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Empirical studies have shown that decision makers do not usually treat probabili-
ties linearly. Instead, people tend to overweight small probabilities and underweight
large probabilities. One way to model such distortions in decision making under risk
is through a probability weighting function. We present a nonparametric estimation
procedure for assessing the probability weighting function and value function at the
level of the individual subject. The evidence in the domain of gains supports a
two-parameter weighting function, where each parameter is given a psychological
interpretation: one parameter measures how the decision maker discriminates proba-
bilities, and the other parameter measures how attractive the decision maker views
gambling. These findings are consistent with a growing body of empirical and theo-
retical work attempting to establish a psychological rationale for the probability
weighting function.  1999 Academic Press

The perception of probability has a psychophysics all its own. If men have
a 2% chance of contracting a particular disease and women have a 1%
chance, we perceive the risk for men as twice the risk for women. However,
the same difference of 1% appears less dramatic when the chance of con-
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tracting the disease is near the middle of the probability scale, e.g., a 33%
chance for men and a 32% chance for women may be perceived as a trivial
sex difference.

Consider a second example. Suppose a researcher is deliberating whether
to spend a day performing additional analyses for a manuscript. The re-
searcher believes that these analyses will improve the probability of accep-
tance by 5%. We suggest that the author is more likely to perform the addi-
tional analyses if she believes the manuscript has a 90% chance of acceptance
than if she regards her chances as 30%. Put differently, improving her
chances from 90 to 95% seems more substantial than improving from 30 to
35%.

In both of these examples the impact of additional probability depends on
whether it is added to a small, medium, or large probability (for related exam-
ples see Quattrone & Tversky, 1988). We collected survey data as a prelimi-
nary test of these intuitions.1 Fifty-six undergraduates were given the follow-
ing question:

You have two lotteries to win $250. One offers a 5% chance to win the prize and
the other offers a 30% chance to win the prize.

A: You can improve the chances of winning the first lottery from 5 to 10%.
B: You can improve the chances of winning the second lottery from 30 to 35%.
Which of these two improvements, or increases, seems like a more significant

change? (circle one)

The majority of respondents (75%) viewed option A as the more significant
improvement. Even though the dependent variable is not a standard choice
task, these data can be interpreted as respondents’ self-report that a change
from 5 to 10% is seen as a more significant increase than a change from 30
to 35%.

The same respondents were also given a different question where the stim-
ulus probabilities were translated by .60:

You have two lotteries to win $250. One offers a 65% chance to win the prize and
the other offers a 90% chance to win the prize.

C: You can improve the chances of winning the first lottery from 65 to 70%.
D: You can improve the chances of winning the second lottery from 90 to 95%.
Which of these two improvements, or increases, seems like a more significant

change? (circle one)

In the second question, only 37% of the participants viewed option C as a
more significant improvement. The modal choice of A and D suggests that
a change from .05 to .10 is seen as more dramatic than a change from .30
to .35, but a change from .65 to .70 is viewed as less significant than a change
from .90 to .95. The difference between the choice proportions in the two

1 Data for this survey were collected in collaboration with Amos Tversky.
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FIG. 1. Weighting function proposed in Prospect Theory (Kahneman & Tversky, 1979),
which is not defined near the end points. The key properties are the overweighting of small
probability and the underweighting of large probability.

problems is statistically significant by McNemar’s test, χ2(1) 5 19.2, p ,
.0001. The order of the two questions was counterbalanced.

Taken together, the two examples and the survey questions suggest that
individuals do not treat probabilities linearly. In this paper we present evi-
dence based on a more traditional choice task that is consistent with this
informal observation. This idea is modeled formally in prospect theory,
which permits a probability distortion through a probability weighting func-
tion. Kahneman and Tversky (1979) presented a stylized probability
weighting function (see Fig. 1) that exhibited a set of basic properties meant
to organize empirical departures from classical expected utility theory. Per-
haps the two most notable properties of Figure 1 are the overweighting of
small probabilities and the underweighting of large probabilities. We denote
the probability weighting function by w(p), a function that maps the [0,1]
interval onto itself. It is important to note that the weighting function is not
a subjective probability but rather a distortion of the given probability (see
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FIG. 2. One-parameter weighting functions estimated by Camerer and Ho (1994), Tversky
and Kahneman (1992), and Wu and Gonzalez (1996) using w(p) 5 (pβ/(pβ 1 (1 2 p)β)1/β).
The parameter estimates were .56, .61, and .71, respectively.

Kahneman & Tversky, 1979). An individual may agree that the probability
of a fair coin landing on heads is .5, but in decision making distort that
probability by w(.5).

The weighting function shown in Fig. 1 cannot account for the pattern
discussed above because it is not concave for low probability. The introduc-
tory examples suggest that probability changes appear more dramatic near
the endpoints 0 and 1 than near the middle of the probability scale. General-
ized, this implies a probability weighting function that is inverse-S-shaped:
concave for low probability and convex for high probability. Weighting func-
tions consistent with the survey data are shown in Fig. 2; empirical support
for this shape appeared in three recent choice studies (Camerer & Ho, 1994;
Hartinger, 1998; Tversky & Kahneman, 1992; Wu & Gonzalez, 1996).

The general question studied in this paper is how the psychophysics of
probability influences decision making under risk. In turn, an understanding
of the probability weighting function will provide insights about the psychol-
ogy of risk. The outline of the paper is as follows: we first provide a sketch
of the relevant theoretical background, review relevant studies, and discuss
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the limitations of those studies. We then review a psychological rationale
for the shape of the weighting function in terms of discriminability and attrac-
tiveness and suggest a functional form that can model these psychological
intuitions. Next, we present a new study and a nonparametric algorithm that
permits the estimation of individual subjects’ value and weighting functions
in a manner that eliminates many of the shortcomings of previous work.
Data at both the aggregate level and the individual level are consistent with
the inverse-S-shape weighting function. We conclude by discussing the im-
plication of these results for future research and for applied settings.

Modeling Probability Distortions: Prospect Theory

Preston and Baratta (1948) made an early contribution toward modeling
probability distortions. They used gambles with one nonzero outcome such
as (100, .25; 0, .75). This notation represents the gamble offering a 25%
chance to win $100 and a 75% chance to win $0. They collected certainty
equivalents (actually, buying prices) in the context of an incentive compati-
ble procedure. A certainty equivalent, denoted CE, is the amount of money
for which a person is indifferent between receiving that amount of money
for certain or playing the gamble. Preston and Baratta assumed a separable
representation with a linear value function, v(X ) 5 X, in the sense that CE
5 w(p)X for the gamble (X, p; 0, 1 2 p). They observed that the weighting
function w (estimated under linear v) was regressive; that is, there appeared
to be overweighting relative to the identity line for p 5 .01 and p 5 .05 and
underweighting for p’s in the set {.25, .50, .75, .95, .99}.

There are two problems with their analyses. First, the analysis assumes a
linear value function. Even though ‘‘duals’’ to expected utility with linear
v have been proposed (e.g., Yaari, 1987; Weibull, 1982) and one of the early
resolutions to the St. Petersburg paradox used nonlinear w and linear v (see
Arrow, 1951, for a discussion), a nonlinear utility function typically provides
a better fit for both risk and nonrisk domains (e.g., Fishburn & Kochenberger,
1979; Galanter & Pliner, 1974; Parker & Schneider, 1988; Tversky & Kahne-
man, 1992). Second, even if Preston and Baratta had used a nonlinear v they
would have been unable to extract a unique estimate of the weighting func-
tion because their one nonzero outcome stimuli did not permit separation of
the weighting function from the value function. Estimates of v and w using
one nonzero outcome stimuli are unique only to a power (i.e., if v and w
represent preferences then so will vα and wα). Gambles with at least two
nonzero outcomes are required to separate v and w. Methodological problems
aside, Preston and Baratta’s results captured the general flavor of the
weighting function: regressive with a crossover point near p 5 .30. Similar
qualitative results of nonlinear w were obtained by Mosteller and Nogee
(1951) and Edwards (1954).

Kahneman and Tversky (1979) took a different approach. They identified
properties of w that would accommodate a set of general departures from
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expected utility behavior, specifically, the common ratio effect (choices
change when the probabilities in a pair of gambles are scaled by a common
factor) and the common consequence effect (choices change when probabil-
ity mass in a pair of gambles is shifted from one common consequence to
another). [For details on how generalizations of these effects relate to the
probability weighting function see Prelec (1998) and Wu & Gonzalez (1998),
respectively (see also Tversky & Wakker, 1995).] The properties of the
weighting function identified by Kahneman and Tversky included over-
weighting of small probabilities, underweighting of large probabilities, and
subcertainty (i.e., the sum of the weights for complementary probabilities is
less than one, w(p) 1 w(1 2 p) , 1). Kahneman and Tversky also noted
that the probability weighting function may not be well behaved near the
endpoints 0 and 1. The function shown in Fig. 1 is consistent with these
properties.

