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CURVATURE OF THE WEINHOLD METRIC FOR

THERMODYNAMICAL SYSTEMS WITH 2 DEGREES OF

FREEDOM

MANUEL SANTORO AND SERGE PRESTON

Abstract. In this work 1 the curvature of Weinhold (thermodynamical) metric

is studied in the case of systems with two thermodynamical degrees of freedom.

Conditions for the Gauss curvature R to be zero, positive or negative are worked out.

Signature change of the Weinhold metric and the corresponding singular behavior

of the curvature at the phase boundaries are studied. Cases of systems with the

constant Cv, including Ideal and Van der Waals gases, and that of Berthelot gas

are discussed in detail.

1. Introduction

Usage of geometrical methods in homogeneous Thermodynamics started in the

works by J.Gibbs ([7]) and C.Caratheodory ([6]) was further developed in the works

of R.Hermann, R.Mrugala, in the dissertation of H.Heemeyer ([8]) and in other works.

Thermodynamical metrics also have their source in the works of J. Gibbs ([7]). Ex-

plicitly a thermodynamical metric (TD-metric) was introduced by F.Weinhold ([33])

and, later, from a different point of view, by G.Ruppeiner ([29]). Deeper studies by

P.Salamon and his collaborators, by P.Mrugala and H.Janyszek (see [3, 10, 11, 12, 13,

19, 20, 21, 23, 32]) clarified principal properties of thermodynamical metrics, relations

between different TD-metrics and their place in relation to the contact structure of

equilibrium thermodynamical phase space ([9, 18]). G. Ruppeiner (see review [30]

and the bibliography cited there) has developed a covariant thermodynamical fluctu-

ation theory based on the Riemannian metric ηS defined by the second momenta of

entropy with respect to the fluctuations and related the curvature of this metric to

the correlational volume near the critical point. He applied this scheme to a variety

of models: ideal gas, ideal paramagnetic, Ising model, Takahashi gas, Van der Waals
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2 MANUEL SANTORO AND SERGE PRESTON

gas. P.Mrugala, H. Janyszek, P.Salamon studied the role of thermodynamical metrics

in the statistical thermodynamics, one of examples being the model magnetic system

([13]).

These and some other developments, including an interest to thermodynamical

metrics in the study of black holes led us to the question of a more systematic study of

the curvature of thermodynamical metrics in the case of systems of smallest dimension

where such curvature is present - the case where the phase space of TD-system is one

with variables (U ; (T, S), (p, V ), (µ, N)). Degeneracy of a TD metric η due to the

homogeneity of a constitutive law (see [32] or see below) is removed by considering 1

mole of the media (or by the reduction procedure, [27]). As a result, a TD-metric is

defined on the 2D constitutive surface (containing all equilibria states of the system).

All the intrinsic curvature properties of this metric are defined by the scalar (Gauss)

curvature R.

In Section 2 we introduce the thermodynamical metrics ηE defined by a thermody-

namical potential E on the corresponding ”constitutive surfaces” in the phase space

of a thermodynamical system endowed with the contact structure ([5, 9]).

In Section 3 we introduce the elementary thermodynamical system (of two TD

degrees of freedom) and calculate its Weinhold and Ruppeiner metrics. In addition we

present examples of TD-metrics of a chemical system and the systems with magnetic

and electrical properties.

In section 4 we calculate Levi-Civita connection and the curvature tensor of the

metric ηE in the general n-dim case(see also [31]). In section 5 we introduce and

study the Hessian surface HE of the TD potential E in the space of symmetrical 2×2

matrices and express the curvature properties of the metric ηE in terms of geometrical

properties of this surface. In particular, we determine the condition for the positivity,

negativity and nullity of the scalar curvature R(ηE) in terms of this surface.

In section 6 we continue the study in of curvature started in section 4 by calculating

the determinant det(ηE) (characterizing the signature of the metric) and the scalar

curvature of the Weinhold metric ηU (defined by the internal energy U) of an elemen-

tary thermodynamical system in terms of T, V , heat capacity Cv, volume coefficient

of expansion α, isothermal compressibility k and their derivatives.
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In Sec.7 we consider the case of constant Cv where calculations simplify greatly.

We define the form of the fundamental constitutive relations U = U(S, V ) in such

a case and determine the systems of this type for which R(η) = 0 and the regions

where scalar curvature is positive or negative.

