed contour
yields two such discontinuities in orientation. This field is mapped
via the Knutsson mapping to a continuous representation; from a

-D vector to a symmetric 2-D tensor field. The curvature of a
space curve, a coordinate invariant property, is computed in this
tensor field representation. An extensive evaluation shows that our
curvature estimation is unbiased even in the presence of noise, in-
dependent of the scale of the object and furthermore the relative
error stays small.

Index Terms—Curvature, gradient structure tensor, Knutsson
mapping, space curves in -D.

I. INTRODUCTION

I N THIS PAPER, we present a method suitable for curvature
estimation of space curves, implicitly represented by grey-

level isophotes (level-sets), in-dimensional ( -D) images. The
curve is embedded in the image by a grey-level difference with
respect to the background. Our method works directly on the
grey-value information of the image; neither a segmentation is
needed to detect the curve nor a parametric fit is done at any
time during the analysis. The method exploits the differential
structure of images.

Curvature in two-dimensional (2-D) images has been well-
studied, both in segmented and in grey-level images [1]–[5].
Curvature is the first-order shape descriptor of an object and,
therefore, an important feature. In 2-D, it totally determines the
shape of a curve.

Isophote curvature [6]–[8] can successfully be applied to
edges in 2-D and three-dimensional (3-D) grey-value images,
but it fails when applied to lines (space curves) [9]. To over-
come the problems associated with isophote curvature, one
transforms the grey-value image into an orientation map from
which the curvature can be derived after solving the disconti-
nuity problem [1]. In 2-D, the use of the double angle method
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is well-known [1], [10], but in 3-D it remained an obstacle
that prevented the computation of curvature in 3-D. Therefore,
traditional 3-D methods are applied to segmented images, or
even on curves represented by ordered points, which enables
one to fit a parametric model to the curve [11]–[14]. These
methods rely heavily on the preceding segmentation, labeling,
and orderings steps, which may fail due to noise or the presence
of a bundle of space curves comparable to a lock of hair.

A. Mathematics

First we present the mathematics of differential geometry that
describe space curves. We have adopted a formulation that can
be applied to grey-value images (Section II).

In 2-D, the curvature of a curve in every point describes the
shape of this curve completely. In 3-D, a second parameter, the
torsion, is needed to give a full description, in 4-D another, and
so forth. For a -dimensional curve, we know from the central
theorem of space curves, that for given curvatures

there exists a curve with theseand any two such curves
differ only by a translation followed by a rotation [element of
SO( )] [15], [16]. The curvatures therefore totally determine the
shape of a space curve but do not tell anything about its position.
This makes these parameters well suited as curve descriptors.
The curvature is a first order feature of a-D curve.

Let be an interval, then a -mapping is
called aparameter curveand is called aspace curve.Fur-
ther, let be the parameter ofthen thetangent

exists for all curves. Thearc length is . If

, i.e., is a regular curve then and
are valid parameter transformations. In the following,

will be the arc length andthe derivative with respect to it. In this
parameterization, we have the favorable properties
and .

A local orthonormal basis can be constructed iteratively
for a curve if are linearly indepen-
dent [15]. In this basis, the Frenet-equations can be formulated
[16]. For a parameter curve , unambiguous numbers

exist

...
...

...
...

...
...

(1)

for which holds , where . Here,
the is the th curvatureof the curve. From , we see
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immediately how to compute the curvature as
and from the iterative construction of the basis
we obtain

(2)

From (2), we see that the curvature is always greater or equal to
zero. Indeed for space curves it does not make sense to speak
of a signed curvature in a coordinate independent description.
In contrary to closed surfaces there is no border separating two
distinct parts of space. By choosing an origin one can speak of
signed curvature also for space curves.

Example: The circular helix, a parameterization is

(3)

where is the pitch, the radius, and the helix is winding around
the -axis. With the parameterization of the curve and the arc
length factor , can be computed using the
previous formulas

(4)

II. THEORY OFSPACECURVES IN GREY-VALUE IMAGES

The local orthonormal basis can be obtained from the
grey-level images itself by local orientation analysis.