Kahneman and Tversky (1979) recognized that introducing a nonlinear
weighting function without further modification of the model would lead to
predicted violations of stochastic dominance.2 Violations of stochastic domi-
nance are difficult to observe empirically unless the stochastic dominance
is not transparent (Tversky & Kahneman, 1986; Birnbaum, 1997; Leland,
1998).

To avoid predictions of transparent stochastic dominance violations, Kah-
neman and Tversky proposed a number of editing operations. Here we con-
sider only the case of two outcome gambles involving either all gains or all
losses. Consider a gamble offering a 50% chance to win $100 and a 50%
chance to win $25. The psychological intuition for one of their editing rule
is as follows: regardless of how the chance event plays out, the gamble is
sure to offer at least $25, plus a 50% chance of receiving an additional
amount. This intuition can be represented symbolically

v(Y) 1 w(p)[v(X) 2 v(Y)], (1)

where v is the value function, w is the weighting function, and for this exam-
ple X 5 100, Y 5 25, and p 5 .50.

More recently, Tversky and Kahneman (1992) generalized prospect theory
using a rank-dependent, or cumulative, representation (see also Quiggin,
1993; Luce & Fishburn, 1991, 1995; Starmer & Sugden, 1989; Wakker &
Tversky, 1993). Intuitively, cumulative prospect theory (CPT) generalizes
the idea of the editing rule exhibited in Eq. (1) to gambles with an arbitrary
number of outcomes. Thus, cumulative prospect theory does not require ex-

2 Denote the cumulative probability that gamble I offers for a given outcome X as FI(X).
Gamble A stochastically dominates gamble B iff FA(X) # FB(X) for all X and FA(X) , FB(X)
for at least one X. For a more extended discussion of the problems surrounding violations of
stochastic dominance see Fishburn (1978) and Quiggin (1993).



PROBABILITY WEIGHTING FUNCTION 135

plicit editing operations in order to avoid predicted violations of stochastic
dominance (however, see Wu, 1994).

Much of the technical generalization of prospect theory involves the com-
bination rule of how the value function is combined with the probability
weighting function. CPT consists of the sum of two rank-dependent expected
utility representations, one for gains and one for losses. In the special case
in which all outcomes are nonnegative, the representation of the gamble
(X, p; Y, 1 2 p) under CPT where X . Y $ 0 is

w(p)v(X) 1 [1 2 w(p)]v(Y), (2)

where w is a probability weighting function and v is a value function. The
term ‘‘rank dependent’’ applies because the weight attached to an outcome
(w(p) for the higher outcome and 1 2 w(p) for the lower outcome) depends
on the rank of that outcome with respect to other outcomes in the gamble
(see Quiggin, 1982; Yaari, 1987; Segal, 1989; Wakker, 1989, 1994). Note
that Eq. (2) is, after algebraic rearrangement, identical to Eq. (1). One advan-
tage of the rank-dependent approach is that Eq. (2) is easily generalized to
n-outcome gambles. For gambles of the form (X1, p1; . . . ; Xn, pn), where
|Xi | . |Xi11 | and all X’s are on the same side of the reference point, the
representation is

w(p1)v(X1) 1 ^
n

i52
3w 1^

i

j51

pj2 2 w 1^
i21

j51

pj24 v(Xi).

In the context of cumulative prospect theory (and rank-dependent utility
models) it is useful to distinguish the probability weighting function from
the ‘‘decision weight.’’ The probability weighting function models the dis-
tortion of probability (i.e., w(p)) and characterizes the psychophysics of
chance. The decision weight is the term that multiplies the value of each
outcome. Note that the rank-dependent intuition applies here in the sense
that the value of the highest outcome is weighted by w(p), and all other
values for i . 1 are weighted by decision weights of the form

w 1pi 1 ^
i21

j51

pj2 2 w 1^
i21

j51

pj2 .

Thus, in a two-outcome gamble with p1 5 p2 5 .5, the decision weight
attached to each of the two outcomes will differ. As a further illustration,
consider a gamble offering 50% chance to win $100, $50 otherwise. Ac-
cording to the rank-dependent model, an individual with w(.5) 5 .3 will
weight v(100) by .3 and v(50) by .7. However, the same individual offered
a 50% chance to win $200 and $100 otherwise, will weight v(200) by .3
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and v(100) by .7. Thus, the probability weighting function captures the psy-
chology of probability distortion, whereas how the outcomes are weighted
depends on the particular combination rule, such as CPT.

In sum, the history of research attempting to describe how people make
decisions in domains of risk can be characterized by the following questions:
Do people distort outcomes and how? Do people distort probabilities and
how? How should these distortions be interpreted and how do they inform us
about how people choose among risky alternatives? How can we distinguish
distortions of probability from distortions of outcomes? How do we combine
outcomes with probabilities to model decision? CPT is an attempt to address
most of these questions. A question we have not yet addressed is the psycho-
logical interpretation of the weighting function.

Psychological Interpretation of the Weighting Function

In this section we discuss two features of the weighting function that can
be given a psychological interpretation. One feature involves the degree of
curvature of the weighting function, which can be interpreted as discrimina-
bility, and the other feature involves the elevation of the weighting function,
which can be interpreted as attractiveness. Similar but weaker concepts
(source sensitivity and source preference) in the context of decision making
under uncertainty were proposed by Tversky and Wakker (1995) and empiri-
cally tested by Tversky and Fox (1995).

Diminishing sensitivity and discriminability. There was relatively little
progress in establishing a psychological foundation for the weighting func-
tion until Tversky and Kahneman (1992) offered a psychological hypothesis.
The notion, which Tversky and Kahneman called diminishing sensitivity,
was very simple: people become less sensitive to changes in probability as
they move away from a reference point. In the probability domain, the two
endpoints 0 and 1 serve as reference points in the sense that one end repre-
sents ‘‘certainly will not happen’’ and the other end represents ‘‘certainly
will happen.’’ Under the principle of diminishing sensitivity, increments
near the end points of the probability scale loom larger than increments
near the middle of the scale. Diminishing sensitivity also applies in the do-
main of outcomes with the status quo usually serving as a single reference
point.

Diminishing sensitivity suggests that the weighting function has an in-
verse-S-shape—first concave and then convex. That is, sensitivity to changes
in probability decreases as probability moves away from the reference point
of 0 or away from the reference point of 1. This inverse-S-shaped weight-
ing function can account for the results of Preston and Baratta (1948) and
Kahneman and Tversky (1979). Evidence for an inverse-S-shaped weight-
ing function was also found in aggregate data by Camerer and Ho (1994)
using very limited stimuli designed to test betweenness, by Tversky and
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FIG. 3. (Left) Two weighting functions that differ primarily in curvature—w1 is relatively
linear and w2 is almost a step function. (Right) Two weighting functions that differ primarily
in elevation—w1 overweights relative to w2.

Kahneman (1992) using certainty equivalence data, by Wu and Gonzalez
(1996) using series of gambles constructed to examine the curvature of the
weighting function, and by Abdellaoui (1998) using a nonparametric
estimation task. A weaker condition, bounded subadditivity, was also sup-
ported by Tversky and Fox (1995). For a counterexample see Birnbaum and
McIntosh (1996).

Diminishing sensitivity is related to the concept of discriminability in the
psychophysics literature in the sense that the sensitivity to a unit difference
in probability changes along the probability scale. Discriminability may be
characterized as follows: weighting function w1 is said to exhibit greater
discriminability, or sensitivity, than weighting function w2 within interval
[q1, q2] whenever w1(p 1 e) 2 w1(p) . w2(p 1 e) 2 w2(p) for all p bounded
away from 0 and 1, e . 0, and p, p 1 e ∈ [q1, q2]. That is, changes (first-
order differences) within an interval along w1 are more pronounced than
changes along w2. The boundary conditions are needed because w(0) 5 0
and w(1) 5 1 by definition, and for any continuous weighting function the
following property holds: ∫1

0 w′(p)dp 5 1.
Discriminability can be illustrated by considering two extreme cases: a

function that approaches a step function and a function that is almost linear
(see the left panel of Fig. 3). The step function shows less sensitivity to
changes in probability than the linear function, except near 0 and 1. A step
function corresponds to the case in which an individual detects ‘‘certainly
will’’ and ‘‘certainly will not,’’ but all other probability levels are treated
equally (such as the generic ‘‘maybe’’). Piaget and Inhelder (1975) observed
that a 4-year-old child’s understanding of chance corresponds to this type
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of step function. In contrast, a linear weighting function exhibits more (and
constant) sensitivity to changes in probability than a step function. Two stud-
ies suggest that some experts possess relatively linear weighting functions
when gambling in their domain of expertise: the efficiency of parimutuel
betting markets suggests that many racetrack betters are sensitive to small
differences in odds (see, e.g., Thaler & Ziemba, 1988), and a study of options
traders found that the median options trader is an expected value maximizer
and thus shows equal sensitivity throughout the probability interval (Fox,
Rogers, & Tversky, 1996). Discriminability could also be defined intraper-
sonally, e.g., an option trader may exhibit more discriminability for gambles
based on options trading rather than gambles based on horse races.

