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CURVATURE OF PRODUCT 3-MANIFOLDS

JAMES R. WASON

Abstract. Let M be a compact product 3-manifold without boundary. Let g

be a Riemannian metric on M. If g has everywhere nonpositive sectional

curvature, then g is locally diffeomorphic to a product metric. The proof is

by the method of pseudoframes.

1. Introduction. A. Preissmann [2] proved compact product manifolds do

not admit Riemannian metrics with everywhere negative sectional curvature.

Here we prove the following refinement for dimension three:

1.1 Theorem. Let M be a compact product 3-manifold without boundary. Let

g be a Riemannian metric on M. If g has everywhere nonpositive sectional

curvature, then g is locally diffeomorphic to a product metric.

Our proof will be by the method of pseudoframes. We begin with a brief

exposition of this theory.

2. Pseudoframes. Let g and g be Riemannian metrics on a smooth manifold

M of dimension m. At each point x of M, we may find an automorphism F of

the tangent space TXM such that, for all X, Y E TXM, g(X, Y) =

g(FX, FY). If cô ',..., co m are a coframe at x, then we may write g = g^to' <8>

ur1, and g = g¡jw' <8> u*, where here and always we sum over repeated indices

from 1 to m. If F has matrix representation Fj in this frame, then gtj =

F'sSstFj- F is determined in any case up to left translation by elements of the

orthogonal group for g. If we require that Fj = Ff in frames orthonormal for

g, and all eigenvalues of F be positive, then F is unique. The symmetric F

determined in this way at each point gives rise to a global tensor field of type

(1,1) which determines an automorphism of the tangent bundle. We use such

an object to mimic the effect of a global change of frame. For this reason we

call it apseudoframe.

Remark. The symmetry condition on F is important only to establish

global existence of the tensor field. In what follows, we shall not assume F to

be symmetric.

Let F(A/) be the frame bundle of M,p: F(M) -h> M the natural projection.

Given a standard basis of Rm, we can consider each u E F(M) as a linear

isomorphism u: Rm -> Tp(u)M. Then the natural right action of GL(m) on
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F(A/)  is  given  by  Rau = ua  where  ua:   Rm -> Tp(u) is  the  composition

rÍR"i Tp(u)M for a G GL(m).

Definition. A diffeomorphism /: F(A/) -» F(A/) is a bundle automorphism

if for all u E F(M),p(f(u)) = p(u), and, for all a E GL(m),f(ua) = (f(u))a.

If g is a Riemannian metric on M, let O ( g) denote the subbundle of frames

orthonormal for g.

Let F be a pseudoframe on M such that g(X, Y) = g(FX, FY) for two

Riemannian metrics g and g. Define/: F(A/) —> F(A/) by f(u)(A) = F(u(A))

for all u E F(M) and all A E FT. Then p(f(u)) = p(u). For a G GL(m),

A E Rm, ua(A) = u(a(A)). Thenf(ua)(A) = F(wa(^)) = f(u)a(A). So /(ua)

= (f(u))a. A frame w is in 0(g) if and only if (A, B) = g(w/i, «73) for all

A, BE R". But g(uA, uB) = g(F(«,4), F(k7í)) = g(f(u\A),f(u){B)). Thus/
is a bundle automorphism, and/(0(g)) = 0(g).

Given a bundle automorphism /, we define an associated function F:

F(M)^GL_(m) by F(w)04) = u~x(f(u)(A)) for all ^ G Rm. Then /(«) =
wF(u) and F(ua) = a" 'F(m)ö. In matrix coordinates we have

Ff(ua) = a-XiFt*(u)aJ. (2.1)

If <b is a connection on F(A/), we define the covariant derivative 73^ F/ by

dFf = F>^' - 4,'F; + F>;. (2.2)

For fixed a E GL(m), define Ra: F(M) -+ F(M) by Ra(u) = ua, and for

fixed u E F(M), Lu: GL(m)^p~x(p(u)) by Lu(a) = wa. Then for X E

TUF(M),

UX) = RFW).(X) + Lf(u).(F-x(u)dF(X)) (2.3)

where F~x(u)dF(x) E TidGL(m).