In Sec.8, example of the ideal gas is considered. In Sec.9, we study the Weinhold

metric for the Van der Waals gas, curve of the signature change (degeneracy curve

of the det(η)), separating the domain of (stable) equilibria from the unstable region,

scalar curvature behavior near this curve, calculation of critical values of physical

variables in terms of the degeneracy curve. In Sec.11 the case of Berthelot gas is

considered.

In the last Section 12 the geodesic equations of the Weinhold metric ηU for the

general elementary thermodynamical system are obtained.

2. Weinhold Metric of a thermodynamical system

In this section we introduce, following [3, 9, 18, 21], some geometrical structure of

on the (energy-phase) state space of homogenous thermodynamics and, in particular,

the thermodynamical metrics ([33]) on the constitutive surfaces of this system - the

principal object of our study.

We introduce the thermodynamical phase space P of a thermodynamical sys-

tem with k ”thermodynamical degrees of freedom” as a (2k + 1)-dimensional man-

ifold endowed with a contact structure - 2D-distribution D on P which is totally

non-integrable, [2]. This structure is presented (locally, and in many cases globally)

by a contact (Pfaff) form ω such that ω ∧ (dω)k 6= 0 at each point of P .

The fundamental geometrical structure of a thermodynamical system is a choice

of a canonical chart (Darboux chart) C of variables z = (E, xi, yi, i = 1, . . . k) for the

1-form ω, realizing it in the form

ω = dE −
k
∑

i=1

yidxi. (2.1)

Couples of variables (xi, yi) have the meaning of extensive (xi) and intensive (yi)

variables, corresponding to the different processes that may undergo in the system

and E is the chosen thermodynamical potential (internal energy, entropy, Helmholtz
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free energy or entalpy, see [5]). Examples of couples (xi, yi) are: 1) temperature and

entropy (T, S); 2) pressure and volume (−p, V ); 3) mole number of i-th component

and corresponding electrochemical potential (Ni, µi); etc.

Horizontal distribution D of contact structure - subbundle of the tangent bundle

T (P )

Dz = Ker(ω(z)), z ∈ P (2.2)

is endowed with the symplectic form dω having, in a canonical chart C, the standard

form

dω =
k
∑

i=1

dyi ∧ dxi (2.3)

Admissible processes described by the system are horizontal curves γ : t→ z(t) ∈
P of structure ω (i.e. such that γ′(t) ∈ Dγ(t) for all t). In the case where E is

interpreted as the internal energy of the system,
∫

γ
dE is the work applied (or pro-

duced) during the process γ(t), see ([5, 16]), and condition of admissibility ensures

the fulfillment of the energy conservation law during the process.

Constitutive surfaces are defined as maximal integral surfaces of structure ω

(Legendre submanifolds), ([2, 18]). Standard way to present such a surface ΣE is to

define it as the first jet of a function E = E(xi, i ∈ I; yj, j ∈ [1, . . . , k]\I), defined

in the open subset D ⊂ Rk. Here we choose a subset I ⊂ [1, . . . , k] of indices and

take E to be a function of xi with i ∈ I and of yj with j in the complemental set of

indices j ∈ [1, . . . , k]\I. Relation E = E(xi, yj) defines the fundamental constitutive

relation of TD system, (see [5]), from which all others equations of state follows ([5]).

In the usually considered case where I = [1, . . . , k] corresponding constitutive surface

is given by

ΣE = {(E, xi, yj, i = 1, . . . k) ∈ P |E = E(xi), yi =
∂E

∂xi
, i ∈ [1, . . . , k], (xi) ∈ D ⊂ Rk}.

(2.4)

From now on we will denote arguments of a function E defining a fundamental

constitutive relation and the corresponding equilibria surface by xi, i ∈ [1, . . . k].

Remark 1. Constitutive surface ΣE defined by a function E(xi) contains the sub-

sets EqC ⊂ ΣE of equilibria states of the homogeneous thermodynamical system



CURVATURE OF THE WEINHOLD METRIC 5

E = E(xi) subject to the (possible) constraints imposed on the system in the situ-

ation C (see [5] or other standard text in the thermodynamics for a variety of such

situations). Subset EqC ⊂ ΣE is determined, due to the second law of thermodynam-

ics, by the condition of extremum of the thermodynamical potential E subject to the

constraints C, see [5, 16]. Submanifold ΣE contains also unstable states as well as

locally stable states ([5]). Partition of the constitutive surface ΣE corresponding to

a given family of constraints was studied in many cases (see [17, 5]). Geometry of

the constitutive surface ΣE , of its equilibria region(s) EqC in relation to the admissi-

ble thermodynamical processes is one of the primary object of study of ”geometrical

thermodynamics”, see [17, 18, 20, 21]).