Attractiveness. While useful, the concept of diminishing sensitivity pro-
vides an incomplete account of the weighting function. Even though the con-
cept can explain the curvature of the weighting function, it cannot account
for the level of absolute weights. That is, diminishing sensitivity merely pre-
dicts that w is first concave and then convex. But the property is silent about
underweighting or overweighting relative to the objective probability (i.e.,
the 45 degree line). An inverse-S-shaped weighting function can be com-
pletely below the identity line, can cross the identity line at some point,
or can be completely above the identity line—everywhere maintaining its
concave–convex shape.

Thus, a second feature of the probability weighting function corresponds
to the absolute level of w. For example, consider two people who each face
a 50% chance to win $X ($0 otherwise). One person’s weighting function
yields w1(.5) 5 .6 whereas the other yields w2(.5) 5 .4; then we say that
the first person finds the gamble more ‘‘attractive’’ because he assigns a
greater weight to the probability .5.

This concept can be generalized in terms of the elevation of the weighting
function in the w vs. p plot. If for all p, individual 1 assigns more weight
to p than individual 2, i.e., w1(p) $ w2(p) for all p with at least one strict
inequality, then individual 1’s w graph is ‘‘elevated’’ relative to individual
2’s graph (see the right panel of Fig. 3). Note that elevation is logically
independent of curvature. In the context of CPT with two outcome gambles
(all gains), a weighting function that is more elevated will assign a greater
weight to the higher outcome.

We interpret this interpersonal difference in elevation as a attractiveness;
i.e., one person finds betting on the chance domain more attractive than the
second person. An analogous definition could also be given for intrapersonal
comparisons of two different chance domains: a person finds chance domain
1 more attractive than chance domain 2 iff w1(p) $ w2(p) for all p. For
example, a person may prefer to bet on sporting events rather than on the
outcomes of political elections holding constant the chance winning
(Heath & Tversky, 1991), or a person may prefer a lottery in which she is
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able to select her own numbers to one in which numbers are assigned to her
(such as in the illusion of control work by Langer, 1975). Note that we inter-
pret the illusion of control as due to the probability weighting function rather
than due to differences in subjective probability or the value function.

In sum, there appear to be two logically independent psychological proper-
ties that characterize the weighting function. Discriminability refers to how
people discriminate probabilities in an interval bounded away from 0 and
1. Attractiveness refers to the degree of over/under weighting. The former
property is indexed by the curvature of the weighting function, and the latter
is indexed by the elevation of the weighting function.3

Functional Forms for w

If there are two logically independent, psychological properties to the
weighting function, then it should be possible to model w with two parame-
ters such that one parameter represents curvature (discriminability) and the
other parameter represents elevation (attractiveness). One way to derive such
a two parameter w is to note that on the log odds scale a linear transformation
can be used to vary elevation (intercept) and curvature (slope) separately,
i.e.,

log
w(p)

1 2 w(p)
5 γ log

p
1 2 p

1 τ.

Solving for w(p) we get

w(p) 5
δpγ

δpγ 1 (1 2 p)γ
, (3)

where δ 5 exp τ. In Eq. (3), the γ parameter primarily controls curvature
and δ primarily controls elevation. We call the functional form in Eq. (3)
‘‘linear in log odds.’’ It is a variant of the form used by Lattimore, Baker,
and Witte (1992) and was used by Goldstein and Einhorn (1987), Tversky
and Fox (1995), Birnbaum and McIntosh (1996), and Kilka and Weber
(1998). Karmarkar (1978, 1979) used the special case of the linear in log
odds form with δ 5 1. A preference condition that in the context of rank-

3 Lopes (1987, 1990) used the phrases ‘‘security-minded’’ for w that is convex and every-
where below the identity line, ‘‘potential-minded’’ for w that is concave and everywhere above
the identity line, and ‘‘cautiously-hopeful’’ for the inverse-S-shaped w depicted in Fig. 2 (see
also Weber, 1994, for a discussion). The present concepts of discriminability and attractiveness
provide a more detailed account of the weighting function, without confounding curvature
and elevation. The Lopes framework also includes the concept of aspiration level, which we
do not model here.
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FIG. 4. Demonstration that γ primarily controls curvature and δ primarily controls eleva-
tion (parameters from Eq. (3)). The first panel fixes δ at .6 and varies γ between .2 and 1.8.
The second panel fixes γ at .6 and varies δ between .2 and 1.8.

dependent theory is necessary and sufficient for the linear in log odds form
is given in the Appendix.

Figure 4 shows how the two parameters control curvature and elevation
almost independently. The first panel holds δ fixed at .6 and varies γ between
.2 and 1.8 in increments of .1. The second panel holds γ fixed at .6 and varies
δ between .2 and 1.8. Note that γ essentially controls the degree of curvature,
and δ essentially controls the elevation. Because the weighting function is
constrained at the end points (w(0) 5 0 and w(1) 5 1), an independent
separation of curvature and elevation is not possible due to the ‘‘pinching’’
that occurs at the end points.

Another two-parameter weighting function that also varies curvature and
elevation separately was proposed by Prelec (1998). The functional form is

w(p) 5 exp(2δ(2log(p))γ ). (4)

For typical values of probability used in most empirical studies (including
the present one), it will not be possible to distinguish the linear in log odds
function from the Prelec function because both functions can be linearized,
and these linearized forms are themselves closely linear for probability range
(.01, .99). Instead, specially designed studies testing the key property of the
linear in log odds form (see Appendix) and the key property of the Prelec
form (compound invariance as defined in Prelec, 1998) will have to be con-
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ducted.4 These functions can also be compared on how they predict responses
for extremely small probabilities such as .00001.

Note that unless discriminability and attractiveness empirically covary in
just the right way, a one-parameter function for w will fit the data inade-
quately. We show below that two promising one-parameter functions fail to
fit the data of approximately two-thirds the subjects. Further, some simple
functional forms for w can be rejected on the basis of existing data, e.g., a
power w (as suggested by Luce, Mellers, and Chang, 1993, and by Hey &
Orme, 1994) and a linear weighting function w(p) 5 (b 2 a)p 1 a, with
0 , a , b , 1, end points w(0) 5 0 and w(1) 5 1 (as suggested by Bell,
1985).

GOALS OF THE PRESENT STUDY

Empirical estimation of the weighting function is not straightforward. In
order to assess the shape of the weighting function with standard, nonlinear
regression methods (least squares or maximum likelihood) it is necessary to
assume functional forms. This creates a problem because the quality of the
estimation becomes dependent on the choice of functional forms, and in the
case of decision making under risk there are two functional forms that need
to be assumed (value and weighting functions) as well as an assumption
about the functional that combines the two functions (such as the CPT repre-
sentation). Although standard residual analysis will permit an examination
of the global fit, it is not possible to use residual analysis to assess the fit
of each component function separately. Some researchers have attempted to
side step this problem by performing sensitivity analyses, either of parameter
values, as in Tversky and Fox (1995) and Bernstein, Chapman, Christensen,
and Elstein (1997), or of functional forms, as in Chechile and Cooke (1997)
and Wu and Gonzalez (1996).

Further, given the psychological motivation for the weighting function,
there is reason to expect individual variation in the weighting function.
Weighting functions across individuals may differ in curvature and/or
elevation. If there is substantial individual variability, then some of the pro-
perties that have been observed in previous studies at the aggregate level
may not hold at the level of individuals (see Estes, 1956, for a related
discussion).

In light of these issues we conducted a new study that permits nonparamet-
ric estimation of an individual’s value function and weighting function under

4 The critical property of the Prelec function is subproportionality, and subproportionality
produces the common ratio effect. The linear in log odds form is mostly subproportional
(throughout the 0,1 interval for various combinations of parameters), and the Prelec function
is everywhere subproportional. There is limited empirical evidence about the extent to which
subproportionality holds throughout the [0,1] interval.
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RDU. A main advantage of this approach is that the nonparametric estima-
tion makes fewer assumptions and therefore stays closer to the data. The
nonparametric estimation permits tests of the key features of the weighting
function without requiring one to assume the feature in order to perform the
estimation. One drawback of the nonparametric procedure is that estimates
can be noisier (i.e., the standard parametric assumptions serve to ‘‘smooth’’
the data). However, the nonparametric and parametric estimation can be used
together; the nonparametric estimation provides a way to assess the deviation
of the data from parametric forms, thereby avoiding potential misspecifica-
tion errors.