Now suppose that/(0(g)) = O(g) and let d> be a connection on 0(g).

Then r<t>j(X) = <¡>j(ftX) = <j>f(R^X) + <¡,J(LfmF-xdF(X)). But 7?a.<i>; =
as-u<tfaj. Thus

/*</>/ = F," "c7^ + F," %'FJ. (2.4)

Let Ö be the canonical horizontal 7?m-valued one-form on F(M), 9(X) =

u~\p*(X)) for X E TUF(M). Since 9 vanishes on vectors tangent to the fiber

P~\x), f*9 = Rp9. If 9' is the ith component of 9 with respect to the
standard basis of Rm, then R*9' + afXi9s. Thus

f*9'" F-Xi9'. (2.5)

Note that these formulae are similar to those induced by a change of frame.

We may use / to pull back a connection on 0 ( g) to a connection on O ( g).

For geometric purposes, we are most interested in what happens to the

Levi-Civita connection under such an operation. Let « and d> be the Levi-

Civita connections on 0(g) and 0(g) respectively. We define the transition

forms (fg) by
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(fgï=uj-f*y- (2.6)

Note that each (/*)} is a horizontal one-form. If (/*)} = (fgyjkf*9k, then

(fg)'jk ls given explicitly by the formula

2(/g);= (Djru(Mt))(FfF¿ - F*kF<) - (dJ,-v {%))(*?% - W)

-{DuF-Xk{Ê,))(F>Fj-FjF!) (2.7)

where Ë, E TUF(M) such that pmEt = u(Et), E, E Rm the rth leg of the

standard basis.

3. Proof of Theorem 1.1. Let N be a compact, oriented 2-manifold without

boundary, and Sx the unit circle; g a product metric on N X Sx. Let R(g) be

the subbundle of 0(g) consisting of frames such that u(Ex), u(E2) are an

oriented basis of Tp(u)N. Let to be the Levi-Civita connection on 0(g).

If 77: M -> N is the natural projection, let g be a Riemannian metric on M

such that, for u E R(g), g33 = g(u(E3), u(E3)) = tr*X, for some positive

function X on N.

3.1 Lemma.    There   exists   a   sequence   of   bundle   automorphisms

0(g)^0(g)Xo(g)suchthatforuE R(g),

(A)T3-" = T3-12=Tr13 = F2-13 = 0,

(B)F3-13 = 1,

andfor_vER(g)=f(R(g))
(C)Hfxx = //j"12 ~(X_

(D)HX~XX = H2~X2 = H3X\

(E)HX-X2 = H2~" =0.

Proof. If we require additionally that F2XX = F,"12, then / and h are

determined uniquely.

Notejhat for u E R(g), g(u(E3), u(E3)) = 1, g(u(E3), u(E¿) = 9, i = 1, 2.

Also, H3-13 = p = (7t*a)-|/2.

Let <p (\p) be the Levi-Civita connection on 0(g) (0(g)), $ (fi) its curva-

ture form. If <&j = $'jsl9s A 9' then the sectional curvature b~¡j of the plane

spanned by u(E¡) and u(Ej), u E 0(g) is given by $L

Let xpj = .{¿A***. Then by (2.7), on R(g),

tó-0,   <&««&, (3.1)

(*«)„•= (A')L-O,   (A*),2=-(A*)2r (3-2)
(Note that g33 = it*X is required to prove (3.2).)

On R(g), let dv-g = h*9x A h*92 f\ h*9' A ti dv¿ = 9X A »2 A 93 A ^.

3.2 Lemma.

4« ****** * Í «) "Sb4s - /«(A <**&**&**   (33)
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Proof.

/      h*&3x3dv¿ * -f      *•*] A h*92 A g
JR(g) JR(g)

•W«) ->r(¿)        /3

- f       A*^ A A*<¡>32 A h*92 A $

^(g) •'«(g)

+ f r-Ahi)3 Ah*93Ah*<p2A^.