A. Orientation Field: A Local Orthonormal Basis

In order to obtain the orientation field along a space curve
embedded in a -D image we use the gradient structure tensor
(GST) [3], [9], [17]–[20]. For any image, we can always com-
pute the GST: , where the lower
index denotes a partial spatial derivative. The overhead bar de-
notes smoothing which is done per element of, where each
element is a -D image. The GST can be expanded in terms
of the eigenvalues and eigenvectors as ,
with . The eigenvectors of the GST con-
tain information about the local structure in the image. We can
compute the largest and smallest eigenvalue and the as-
sociated eigenvector for any dimension of the image by using
the power method [21]. For the smallest eigenvalue,has to
be inverted, which becomes time consuming for large. In the
2-D or 3-D case analytic solutions are possible and much faster
[9], [19]. For line like structures the tangent orientation is given
by the “smallest” eigenvector . A normalized line detector is
the ratio [9], [19].

All derivatives are implemented as convolutions with
Gaussian derivatives. The scale denotes the resolution at
which the Gaussian derivatives are computed. The size of the
tensor smoothing defines how local the image structure is
computed.

The local set of eigenvectors of the GST consists of the
same set of vectors as the local orthonormal basis. The
ordering, however, is different.

B. Discontinuity of the Orientation Field

Unfortunately the calculated orientation field contains a
discontinuity mod [18], i.e., the direction of the line is un-
defined. Computation of partial spatial derivatives of the orien-
tation field are not possible without some preparation. In gen-
eral, a mapping to a higher dimensional space is needed to solve
the discontinuity problem. For example, in 2-D, the phase jump
can be resolved by doubling the angle of the gradient vector [1],
[10].

C. Knutsson Mapping

Removing the phase jump in a-D field is not a trivial task.
Knutsson has introduced a mapping

(5)

that removes that discontinuity [18] while being distance
preserving. The mapping satisfies the following three require-
ments: let

• uniqueness: , this removes the phase
jump;

• uniformity: for , lo-
cally preserves the angle metric;

• polar separability: , information car-
ried by the magnitude of normally does not depend on
the angle.

For a comprehensive review on the problem of orientation rep-
resentation, the connection between the Knutsson mapping, and
the gradient structure tensor, see [22].

D. Curvature in -D Grey-Value Images

Our goal is to compute the curvature via (2) . We
start with the tangent orientation obtained with
the GST. Here, we already have the first derivative. The discon-
tinuity problem (discussed previously) prevents direct computa-
tion of the derivative of along . This is solved by mapping
the tangent orientation via the quadratic mapping to a con-
tinuous representation. The elements of form a new -D
vector . The ordering of the elements in this vectordoes not
influence our curvature estimation, because we only evaluate a
norm, as shown in (8), which is independent of a permutation
of the elements of .

Now, we calculate the derivative of in the direction of the
tangent [15], which is again a -D vector

(6)

where is the functional matrix

...
... (7)

From the uniform stretch requirement of we know how to
scale the norm of a variation vector. Thus, starting from (2)
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and the mapping we obtain a new expression for the cur-
vature

(8)

We are aware of the fact that we cannot take it for granted that
(8) represents the curvature of the original curve. First, we apply
a nonlinear mapping to the tangent orientation and then in
the mapped space linear operations, derivative and projection,
are done. The reason why (8) is indeed another form of (2), is
the uniform stretch requirement imposed on the mapping,
that ensures that there is a fixed relation between the norms of
the mapped and the original vector.

E. Method in 2-D

Let us assume that the 2-D tangent orientation is given
,where are arbitrary functions. The

mapped vector is

(9)

Having the vector explicitly, we construct the functional ma-
trix, compute the projection onto the tangent direction (6) and
then we can calculated the curvature using (8)

(10)

If we have the 2-D orientation field given, then the tan-
gent . Filling in this tangent in (10) and sim-
plifying the expression with the help of the trigonometric rela-
tions, we get

(11)

where is the contour.
At this point, we are able to state that our method of calcu-

lating the curvature via the mapping in a higher dimensional
space is consistent with the standard definition of curvature
in 2-D. Also the isophote curvature formula in 2-D can be
obtained by (10) with the gradient being , the
contour and therefore the isophote tangent

. The indices being partial
derivatives. Filling in this tangent in (10), we get the isophote
curvature formula [1], [7], [8]

(12)

III. EVALUATION OF THE ALGORITHM

To assess the performance of the proposed estimator we will
apply it to synthetic test images of various scales and hampered
by noise.