The present design provides a large number of observations, permitting
assessment at the individual level. Further, probabilities and outcomes are
varied in a factorial design, which provides an opportunity to assess how
certainty equivalent (CE) changes as function of varying p while holding
outcomes constant and varying the outcomes while holding p constant. This
design feature improves on that initially used by Tversky and Kahneman
(1992).

METHOD

Participants

We report data from 10 participants (5 female).5 All participants were graduate students in
psychology. They were paid $50 for participating in four 1-h sessions. In addition, an incentive
compatible elicitation procedure was used (Becker, DeGroot, & Marschak, 1964); participants’
certainty equivalents were entered into a subsequent auction. In order to have an adequate
assessment of an individual’s value and weighting function, we opted for a traditional psycho-
physical paradigm with many trials (hence relatively few subjects).

Materials

The basic design consisted of 15 two-outcome gambles crossed with 11 levels of probability
associated with the maximum outcome.6 The two outcomes gambles were (in dollars) 25–0,
50–0, 75–0, 100–0, 150–0, 200–0, 400–0, 800–0, 50–25, 75–50, 100–50, 150–50,
150–100, 200–100, and 200–150. Note that all gambles offered nonnegative outcomes, so
prospect theory codes all such outcomes as gains. The 11 probability levels were .01, .05,
.10, .25, .40, .50, .60, .75, .90, .95, and .99. Nine of these gambles (randomly chosen) were
repeated to provide a measure of reliability. Except for the restriction that the identical gamble
could not appear in two consecutive trials, the repeated gambles were randomly interspersed
within the complete set of gambles.

Procedure

A computer program following the procedure outlined in Tversky and Kahneman (1992)
was used in this study. The program presented one gamble on the screen and asked the partici-

5 Data from an 11th participant were discarded because his responses appeared random and
inconsistent, and violated monotonicity.

6 In addition to the two-outcome gambles, 36 three-outcome gambles were included. Data
from these gambles will be presented elsewhere.



PROBABILITY WEIGHTING FUNCTION 143

pant to choose a certainty equivalent from a menu of possibilities. The format is illustrated
below for a gamble offering a 50% chance to win $100 or $0 otherwise.

Prefer Prefer
Money (no gamble) Sure Thing Gamble

100

80

60

40

20

0

The screen for this particular gamble offered the participant a choice between sure amounts
of 100, 80, 60, 40, 20, and 0 dollars. For each row in the table, participants checked whether
they preferred the sure amount or the gamble. The range of the choices spanned the range of
the gamble. To illustrate, consider a participant who preferred a sure amount of $60 to the
gamble, but preferred the gamble to $40 for sure. The participant would place check marks
as follows:

Prefer Prefer
Money (no gamble) Sure Thing Gamble

u100

u80

u60

u40

u20

u0

From this response we infer that the certainty equivalent for this participant must be some-
where between $40 and $60. Once the certainty equivalent was determined within a range
(such as between $40 and $60 in the above example), a second screen with a new menu of
choices was presented using a narrower range (e.g., $40 to $60 in increments of $4). By
repeating this process, the program approached the certainty equivalent to the nearest dollar
(taking the midpoint of the final range).

The program forced the response checkmarks to be (1) all in the left column indicating a
preference for the sure amount, (2) all in the right column indicating a preference for the
gamble, or (3) at some row switch from the left column to the right column indicating a switch
in preference from the sure amount to the gamble. At most one switch (from left to right) was
permitted on each screen. Note that the procedure forced internality of the certainty equivalent
response; that is, all CE were forced to be between the highest outcome Xh and the lowest
outcome X l (symbolically, X l # CE # Xh). We adopted the convention that on each screen
the certainty equivalent options appeared in descending order.

Note that the elicitation procedure did not require participants to generate a certainty equiva-
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lent. Rather, participants chose certainty equivalents from a menu (for related procedures see
Tversky & Kahneman, 1992, and Bostic, Herrnstein, & Luce, 1990). The program presented
gambles in random order to each participant over four sessions lasting approximately 1 h each.

RESULTS

There are many ways to analyze these CE data. The standard approach
has been to assume functional forms for v and w and then to perform a
goodness of fit test to evaluate those forms for v and w. A major limitation
of this approach is that there is no way to independently assess the fit of v
and w (e.g., standard residual analysis is on the CE rather than the individual
component functions). The approach taken in this paper is to use a nonpara-
metric procedure that does not make assumptions about specific functional
forms. We then use these nonparametric estimates to evaluate specific func-
tional forms for v and w. If specific functional forms fit the nonparametric
estimates well, then it will be appropriate to perform the more traditional
estimation procedure with those functional forms substituted for v and w.
Thus, the nonparametric estimation procedure used here provides a method
for assessing the functional forms of v and w in the context of a bilinear
model such as CPT.

The results section is organized as follows. The first subsection presents
descriptive statistics on the aggregate data and examines the reliability of
the certainty equivalents. The second subsection describes a nonparametric
algorithm for estimating the value function and the weighting function. The
third subsection presents the results from that nonparametric algorithm for
both aggregate and individual data. The fourth subsection provides paramet-
ric fits to the nonparametric estimates directly. The fifth subsection uses the
nonparametric estimates to assess the property of subcertainty. Finally, the
sixth subsection presents the results of a traditional nonlinear regression,
both to provide a comparison to previous studies and to permit a comparison
between the standard estimation approach and the new, nonparametric ap-
proach presented above.

Median Certainty Equivalents and Reliability

The median certainty equivalent for each of the 165 two-outcome gambles
appears in Table 1. Although weak monotonicity is violated in 21% of the
pairwise comparisons, there does not appear to be a systematic pattern to
these violations.

Reliability for the nine repeated gambles was measured by the maximum
likelihood estimator of the intraclass correlation (Haggard, 1958). The in-
traclass correlation on the median data was .99 (the median absolute devia-
tion was $1.50). The median of the 10 intraclass correlations computed on
the individual subject data was .96, with a range of .60 to .99. Only two
intraclass correlations were below .90 (the lowest .60 and the second lowest
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.87), so the procedure elicited relatively high levels of reliability for nine of
the 10 participants. Analogous results were observed for other measures of
reliability such as the Pearson correlation, Kruskal and Goodman’s γ, and
Kim’s d.

Nonparametric Estimation Algorithm

Estimation of the value function and weighting function in the context of
utility theory presents challenging problems. A major stumbling block is the
need to use the inverse of the value function in estimation. For example,
CPT represents the certainty equivalent as

v(CE) 5 w(p)v(X) 1 [1 2 w(p)]v(Y). (5)

In an experiment, however, one observes the CE rather than v(CE). Mathe-
matically, it is easy to apply the inverse of v to both sides of Eq. 5, but the
inverse of v is difficult to estimate empirically.

Many researchers have side stepped this problem by assuming a functional
form for v and using the known inverse of that v directly in the estimation
procedure such that:

CE 5 v21 {w(p)v(X) 1 [1 2 w(p)]v(Y)}, (6)

where v21 denotes the inverse of v. Examples of this approach appear in
Birnbaum and McIntosh (1996), Chechile and Cooke (1997), Luce et al.
(1993), and Tversky and Kahneman (1992). Having made an assumption for
the functional form of v, previous researchers tested several functional forms
for the weighting function w in what can be described as a ‘‘goodness of fit
contest’’ for different choices of v and w.

As stated above, the standard nonlinear regression technique does not per-
mit an examination of residuals for v and w separately. To circumvent this
problem and attempt an estimation with as few assumptions as possible, we
developed and implemented a nonparametric algorithm to estimate v and w
in the context of CPT without having to specify their functional forms. The
algorithm treats the levels of v and w as parameters to estimate (i.e., v(25),
v(100), w(.50), etc., are treated as parameters). The parameters are estimated
using an alternating least squares approach in which at each iteration either
the w’s are held fixed while the v’s are estimated, or the v’s are held fixed
while the w’s are estimated. The remainder of this section describes the algo-
rithm in more detail. Readers not interested in these details may skip to the
next subsection without loss of continuity.

We propose an algorithm for dealing with the bilinear estimation problem.
The intuition is based on an alternating least squares algorithm used success-
fully to solve other scaling problems (e.g., De Leeuw, Young, & Takane,
1976): divide the problem into manageable subparts, estimate parameters for
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each subpart, and iterate over the subparts until an optimum is found. While
general convergence properties of this algorithm will not be discussed here,
analyses for all subjects (and median data) converged relatively quickly; the
median number of iterations was 6.