Thermodynamical metric (TD-metric) defined by the constitutive relation E =

E(xi) on the constitutive surface ΣE of the contact structure ω has the form

ηE =
∑

ij

∂2E

∂xi∂xj
dxi ⊗ dxj. (2.5)

For the case where E is the internal energy U , metric ηU is called the Weinhold

metric. For the case where E is the entropy S, instead, metric ηS is called the

Ruppeiner metric.

Notice that this form of the metric is not invariant under the diffeomorphisms of

domain D (except linear ones, see [3] for more). Thus, though is not a drawback,

TD-metric is defined by a physically meaningful choice of canonical chart C and

transformation of this metric under the transition from one physically meaningful

canonical chart to another one cannot be simple. As an example, we mention that

the Legendre transformation of the space P leading to the replacement of internal

energy U by the entropy S applied to the TD-metric ηU gives, as is shown in [20, 32],

the TD-metric, conformal to the metric ηS on the equilibria surface XU ,

ηU = − 1

T
ηS.

Metric ηE with E = U being the internal energy of a thermodynamical system,

was introduced by F.Weinhold in series of papers [33]. It was further studied by

P.Salaman, S.Berry and their collaborators (see [3, 23] and the bibliography in [28]).
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Remark 2. A TD-metric ηE is induced on the surface ΣE of the form (2.1) by the

following symmetrical tensor

η̃ =
1

2

k
∑

i=1

(dyi ⊗ dxi + dxi ⊗ dyi). (2.6)

This tensor is the only (up to a conformal factor) symmetrical tensor in P , an-

nihilating the Reeb vector field Y of structure ω (here Y = ∂
∂E

), invariant under

the substitution of indices i, and obtained as the sum of symmetrical tensors in the

2D-elementary subspaces D∗

i of D∗

x spanned by couples of covectors (dxi, dyi) of ther-

modynamically conjugated variables.

A very interesting way to construct all the TD-metrics ηE in the framework of the

contact geometry was suggested by R.Mrugala ([19]). He has defined (starting from

some arguments of statistical mechanics) the contact metric G on the phase space P

inducing TD metric (2.5) on each equilibria surfaces. Geometrical properties of this

metric are studied in the forthcoming work of the second author with J.Vargo [28] .

Function E defining constitutive relation and the constitutive surface ΣE is assumed

to be homogeneous of the first order: E(λxi) = λE(x1),[5]. As a result, Weinhold

metric is degenerate - its kernel is generated by the radial vector field in the space X

Ker(η) = R · (xi ∂

∂xi
)

This can be remedied either restricting all considerations to the subspace of X (and

the section of cone ΣE) with fixed value of one of variables xi (mole number or volume

are typical examples, see [23]) or using the geometrical reduction of the surface σE

by the action of this dilatation group ([27]).

After this reduction of the TD-system its Weinhold metric is in general non-definite

- the constitutive surface ΣE is the union of domains of where this metric has different

signature separated by the submanifolds (generically of codimension one) of states

where this metric is degenerate. Submanifold of thermodynamical equilibria in the

processes with a given set of constrains C - EqC of the constitutive surface ΣE lays the

region of the definite TD-metric due to the second law of thermodynamics which

requires the entropy to be (locally) maximal and energy to be (locally) minimal in

the stable equilibria state to which system tends.
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Gauss curvature R of thermodynamical metrics (in energy or entropy form) was

calculated for several TD systems with two degrees of freedom (i.e. 5-dim phase space

P ) - ideal gas (R = 0), Takahashi gas, multi-component ideal gas, paramagnetic

ideal gas, Van-der-Waals gas, ideal quantum gases(see review [29]). G. Ruppeiner

(see review [30] and the bibliography cited there) related the curvature R(ηS) of the

metric defined by entropy to the correlational volume near the critical point. The

fact that for the ideal gas the curvature of Weinhold metric ηU and that of Ruppeiner

metric ηS is zero and the calculations of curvature for systems mentioned above allows

to suggest some relation between this curvature (or at least its sign or nullity) and

the interactions undergoing in the system on the microscopic level. Clarification of

these questions requires deeper study of intrinsic and especially extrinsic geometry of

constitutive submanifolds ΣE of the thermodynamical phase space P .

3. Elementary TD system and other examples

Here we present several examples of TD-metrics including the basic elementary

thermodynamical system with 5-dim phase space P in variables (U, S, T, p, V ).