Fig. 1. Center line of a grey-level helix.

A. Test Images

Definition: Under a space curve in a grey-value image, we
understand a line of constant grey-value, i.e., an isophote (level-
set). It should be noted that such isophotes are implicitly repre-
sented by the voxel-values of a properly sampled bandlimited
image.

To evaluate the algorithm on space curves, some proper test
images are needed that reflect this definition.

A general method of creating smooth and approximately ban-
dlimited space-curves in images is described in the following.
One has to consider that a suitable test image must be bandlim-
ited before sampling, otherwise one might encounter problems
due to aliasing [8]. We do this by computing the distance from
every voxel in the image to the mathematical function and as-
sign it to the voxel. In the next step, the image is multiplied by
itself to create a steeper slope; subsequently, an erfclip operation
[23] is applied to produce a smooth space-curve, embedded in
an image.

In 2-D, we use a simple ring as a test image. In 3-D, as a first
step we create a torus of arbitrarily orientation. In a second step
we study the simplest possible test object in 3-D not only having
curvature. The object with constant curvature and torsion is the
circular helix (3). So we finally get a smooth representation of
a torus/helix which looks like a string spaghetti shaped into a
torus/helix. This guarantees a sub-pixel precision and approxi-
mately bandwidth limitation. The image consists of an isophote
(same grey level) center line and isocylinders around it.

In Fig. 1, the center line of a grey-level helix is shown, where
the line indicates constant grey-value. The vectors given in the
figure represent the local orthonormal basis (Section I-A),

being the tangent, the normal and the
binormal vector. In Fig. 2, an isosurface plot of the smooth
string shaped into a spaghetti is shown. The isocap through
the spaghetti shows the isocylinder around the imaginary center
line. In Fig. 3, a cross section through a test object is shown,
you can clearly see the Gaussian profile with the top being the
centerline.
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Fig. 2. Isosurface plot of a grey-level helix.

Fig. 3. Cross section through a test object.

B. Ring

To start off in 2-D, we generate smooth rings with different
radii and signal strength . To measure the robustness of the
estimator we add different levels of Gaussian noise. We use the
definition SNR , where is the variance of the
Gaussian noise. The results are depicted in Fig. 4. The different
noise levels are always calculated at the same radii, but slightly
shifted in the figure for a better display. The error bars indicate
the standard deviation over 40 runs. A tensor smoothing
and a gradient smoothing was used. For SNR dB

Fig. 4. Average curvature estimation on a 2-D ring for different noise levels.

Fig. 5. Average curvature estimation on a torus for different noise levels.

the average relative error is smaller than 10%. The estimator is
unbiased.

C. Torus

The torus image has a grey-value range from zero to one;
therefore, SNR . Again, we use and
. The performance of the estimator is tested over 20 runs for

different noise levels (see Fig. 5). The error bars indicate the
standard deviation. The different noise levels are again shifted
in the figure for better display. The error bars include even for
the high noise level (3 dB) the true value.

D. Helix

The curvature (4) of the helix depends on
the two parametersand which scale the helix. For increasing
size of the helix radius the curvature first rises, being at its max-
imum at and then decreasing (Fig. 12). In order to make
a scale invariant statement about the performance of our algo-
rithm we sample the scale space , generate the according test
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Fig. 6. Curvature of the helix, scale invariant.

Fig. 7. Relative error, scale invariant.

images and compute the curvature of the center line. Therefore,
we rewrite (4) to

and (13)

Now, we deal with dimensionless quantitiesand , which
are suitable to show that our estimation works fine over a wide
range of scales. In Fig. 6, we plot the theoretical prediction and
our calculations, in which the different symbols indicate helices
having either the same radius or pitch. Because our estimation
stays so close to the true value over a wide range of scales, we
conclude that for all values in between our sampled grid points
the estimation works as well. The relative error of the estimation
shown in Fig. 7 is smaller than 5% over a range from

.
1) Influence of Noise:

• Noise for different helix scales
In the same scale invariant manner as for Fig. 6, we

investigate the performance under noisy circumstances. In

Fig. 8. Curvature estimation with added noise.

Fig. 9. Relative error in curvature estimation with added noise.

Fig. 8, the results are shown for 13, 19, and 25 dB, where
the error bars indicate the standard deviation for 20 runs.
The estimation is unbiased, since the error bars always
intersect the true curvature. The relative error is shown in
Fig. 9.