We assumed Eq. (5) with an additive, normally distributed error term on
the v scale as in

v(CE) 5 w(p)v(X) 1 [1 2 w(p)]v(Y) 1 ev. (7)

The subscript on e is to acknowledge that the error is modeled on the scale
v (in contrast to e in a different analysis shown below that is on the CE
scale). Using the certainty equivalents from the 165 two-outcome gambles,
pick starting values for the 11 w( )s (i.e., one for each p) and the eight v( )s
(i.e., one for each dollar amount). The algorithm proceeds as follows, with
superscript denoting the ith iteration:

1. Interpolate for vi(CE): using the estimates of v( ) for the current itera-
tion, which are based on the eight stimuli dollar amounts, interpolate to find
vi(CE) for each of the 165 certainty equivalents; these 165 vi(CE)’s will be
used as ‘‘data’’ for the estimation in Step 2 and Step 3.

2. Fix all v( )’s to the current iteration values and estimate the eleven wi’s
using an iteratively reweighted, nonlinear least squares algorithm.

3. Fix the 11 w( )’s to the current iteration values and estimate the eight
vi( )’s using an iteratively reweighted, nonlinear least squares algorithm.

4. If an optimum is found, then stop; otherwise, increment iteration counter
i and repeat.

The algorithm was implemented in the statistical package Splus (Becker,
Chambers, & Wilks, 1988) and made use of the package’s nonlinear least
squares algorithm as well as its interpolation algorithm. We used linear inter-
polation in Step 1. The nonparametric algorithm did not impose monotonicity
on v or w, though the restrictions v(0) 5 0 and 0 , w(p) , 1 for 0 , p ,
1 (as imposed by the general rank-dependent theory) were implemented into
the estimation procedure. Convergence was defined when the change in fit
was within 1024, the fit was the weighted sum of squared error from the
nonlinear regression, and starting values were chosen using the functional
forms and parameter estimates from the median data given in Tversky and
Kahneman (1992) with an estimated exponent of .88 for the power value
function v(x) 5 xα and .61 for the exponent of the weighting function w(p)
5 pβ/(pβ 1 (1 2 p)β )1/β.7

7 For other possible algorithms in the fledgling area of ‘‘data augmentation procedures’’
see McLachlan and Krishnan (1997) or Tanner (1996). For other approaches to the problem
of testing and estimating utility theories see Coombs et al. (1967) and Chechile & Cooke
(1997). While we incorporated a linear interpolation to estimate v, similar results were ob-
served with a cubic spline. Further, interchanging the roles of w and v in Steps 2 and 3 did
not change the solution appreciably nor did different starting values, both providing promising
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An iteratively reweighted, nonlinear regression was used in Steps 2 and
3 because the magnitude of the residuals depends, in part, on the size of the
outcomes. For instance, the error associated with the gamble (25, .5; 0, .5)
is likely to be less than the error associated with the gamble (800, .5; 0, .5)
because the latter provides a larger range for the subject’s CE.8 Our data
consist of one observation per gamble so we cannot assess nor model intra-
personal variability. Our strategy for dealing with this problem was to exam-
ine the residuals for systematic patterns and to examine the standard error
of the parameters (i.e., the estimated w’s and v’s) for homogeneity. An itera-
tively reweighted, nonlinear regression, where the weights on the residuals
depend on the parameter estimates, appeared to work well. For 8 of the 10
subjects, the weights 1/log(CE i), where CE i denotes the predicted certainty
equivalent for that gamble, yielded fits with no apparent systematic pattern
in the residuals and relatively uniform standard errors across the parameters;
the weights 1/sqrt(CE i) produced better results (no apparent systematic pat-
tern in residuals and relatively uniform errors) for the remaining two subjects
(Subjects 2 and 4).9

The main advantage of this nonparametric algorithm is that it provides
estimates for v( ) and w( ). We call this algorithm ‘‘nonparametric’’ because
we do not assume functional forms of v or w. Instead, the algorithm estimates
the values of v( ) and w( ) at the levels of the stimuli, and the interpolation
in Step 1 eliminates the need for an inverse because the estimation occurs
on the scale v.

Nonparametric Estimation of the Value and Weighting Functions

Figure 5 presents the nonparametric fits of v and w for the median data
presented in Table 1 under the assumption of the CPT representation. The
error bars are 6 1 SE,10 estimated from the inverse Hessian of the fit func-
tions at Steps 2 and 3, respectively.

signs that a global optimum was found. Step 1 served to change the scale of the data at each
iteration; this is in the spirit of ‘‘optimal scaling’’ techniques (e.g., Young, 1981).

8 Interpersonal variability supports this intuition. We computed the interquartile range (IQR)
over the 10 subjects for each of the 165 gambles. The IQR tend to be monotonically increasing
with the greater outcome, and also monotonically increasing in p, which is counter to an
intuitive error model that has maximal error near p 5 .5 (in the spirit of the binomial distribu-
tion).

9 We also examined more complicated weighting schemes but they did not improve the fits
relative to the weighting described in the text. These additional weighting schemes included
allowing the weights (a) to depend on the probabilities of the gamble p(1 2 p), (b) to depend
on the current w, i.e., w(1 2 w), (c) to be based on the expected value of the gamble, and
(d) to be based on the log of the expected value. For a discussion of weighting in the context
of nonlinear regression see Carroll and Rupert (1988).

10 The standard error bars are wider for some values of v( ) than others. Recall that not all
dollar amounts appeared equally often in the stimuli set; e.g., the values 400 and 800 each
appeared in 11 gambles (always as the greater outcome), whereas the value 50 appeared in
55 gambles (as the greater outcome in 22 of those 55 gambles).
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FIG. 5. Estimates of v and w for median data using the nonparametric, alternating least
squares algorithm. N 5 10 with 165 gambles per subject. Error bars are 6 1 SE, estimated
from the inverse Hessian at Steps 2 and 3.

The general characteristics of v and w for the median data are consistent
with previous findings, even though the present estimation procedure im-
posed relatively little structure on the data. The value function v is concave
and the weighting function has an inverse-S-shape (concave, then convex)
with a crossover point well below p 5 .5 (p between .25 and .40).

The same algorithm was applied to individual subject data. As shown in
Fig. 6, the individual participants each exhibited a pattern similar to the me-
dian data. That is, the concavity of v and the inverse S-shape of w appear
to be a regularity that holds both at the aggregate level and for individual
subjects, with the weighting function for Subject 6 appearing to be concave
everywhere. The standard errors, though approximate, provide an index of
the quality of the fit. Subject 8 was the participant with low reliability.

Note that there is substantial heterogeneity in curvature (discriminability)
and in elevation (attractiveness) of the weighting function, and the two ef-
fects appear to be somewhat independent. For example, Subject 6 predomi-
nantly overweights p (relative to the identity line) whereas Subject 9 predom-
inantly underweights p; both participants exhibit roughly the same degree
of curvature. Subjects 1 and 7 appear to cross the identity line at roughly
the same level, yet they exhibit different degrees of curvature. Subject 1
discriminates p (though is still regressive) in the range [.1 and .9], whereas
Subject 7 tends to weight the probabilities in that range at the same level.
Given that curvature and elevation appear to vary somewhat independently
across participants, it would be surprising if a one-parameter function could
fit all 10 subjects. Indeed, in the next subsection we show that although two
promising one-parameter functions fail to capture the pattern of 6 of the 10
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FIG. 6. Estimates of v and w for each individual participant using the nonparametric,
alternating least squares algorithm. 165 gambles per subject. Error bars are 6 1 SE, estimated
from the inverse Hessian at Steps 2 and 3. Note that value plots are scaled to each participant’s
own v.

participants, the two-parameter, linear in log odds form cannot be rejected
for any of the 10 subjects.

We now turn to an interpersonal assessment of attractiveness and discrimi-
nability on the estimates of w( ) from the individual subject data. We per-
formed a sign test on all pairs of subjects to test for differences in elevation.
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Let wi(p) be the estimated w(p) for Subject i. To test for differences in
elevation, for all pairs of subjects i, j (where i ≠ j ), we counted the number
of p levels in which wi(p) . wj(p). Each pair of subjects provided 11 such
comparisons. Sixteen of the 45 subject pair comparisons yielded elevation
differences that were statistically significant at α 5 .05 (i.e., 10 or more of
the 11 comparisons by the two-tailed binomial test) and an additional 6 sub-
ject pairs were significant at α 5 .064 (which corresponds to 9 or more of
the 11 comparisons by the two-tailed binomial test).

An analogous test was performed for differences in discriminability. Dif-
ferences in curvature between subject pairs were at the level of chance. The
test for discriminability involved comparing a within-subject difference for
Subject i (e.g., wi(.05) 2 wi(.01)) with a within-subject difference for Subject
j for the same two stimulus levels (e.g., wj(.05) 2 wj(.01)). The size of the
standard errors of the estimates and the lack of power in the binomial test
are the main reasons that discriminability differences were not detected with
the nonparametric estimates, even though elevation differences were de-
tected. We show below that a parametric test of discriminability is suffi-
ciently powerful to detect interpersonal differences.