+ f, J^A^A^Afi

*<T>2Now, //j{¿)A*0313ífo- = /A(¿j A*$323(it;-, employing the same derivation for

4>323 we obtain the desired result by cancelling cross-terms using (3.1) and

(3.2).
Note that by (3.2), the second term of (3.3) is nonnegative.

3.3 Lemma. 0 < f R(^fi^f\X3dVg. The equality holds only if g is a product

metric.

Proof. Let C be a simple closed curve on N. Let a: C X S1 -» 7?(g) be a

section such that, at each x E C, a(x\Ex) is the oriented tangent vector to C,

and a(x)(E2) the outward normal. Now, near C, we can choose / so, in

addition to conditions (A) and (B), we have Fx~X2 = F3"I2 = 0 on the image

of a. Since a*92 = 0, and f*92 = Ffx29j, we have a*f*92 = 0. Thus the g

volume element onC x Sx isdv = o*f*(9x A 93). Then

/       o*f**\X3dv = /       o*r*l = /       (P fX3(P )\x - (f )Ufg )u *•
JCX Sl JCxS1 JCXS'

(3.5)

Since da*f*2 = 0, (fg)23x = (fg)2X3, and by (2.7), (/*)23 = 0. This must be

true for every curve C on N, and u is a function on N only. Thus we have the

desired inequality. The equality holds only if (fg)2X3 vanishes pointwise on

R(g). By (2.7), this implies that F2~XXDWF2~X2(E3) = 0. Since we may replace

g with any other product metric, we conclude that the Ff, i, j = 1, 2, are

functions on N only, so that g is itself a product metric.

3.4 Proposition. If the sectional curvature of g is nonpositive, g is locally

diffeomorphic to a product metric.

Proof. By Lemmas 3.2 and 3.3, we may assume that g = g. Then, by
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Lemma 3.1, (hg)xx = (hg)\2 = (hg)\2 = (hg)\x = 0 on R(g). By (2.7), this also

means that (hg)23 = 0. Since u is_a function on N only, we can alter the

product metric g so that Ff" = Ff12 = 1. (The (hg)\ and (hg)j3, i,j = 1, 2,

will remain equal to zero when this is done.) Then (hg)x2 = 0. Now, by

Lemma 3.2, h*<bx3X3 must vanish on R(g) if it is to be nonpositive. But this

implies that d(hg)\3(E3) - ((hg)\3)2 = 0. Thus (hg)\3 = (hg)\3 - 0, and (hg))

— 0 for all i,j. It now follows from the De Rham Decomposition Theorem

that, on each simply-connected open set U of M, g is a product metric for

some product structure on U. Note that the product structure may differ from

the original one induced by the inclusion i: U -» N X S ' by a

diffeomorphism.

We now remove the restriction that g33 be a function on N only.

3.5 Proposition. Let N be a surface, Sx the unit circle, ir: N x Sx -* N the

natural projection. Let t be a unit-length parameter on Sx (i.e., t = 0 and t = 1

are identified). Then, for any Riemannian metric g on N X Sx, there exists a

diffeomorphism <¡>: N X Sx -> N X 51 such that <b*g(d/dt, d/dt) = tt*X, for

some positive function X on N.

Proof. Let (xx, x2, t) be a local product coordinate chart oniV xS1, and

let u"2 = g(d/dt, d/dt). Define <b by

<p,(x„ x2, t) = xx,   <p2(x„ x2, t) = x2,

<b3(xx, x2, t) = K(xx, x2) \   p(xx, x2, s)ds,

where Ä" ~ ' = /¿p(xx, x2, t) dt. It is clear that <i> is a diffeomorphism, and it is

easy to calculate that <b*g33 = K2. But by construction, K = ir*X for some

positive function X on N. For compact, oriented 3-manifolds, Theorem 1.1

now follows from Propositions 3.4 and 3.5. If a product 3-manifold M is

compact, but not oriented, we may apply our results to the orientation

covering M; the local diffeomorphism found there will project to a local

diffeomorphism of M.
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