• Studies along a cross section of the helix profile
For one helix ( ), we add noise (SNR

dB) to the image and plot the computed curvature
(mean over 20 runs) and the standard deviation in Fig. 10
along a cross section of the helix (see Fig. 3). Again we see
that the mean remains around the true value, and the vari-
ation stays approximately constant. It should be pointed
out that we see here not only the isophote line at the point
where the mathematical helix would lie but a cross sec-
tion through the 15 pixel diameter of the helix. Due to the
regularization effect of the GST, we can estimate the true
curvature even if we are not at the exact position. If we
choose a small tensor smoothing, then the relative error
at the exact point becomes smaller but for the surrounding
values it becomes larger.
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Fig. 10. Curvature along a cross section, 19 dB.

Fig. 11. Influence of� .

2) Influence of the Gaussian Derivative in the Mapped
Space: For a limited number of helices ( –25),
we investigate the dependency of the relative error of the cur-
vature on , the standard deviation of the Gaussian derivative
in the mapped space (6) (compare Fig. 11). Here, we observe
an overall dependency in the relative error.

IV. COMPARISONWITH A SEGMENTATION BASED APPROACH

Coeurjollyet al.[14] presented a purely discrete algorithm to
compute curvature in images based on discrete osculating cir-
cles as an extension to the method classification done by Wor-
ring and Smeulders [4].

The estimation error of Coeurjollyet al. is dependent on the
resolution of the grid. Our algorithm is independent of this quan-
tity as long as the object is not undersampled. Their estimation
error on a 2-D noise free disk is about 2.5% for a circle with
radius 50 and about 1% for a circle with radius 100 pixels (cor-
responding to grid step size of 1/50 and 1/100 resp.). On noise

Fig. 12. Change with the radius.

Fig. 13. Relative error for curvature estimation of a 2-D ring.

free 2-D rings, our method performs with a relative error of
about 0.5% for radii greater than 25 pixels (see Fig. 13). For
smaller radii, the estimation is less reliable due to the influence
of opposing ring edges in the smoothing of the gradient struc-
ture tensor elements for , but still more accurate than
the discrete approach. In the case of noisy images, the segmen-
tation algorithm plays a key role for the quality of the curvature
estimation; this is not the case for our proposed method.

Measuring the curvature along the boundary of a circle (40
pixel radius) they get a relative error of about15% due to
quantization. Our method gives only a relative error of1.2%
(compare Fig. 14).
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Fig. 14. Curvature along a circle contour.

V. APPLICATIONS

In fluorescent confocal microscopy, especially in biological
life time applications, 3-D time series are acquired [24], [25].
Typically, these images contain moving bright spots. Here, it
could be of interest to compute the acceleration of the spots.
The acceleration is related to the curvature of the spatiotemporal
space curve formed by the moving spots. The acceleration
can be computed from the 4-D image with the notation as in
Section I-A as follows [26]:

(14)

(15)

This is the classical expression of the tangential and the normal
components of the acceleration.

The velocity can be computed by, e.g., optical flow [24],
[17] or via the gradient structure tensor. In a spatiotemporal 4-D
image , the orientation of the space curve, formed by
a moving spot, is a measure for the velocity of the spot [27], [28].
It should be noted that the eigenvalue analysis of the gradient
structure tensor which is used to measure the 4-D orientation
does not give direction information. We can, however, retrieve
the velocity vector if we shift the discontinuity of the orientation
field to the time dimension. This is reasonable as we know there
is a causal connection between the time frames, i.e., .
We can retrieve the components of the velocity vector as fol-
lows:

(16)

where are the eigenvectors of the gradient structure tensor.

VI. CONCLUSION

We have shown that the curvature of space curves embedded
in -D grey-value images can be estimated using the formulas
given by differential geometry adjusted to the higher dimen-
sional space mapped by the Knutsson mapping. Our new estima-
tion formula (8) reduces in 2-D to the known expression, which

clearly indicates that our work is consistent with older work.
Furthermore, the estimation is unbiased, which even holds in the
presence of noise. The curvature calculation is clearly indepen-
dent of the scale of the objects as shown by our computations.
Our grey-value based approach is clearly superior to a discrete
curvature estimation.
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