These nonparametric estimates for v and w were based on the assumption
of a rank-dependent representation or combination rule. That is, the estima-
tion algorithm assumed that functions v and w were combined using Eq. (2).
This assumption can be evaluated by fitting the more general model

w(p)v(X) 1 g(1 2 p)v(Y) (8)

which relaxes the restriction on the weighting function but maintains the
bilinear form (see Miyamoto, 1988). We estimated the more general model
and found that g(1 2 p) of Eq. (8) roughly coincides with 1 2 w(p) of CPT
(Eq. (2)). The intraclass correlation, which serves as an index of the fit to
the identity line, between g(1 2 p) and 1 2 w(p) for the median data was
.99; the median intraclass correlation over the 10 participants was .96. Simi-
larly, the w(p)’s from Eq. (2) and (8) also coincided: an intraclass correlation
of .99 on both the median data and the median participant. Thus, functions
w and g in Eq. (8) appear to sum to 1 as required by CPT.

Nonparametric Assessment of the Linear in Log Odds w

In the introduction we argued for a two-parameter probability weighting
function (Eq. (3)), where the parameters correspond to the psychological
properties of attractiveness and discriminability. One way to examine this
functional form (as well as others) is to fit the linear in log odds function
directly to the nonparametric estimates of w( ). We also fitted a power value
function to the nonparametric estimates of v( ), i.e., v(X) 5 θXα, where the
extra parameter θ accounts for the arbitrary scale of the nonparametric v and
carries no psychological meaning in this context.
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FIG. 7. Same as Fig. 5 with best fitting power function for v and best fitting linear in log
odds w overlays.

Figures 7 and 8 show the best fitting power v and linear in log odds w
superimposed on the nonparametric estimates for the median data and indi-
vidual subject data. The data are fit quite well with a power value function,
i.e., v(X) 5 θXα (9 of 10 participants) and the two-parameter linear in log
odds w parameter weighting function (all participants).

A runs test provides a formal test of how well a specific functional form
fits the nonparametric estimates. The logic behind this test is that a poor
fitting function would produce residuals that have more (or fewer) runs than
expected by a simple chance model where the signs of the residuals are
independent. To test the linear in log odds weighting function, first observe
that the left-most point in the right panel of Fig. 7 (i.e., the estimated w(.01)
for the median data) is above the curve. Moving left to right, the second,
third, and fourth points are also above the curve; the fifth point is below the
curve, etc., yielding a total of four runs, which fails to reject the null hypothe-
sis of the runs test (Siegel, 1956). In this runs test, the residuals are catego-
rized as being above or below the nonlinear regression curve and the pattern
is compared to a chance model. The null hypothesis for the runs test was
not rejected for the linear in log odds function for the median data or any
of the 10 individual subject weighting functions. The runs test yielded com-
parable results for the two-parameter Prelec function (Eq. (4)) on the individ-
ual data (except that data for Subject 7 was rejected by the runs test) and
the median data. Although it may appear that the runs test is not sufficiently
powerful, the one-parameter special case of the Prelec function (Eq. (4) with
δ 5 1) and the one-parameter function suggested by Tversky and Kahneman
(1992) were each rejected by the runs test for 6 of the 10 participants. The
runs test failed to reject either of the one-parameter functional forms for the
median data.
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FIG. 8. Same as Fig. 6 with best fitting power function for v and best fitting linear in log
odds w overlays. Note that value plots are scaled to each participant’s own v.

We next turn to a more standard method of assessing goodness of fit for
w. Recall that a feature of Eq. (3) is that it is linear in the log odds scale.
A standard measure of fit to linearity is the R2 from the linear regression.
We assessed the fit of Eq. (3) by regressing w in log odds units on probability
in log odds units. The R2 for the median data was .98 and the median R2

over the 10 subjects was .92. Subject 8 (the subject who exhibited the lowest
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TABLE 2
Test of Subcertainty Using the Nonparametric Estimates w( )

Probability pairs

Subject (.01, .99) (.05, .95) (.1, .9) (.25, .75) (.4, .6) (.5, .5) Binomial test

1 1.03 0.99 0.87 0.96 0.87 0.59 Trend sub
2 1.16 1.22 1.26 1.16 1.04 0.99 Trend super
3 1.20 1.17 1.27 1.22 1.12 1.24 Super
4 0.53 0.71 0.45 0.46 0.40 0.59 Sub
5 0.99 1.02 0.96 0.94 0.88 0.93 Trend sub
6 1.08 1.12 1.15 1.15 1.20 1.19 Super
7 0.93 0.97 1.01 0.82 0.89 0.72 Trend sub
8 1.20 0.81 0.70 0.81 0.64 0.47 Trend sub
9 0.98 0.97 0.93 0.91 0.80 0.79 Sub

10 1.09 1.07 1.09 0.99 1.07 1.03 Trend super

Median data 0.97 0.94 0.91 0.90 0.86 0.87 Sub

reliability) had the lowest R2 of .56. The two-parameter Prelec function per-
formed slightly better by this measure: the R2 for the median data was .99,
the median R2 over the 10 subjects was .95, and the lowest R2 (Subject 8)
was .75.

Subcertainty

Recall that subcertainty is defined as w(p) 1 w(1 2 p) , 1, and it can
be interpreted as a measure of probabilistic risk aversion (see Wakker, 1994).
When w(p) 1 w(1 2 p) is substantially less than 1, the individual tends to
avoid risk, whereas when w(p) 1 w(1 2 p) exceeds 1, the individual tends
to embrace risk. Subcertainty is related to the elevation of w or how attractive
the decision maker regards gambling.

The nonparametric estimates of w( ) reported above can be used to exam-
ine subcertainty with the six probability pairs that sum to 1, i.e., (.01, .99),
(.05, .95), (.1, .9), (.25, .75), (.4, .6), and (.5, .5). Table 2 presents the results
of the binomial test on the null hypothesis that for a given subject (or aggre-
gate data) the sum of each of the six w pairs 5 1. Because each participant
contributed six tests of subcertainty we do not have a very powerful test—
if all six sums are on the same side of 1, the null hypothesis can be rejected
at two-tailed α 5 .032. Subjects 4 and 9 (as well as the median data) had perfect
patterns of subcertainty. Two subjects (3 and 6) had perfect supercertainty
patterns (i.e., sum greater than 1). Subjects 1, 5, 7, and 8 produced five of six
sums in the direction of subcertainty, and Subjects 2 and 10 produced five of
six sums in the direction of supercertainty (by the binomial test, five of six
corresponds to a two-tailed α of .218). There did not appear to be a pattern to
the sole violation. In sum, even though the median data exhibited subcertainty
quite clearly (consistent with previous studies), 4 of the 10 participants had
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patterns suggesting a weighting function consistent with the property of super-
certainty. It is in this sense that the aggregate data may not paint a picture that
is consistent with all data at the individual subject level.

Related properties of lower subadditivity (LS) and upper subadditivity
(US) were discussed by Tversky and Wakker (1995). LS is w(q) $w(p 1
q) 2 w(p) for p 1 q bounded away from 1, i.e., increments from p 5 0
have larger weights than identical increments in the interior of [0, 1], and
US is 1 2 w(1 2 q) $ w(p 1 q) 2 w(p), i.e., increments from p 5 1 have
larger weights than identical increments in the interior. If both LS and US
hold, then w is said to exhibit bounded subadditivity. The present design
allowed for three tests of LS using the nonparametric estimates of w (stimuli
probability levels of .05 vs. .10, .25 vs. .5, and the triple .25, .5, and .75).
Only one violation of LS was observed—the triple for Subject 9. Similarly,
three tests of US were conducted (stimuli probability levels of .95 vs. .90,
.75 vs. .50, and the triple .75, .50, and .25). Subject 6 violated US on all
three comparisons; Subject 2 violated US on the .95 vs. .90 comparison.
Thus, 7 of 10 subjects exhibited no violations of bounded subadditivity, 2
subjects exhibited a trend for bounded subadditivity (i.e., one inconsistent
pattern out of a possible six), and 1 subject violated US.

Standard Parametric Fits of the Weighting Function and Value Function

Given the nonparametric estimates of the value function and weighting
function presented above, we can now proceed with the more standard non-
linear regression technique. The main difficulty with the standard approach
is that functional forms for v and w need to be assumed in order to perform
the estimation (and in the case of CPT, the inverse of v needs to be applied).
Without independent estimates of v and w it is difficult to evaluate the fits
of the functions apart from global indices such as root mean square error.
The nonparametric fits presented above provide a means for assessing the
appropriateness of functional forms prior to using those functional forms in
parametric estimation. As shown above, the power function v and the linear
in log odds w fit the individual subject data quite well.