3.1. Elementary TD-system. As the first example of a thermodynamical system

and its Weinhold and Ruppeiner metrics we consider the system with 5-dimensional

phase-energy space of variables (U, (S, T ), (V,−p)) which we will call from now on an

elementary thermodynamical system. This system will be the principal object

of our study here, so we will consider it in more details. Contact form ω of such a

system can be chosen in a form

ω = dU − TdS + pdV. (3.1)

Consider a 2D integral submanifold ΣU of this system defined by a constitutive

relation

U = U(S, V ), (3.2)

with S and V being our extensive variables, T and p the relative conjugate intensities

and U the internal energy function of the extensive variables.

Then

dU = (
∂U

∂S
)dS + (

∂U

∂V
)dV = TdS − pdV. (3.3)
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Notice that homogeneity condition for any constitutive relation in U-system ([5])

leads to the relation

U = ST − pV, (3.4)

that should be fulfilled for all integral surfaces of contact structure ω given by a consti-

tutive equation. Correspondingly, contact condition for thermodynamical processes

has two forms, i.e.

ω = dU − TdS + pdV = SdT − V dp = 0

where the second one (Gibbs-Duhem equation, see [5] ) leads to the second form of

constitutive relation provided the constitutive relation in the first (fundamental) form

is chosen.

Calculating the Weinhold metric of U-system we will use some notations standard

in the literature (see [5]). Namely, we denote

(1) Cv is the heat capacity at constant volume:

Cv = T (
∂S

∂T
)V , (3.5)

(2) Cp is the heat capacity at constant pressure:

Cp = T (
∂S

∂T
)p, (3.6)

(3) α is the volume coefficient of expansion:

α =
1

V
(
∂V

∂T
)p (3.7)

(4) k is the isothermal compressibility:

k = − 1

V
(
∂V

∂p
)T (3.8)

These quantities are related by:

Cp − Cv = V T
α2

k
(3.9)

Calculating Weinhold metric for U-system on the two-dimensional integral surface

ΣU(S, V ) and using introduced notations we get

ηU = (ηij) =
1

Cv

(

T −Tα
k

−Tα
k

Cp

vk

)

(3.10)
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Characteristic equation of tensor ηij (with respect to the canonical Euclidian metric

h on the (S, V )-plane) is

λ2 − (
T

Cv
+

Cp

CvV k
)λ +

T

CvV k
= 0, (3.11)

and

λ± =
1

2
[(

T

Cv

+
Cp

CvV k
)±

√

△]

For the discriminant △ we have the following inequality

△ = (η11 − η22)
2 + (2η12)

2 = (
T

Cv
− (

Cp

CvV k
))2 + (2

Tα

Cvk
)2 > 0 (3.12)

which, in particular, implies that

det
h

ηij <
1

4
(traceh(ηij))

2 (3.13)

Remark 3. Notice that since Cp = Cv + V Tα2

k
, discriminant △ is always positive.

Therefore eigenvalues λ± are both real and distinct.

Moreover, since det ηij = λ+λ−, and since also det ηij = − T
Cv

( ∂p
∂V

)T , we get the

following

Lemma 1. Let T > 0. Then

1) If Cv > 0 and ( ∂p
∂V

)T < 0 then det ηij > 0 and λ± > 0.

2) If Cv < 0 and ( ∂p
∂V

)T > 0 then det ηij > 0 and λ± < 0.

3) If Cv and ( ∂p
∂V

)T have different sign then det ηij < 0 and λ+ > 0, λ− < 0.

Fulfillment of 1) and 2) guarantees the stability for the system even if the case

2) might look non physical at all. However, there are some cases when it is natural

to assume that the heat capacity is negative (in a cluster of sodium atoms or in

the black holes, [24]). There are also cases in which the isothermal (and adiabatic)

compressibility seems to be negative (in amino acid, [22]). These are examples of

cases away from stability.
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Example 1. In case of an Ideal Gas, α = 1
T

and k = 1
p
, and the metric ηU is given

by

ηUij =
1

Cv

(

T −p

−p Cpp
v

)

(3.14)

Applying Legendre’s transformation from variables (U, (S, T ), (V,−p)) to the vari-

ables (S, (U, T−1), (V, pT−1)) to the contact form ω and rewriting the constitutive

relation correspondingly, we get

ω = dU − TdS + pdV = −T

[

dS − 1

T
dU − p

T
dV

]

= 0⇒ ω = dS − 1

T
dU − p

T
dV,

(3.15)

and

S = S(U, V ) (3.16)

Correspondingly, TD-metric on the two-dimensional integral surface ΣS(U, V ) (Rup-

peiner metric) takes the form, see also [19],

ηSij =

(

− 1
CvT 2

1
T 2 (

Tα−kp
kCv

)
1

T 2 (
Tα−kp

kCv
) − 1

Cv
(Tα−kp

Tk
)2 − 1

V kT

)

(3.17)

In case of an Ideal Gas, metric (3.17) takes the form

ηSij =

(

− 1
CvT 2 0

0 − p
V T

)

(3.18)

due to the Gibbs-Duhem form of constitutive relation (Tα− kp) = 0.