The results of the standard nonlinear least squares estimation on the indi-
vidual subject data appear in Fig. 9. The parameter estimates from this non-
linear least squares regression are presented in Table 3. For the median data,
the α estimate for the power value function v(X) 5 Xα (the parameter θ was
not included here) was .49, and the estimates of δ and γ for the linear in log
odds w were .77 and .44, respectively.

By comparing Figs. 6 and 9, one can see that the fits of this parametric
analysis resemble the nonparametric results. Thus, there is convergence be-
tween the two techniques, one technique that assumed relatively little struc-
ture and the other that assumed specific functional forms. This nonlinear
regression did not weight residuals as was done in the nonparametric estima-
tion; thus under the assumption of normally distributed error, these nonlinear
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FIG. 9. Estimates of power v and linear in log odds w for each individual participant
using a standard nonlinear algorithm. 165 gambles per subject. Note that value plots are scaled
to each participant’s own v.
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TABLE 3
Parameter Estimates from the Standard Nonlinear Least Squares Regression with a Power
Value Function (Exponent 5 α) and the Linear in Log Odds Weighting Function (Eq. (3))

Parameters

Subject α δ γ PRE PRE-EU

1 0.68 (.10) 0.46 (.11) 0.39 (.03) 0.91 0.76
2 0.23 (.06) 1.51 (.46) 0.65 (.04) 0.90 0.87
3 0.65 (.12) 1.45 (.35) 0.39 (.02) 0.95 0.90
4 0.59 (.05) 0.21 (.04) 0.15 (.02) 0.93 0.44
5 0.40 (.08) 1.19 (.32) 0.27 (.02) 0.84 0.80
6 0.68 (.06) 1.33 (.15) 0.89 (.03) 0.99 0.92
7 0.60 (.06) 0.38 (.07) 0.20 (.02) 0.91 0.56
8 0.39 (.07) 0.38 (.11) 0.37 (.04) 0.83 0.65
9 0.52 (.08) 0.90 (.18) 0.86 (.04) 0.98 0.90

10 0.45 (.09) 0.93 (.26) 0.50 (.03) 0.91 0.85

Median data 0.49 (.04) 0.77 (.10) 0.44 (.01) 0.97 0.80

Note. Values in parentheses are standard errors. PRE represents the proportion reduction
in (sum of squared) error relative to the simple grand mean model. PRE-EU represents the
proportion reduction in error of expected utility with a power value function relative to the
grand mean; PRE-EU provides a baseline in which to compare PRE. Thus, the comparison
of PRE and PRE-EU shows the contribution of estimating the extra two weighting function
parameters relative to fixing both parameters to 1.

least squares estimates are the maximum likelihood estimates11 (Seber & Wild,
1989). The error for this estimation procedure was on the CE scale. Table 3
also presents the proportion reduction in sum of squared error relative to the
simple grand mean model and the proportion reduction in error of expected
utility with a power value function relative to the grand mean model.

We constructed Z tests based on the parameter estimates and standard
errors in Table 3 to assess interpersonal differences in discriminability and
attractiveness. For all pairs of subjects i, j (where i ≠ j ), we computed the
Z test between δi and δj, and also the difference between γi and γj. Forty
of the 45 interpersonal Z tests comparing γ (the discriminability parameter)
between participants were statistically significant at α 5 .05 using a pooled
standard error. Twenty-five of the 45 interpersonal Z tests comparing δ (the

11 There was high multicolinearity between the δ parameter of the linear in log odds w and
the exponent of v (as measured by the off-diagonal elements of the inverse Hessian matrix).
For the median data, these two parameters correlated 2.98 (as was the median correlation
between these two parameters over the 10 participants). The curvature parameter for w and
the exponent of v were moderately correlated (.56 for the median data) as was the correlation
between the two parameters of the linear in log odds w (2.66 for the median data). The two-
parameter Prelec function also exhibited high multicolinearity between the δ parameter and
the α parameter (.97 for both the median data and the median subject).
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attractiveness parameter) were statistically significant. Thus, the test on the
discriminability parameters was significantly more powerful than the test
based on the nonparametric estimates that was presented above (but the test
was comparable for attractiveness).

DISCUSSION

A large family of descriptive theories of decision making under risk pro-
pose three functions: a transformation of outcomes, a transformation of prob-
abilities, and a functional that combines the transformed outcomes with the
transformed probabilities. One reason this classification is attractive is be-
cause the widely accepted normative theory, expected utility, is a special
case. Under expected utility, outcomes are transformed by the utility function
u, the transformation on the probabilities is the identity function, and the
combination rule is the sum of the utilities weighted by their associated prob-
abilities.

Another member of this family, cumulative prospect theory, has emerged
as perhaps the most promising descriptive model of risky decision making
(Camerer, 1992, 1995). Under CPT, outcomes are transformed by an S-
shaped value function v, which is concave for gains, convex for losses, and
steeper for losses than gains; probabilities are transformed by an inverse-S-
shaped probability weighting function w; and values and probability weights
are combined through a rank-dependent weighting scheme.

Prospect theory’s value function v has been widely studied and applied to
a number of areas including economics, finance, marketing, medical decision
making, organizational behavior, and public policy (for examples see Cam-
erer, 1995, as well as Heath, Larrick, & Wu, 1999). The probability
weighting function, in contrast, has received less empirical and theoretical
attention. For a few applications of w in medical decision making and insur-
ance see Wakker and Deneffe (1996), Wakker and Stiggelbout (1995),
Schlee (1995), and Wakker, Thaler, and Tversky (1997). The probability
weighting function may offer a rich source of ideas for researchers interested
in studying probabilistic risk aversion.

Empirical regularities on the probability weighting function (such as
inverse-S-shaped) have emerged that organize choice behavior quite well
(see, for example, Camerer, 1995), and psychological principles that can
account for the shape of the weighting function have been formulated and
tested. For example, the concept of diminishing sensitivity unifies under one
explanatory umbrella the curvature of the weighting function, the curvature
of the value function, and the subadditivity of probability judgments (Tver-
sky & Kahneman, 1992; Tversky & Koehler, 1994).

We see this paper as making three contributions to the psychological un-
derstanding of the probability weighting function: methodological, empiri-
cal, and theoretical. First, a new nonparametric algorithm for estimating the
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weighting function was developed and implemented. With standard estima-
tion techniques, the choice of parametric forms for w and v often reduces
to a problem of global goodness of fit where component functions cannot
be evaluated independently. However, the nonparametric algorithm permits
an evaluation of component functions without having to assume specific
functional forms. In this sense the data were allowed ‘‘to speak for them-
selves.’’ As we showed under Results, when the nonparametric estimates
are available, specific functional forms can be evaluated directly against the
nonparametric estimates.

Second, empirical regularities about the weighting function both at the
level of aggregate behavior and at the level of individual subjects were identi-
fied. The results for the median data add to a growing body of evidence that
concave value and inverse-S-shaped weighting functions appear to fit median
data quite well (e.g., Abdellaoui, 1998; Camerer & Ho, 1994; Tversky &
Kahneman, 1992; Wu & Gonzalez, 1996, 1998). Moreover, our analyses
showed that a one-parameter weighting function and a one-parameter value
function (power) provide an excellent, parsimonious fit to the median data
(see also Camerer & Ho, 1994; Tversky & Kahneman, 1992). In particular,
one-parameter weighting functions proposed by Tversky and Kahneman
(1992) and by Prelec (1998) fit the median data almost as well as the two-
parameter, linear in log odds weighting function.

At the level of individual subjects, however, the story is more complicated.
There are two main findings about the weighting function for individual sub-
jects, one about regularity and one about heterogeneity. The regularity over
the 10 subjects is that the weighting function, estimated from an individ-
ual’s data, is inverse-S-shaped, consistent with the psychological property
of diminishing sensitivity. It is noteworthy that the inverse-S-shape of the
weighting function, the only regularity at the level of individual subjects
found in this study, is the main principle needed to explain the examples
and survey questions given in the introduction.

In contrast to the regularity of the inverse-S-shaped weighting function,
there is a striking amount of heterogeneity in the individual weighting func-
tions, in terms of both the degree of curvature and the elevation. Consistent
with this heterogeneity, subcertainty, a measure of probabilistic risk aversion
which holds quite well at the level of the aggregate data, failed to hold for
4 of the 10 participants.

The third contribution of this paper is to provide empirical support for a
psychological interpretation of the probability weighting function. We ar-
gued that the constructs of discriminability and attractiveness could be opera-
tionalized in terms of the degree of curvature of the weighting function and
elevation, respectively (see also Tversky & Wakker, 1995). These properties
were observed to be somewhat independent across the 10 participants. Fur-
ther, we suggested a two-parameter functional form, the linear in log odds
function, that (essentially) models these two constructs independently. Note,
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however, that the present data could not discriminate between the linear in
log odds w and the two parameter weighting function suggested by Prelec
(1998).

The present study compared discriminability and attractiveness interper-
sonally and found that the 10 subjects showed considerable variation on these
two dimensions. Such individual variation is hardly striking, particularly if
we contrast skilled bridge or poker players to Piaget’s children (discriminabil-
ity) or oil wildcatters with individuals who invest exclusively in government
bonds or other low-risk investment instruments (elevation). Many decision
theorists would not be surprised at a finding showing individual differences in
the utility function. The present data suggest that decision theorists may also
want to consider individual differences in the weighting function.

It is interesting to note that these concepts can also vary intrapersonally.
The same person may have more knowledge about one domain than another,
and hence the weighting function in the latter domain will approach a step
function relative to the former. For example, someone with expertise in judg-
ing the outcome of a jury trial may be able to discriminate subtle differences
in the chances of winning a jury trial, whereas the same person may not
have much expertise about football and would not be able to discriminate
subtle differences in gambles based on point spreads (see Heath & Tversky,
1991, and Fox & Tversky, 1995, for a related point). An analogous intraper-
sonal comparison can be made for attractiveness. A person may find one
chance domain more attractive than another, as in the comparison between
selecting one’s own lottery ticket rather than being assigned ticket numbers
at random (Langer, 1975).

Kilka and Weber (1998) recently presented evidence supporting these in-
trapersonal comparisons in the context of uncertainty. Participants were stu-
dents in a finance course. They priced lotteries based on price changes of
either a familiar or an unfamiliar stock. Assuming a power value function,
Kilka and Weber found that the δ and γ parameters of the linear in log odds
form were greater for the familiar stock. Thus, the decisions based on price
changes of the familiar stock exhibited both greater discrimination and
greater attractiveness.

However, intrapersonal comparisons on the weighting function that span
different sources of uncertainty raise an important question. How can we
distinguish poor sensitivity in probability judgment from a flat probability
weighting function? This distinction is not relevant in the current paper be-
cause probabilities (rather than events) were given to the participants. But,
if we want to have a complete understanding of how people make decisions
under uncertainty we will need to continue extending our knowledge of how
probabilities are estimated and how these estimated probabilities are dis-
torted in decision making. Preliminary attempts to model this distinction ap-
pear in Fox and Tversky (1998), Tversky and Fox (1995), Tversky and Wak-
ker (1998), and Wu and Gonzalez (1999).
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The Kilka and Weber findings also raise another important point: even
though discriminability and attractiveness are logically independent (and can
be modelled separately through a two-parameter weighting function), in the
real world the two concepts most likely covary across contexts. Attrac-
tiveness will tend to be high for domains in which we can make fine discrimi-
nations; discrimination will tend to be low in domains that we do not find
very attractive. Put simply, we like what we know and we know what we
like. If it is true that the weighting function reflects two psychological con-
structs, then it should be possible to manipulate attractiveness and discrimi-
nation independently and to observe corresponding changes in δ and γ, re-
spectively. Experiments designed to manipulate discriminability and
attractiveness independently in the spirit of Kilka and Weber are under way.
Thus, beyond modeling how decision makers choose among gambles, the
probability weighting function provides a foundation for the more general
investigation of risk taking, risk attitudes, and decision making under risk
and uncertainty.

APPENDIX

Preference Condition for the Linear in Log Odds Weighting Function
(Eq. (3))

For two-outcome gambles and the CPT (or rank-dependent) representation, the following
preference condition is necessary and sufficient for the linear in log odds weighting function.
If the following implication holds for p and q, if

(X, p; Y, 1 2 p) , (X′, p; Y′, 1 2 p)

and (A1)

(X, p; Y′, 1 2 p) , (X′, p; Y″, 1 2 p)

then

(X, q; Y, 1 2 q) , (X′, q; Y″, 1 2 q) (A2)

with X . X′ . 0 and 0 , Y , Y′ , Y″, then it holds for all p replaced with tp/(1 2 p 1
tp) and q replaced with tq/(1 2 p 1 tq) with t . 0. We call this condition the linear in log
odds condition. An analogous condition can be written for the case where all outcomes are
losses. The need for specifying the condition in terms of tp/(1 2 p 1 tp) will become apparent
below; note that on the odds scale, tp/(1 2 p 1 tp) becomes tp/(1 2 p). This condition can
be generalized to gambles having n outcomes.

The intuition underlying this preference condition is seen by taking the ratio of the odds
of p and q; i.e., p(1 2 q)/((1 2 p)q). The two antecedents provide constraints on p and the
conclusion implies a constraint on q. The linear in log odds preference condition is satisfied
when the constraints that hold for p and q also hold for tp/(1 2 p 1 tp) and tq/(1 2 p 1
tq), respectively. Note that when the latter two probabilities are converted to odds, the scalar
t cancels from the odds ratio. Thus, the odds ratio of each pair of probabilities are identical.
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THEOREM 1. For two-outcome gambles (where both outcomes are on the same side of the
reference point) CPT implies that the linear in log odds preference condition is necessary and
sufficient for the linear in log odds weighting function.

Proof. We make use of the functional equation

f (x) 1 f (y) 5 f (z)

iff (A3)

f (tx) 1 f (ty) 5 f (tz).

If this functional equation holds for all t . 0, then under some mild continuity conditions,
the only nontrivial solution for monotonic f is

f (x) 5 axb (A4)

(Aczel, 1966). For a discussion of conditions needed for the continuity of w in the context
of rank-dependent models see Wakker (1994).

Our method of proof is to use CPT with outcomes restricted to one side of the reference
point to represent the gambles and use Eq. (A3) to provide the necessary constraints on the
weighting function. The sketch of the proof will be informal. We first show how CPT and
the preference condition together imply the functional equation. Apply CPT to the two anteced-
ents of the preference condition and then add the representations together to yield

2
w(p)

1 2 w(p)
5

v(Y″) 2 v(Y)
v(X) 2 v(X′)

. (A5)

The third indifference (i.e., involving probability q in line 2) yields

w(q)
1 2 w(q)

5
v(Y″) 2 v(Y)
v(X) 2 v(X′)

. (A6)

Equations (A5) and (A6) imply

2
w(p)

1 2 w(p)
5

w(q)
1 2 w(q)

. (A7)

Essentially, the ratio of value differences provides a standard sequence that allows w’s in odds
form to be equated. Apply the same argument to the three indifferences where all probabilities
p are replaced with tp/(1 2 p 1 tp) and similarly for all probabilities q to yield the analog
of Eq. (A7)

2
w(tp/(1 2 p 1 tp))

1 2 w(tp/(1 2 p 1 tp))
5

w(tq/(1 2 q 1 tq))
1 2 w(tq/(1 2 q 1 tq))

.

The preference condition requires that once a standard sequence is found for p and q, then
standard sequences can also be found for probabilities transformed by tr/(1 2 r 1 tr) where
r takes on the value p or q.

Next, define f (p/(1 2 p)) 5 w(p)/(1 2 w(p)), where f can be conceptualized as a composi-
tion of a function that maps odds into w(p) and a function that puts w(p) into odds form. If
the preference condition holds for all t . 0, then we have a special case of the above functional
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equation (i.e., assuming that x 5 y in Eq. (A3)) where the only solution is f (x) 5 axb. Substitut-
ing back the definition of f into the solution of the functional equation, we have

w(p)
1 2 w(p)

5 a 1 p
1 2 p2

b

(A8)

and solving for w(p) gives the linear in log odds form of the weighting function (Eq. (A3)).
The proof in the other direction follows the analogous argument.

A related procedure that constructs standard sequences in the sense of Eq. (A7) was proposed
by Wakker and Deneffe (1996), who were interested in scaling the utility function independent
of the weighting function (see also Abdellaoui, 1998). It is interesting that our procedure
achieves the opposite goal of specifying a functional form on w independent of the utility
function.

On the outcomes, this preference condition resembles the Thomsen condition used in addi-
tive conjoint measurement (Krantz, Luce, Suppes, & Tversky, 1971). Loosely speaking, the
present condition can be interpreted as the Thomsen condition applied to outcomes with an
additional restriction imposed on probabilities. The preference condition for the linear in log
odds weighting function can be contrasted with the preference condition given by Prelec (1998)
for the two-parameter weighting function he proposed. Unfortunately, bothour preference condi-
tion and Prelec’s compound invariance condition are difficult to test empirically because they
require several antecedent conditions. In the context of the CPT axioms, it may be possible to
derive consequences of these preference conditions that may be more amenable to empirical test.
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