3.2. A chemical system. Here we consider a (2m+5) homogeneous thermodynam-

ical system in energy-phase space defined by

(S, (U,
1

T
), (V,

p

T
), (N1,

µ1

T
), ...(Nm,

µm

T
)) (3.19)

with Ni being the number of molecules of type i and µi being their conjugate

intensities - chemical potential per molecule i-th.
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Consider (m+2)-dim integral surface defined by an entropy constitutive relation

S = S(U, V, N1, .....Nm) (3.20)

We get

dS =

(

∂S

∂U

)

dE +

(

∂S

∂V

)

dV +
∑

i

(

∂S

∂Ni

)

dNi

=
1

T
dU +

p

T
dV +

∑

i

µi

T
dNi. (3.21)

Then we calculate

ηSij =







− 1
CvT 2

1
T 2 (

Tα−kp
kCv

) ∂
∂E

(
µj

T
)

1
T 2 (

Tα−kp
kCv

) − 1
Cv

(Tα−kp
Tk

)2 − 1
V kT

∂
∂V

(µj
T

)
∂

∂Ni
( 1

T
) ∂

∂Ni
( p

T
) ∂

∂Ni
(

µj

T
).






(3.22)

3.3. Thermodynamical system in homogeneous Magnetic and Electric Fields.

Constitutive relation should now include the work of magnetic and electric field on

the (homogeneous) system. Let’s consider the work of magnetic field first. Funda-

mental result of the thermodynamics of magnetic system defines the differential of

the magnetic work to be ([5]):

dWMagn = d(
µ0

8π

∫

H2dV ) + µ0

∫

(H · dM)dV, (3.23)

where H is the external magnetic field, M is the magnetization (magnetic momen-

tum) vector. First term represents the change of energy of the magnetic field, second,

the work of the magnetic field on the magnetic momentum of the system. Since we

consider here only homogeneous systems, we take H to be constant. Let also assume

that the magnetization M is homogeneous.

Then

dWMagn = d(
µ0

8π

∫

H2dV ) + µ0H · dI (3.24)

where I tot =
∫

MdV = MV is the total magnetic dipole moment of the system.
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Considering just the contribution to the magnetic work due to the magnetic dipole

moment I, let’s define the (internal) energy to be

U = U(S, V, I tot
H , N1, N2, ...., Nm), (3.25)

where I tot
H is the component of the total magnetic moment parallel to the external

field. Then

dU = (
∂U

∂S
)dS + (

∂U

∂V
)dV +

∑

i

(
∂U

∂Ni

)dNi + (
∂U

∂I tot
H

)dI tot
H

= TdS − pdV +
∑

i

µidNi + µ0HdI tot
H (3.26)

where µ0 is the permittivity of free space.

Then the Weinhold metric for the system with constitutive relation (3.26) in the

space of variables (S, V, I tot
H , N1, N2, ...., Nm) is

ηUij =















T
Cv

− Tα
Cvk

∂T
∂Itot

H

∂T
∂Ni

− Tα
Cvk

CP

vCvk
− ∂p

∂Itot
H

− ∂p
∂Nj

µ0
∂H
∂S

µ0
∂H
∂V

µ0
∂H

∂Itot
H

µ0
∂H
∂Nj

∂µi

∂S
∂µi

∂V
∂µi

∂Itot
H

∂µi

∂NJ















(3.27)

Similarly, for the work of a homogeneous external electrical field El in homogeneous

case we have ([5])

dWelectr. = d(
ǫ0

8π

∫

E2
l dV ) + EldP tot (3.28)

where P tot = PV is the total electric dipole moment.

Similarly to the previous case, if we consider just the contribution to the electric

work due to the electric dipole moment, we can define the internal energy as follows

U = U(S, V, P tot
E , N1, .....Nm) (3.29)

Then

dU = TdS − pdV + EldP tot
E +

∑

i

(µidNi) (3.30)
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where

El =
∂U

∂P tot
E

P tot
E is the component of the electric moment parallel to the external field.

Thus, the system consisting of several chemical components in the presence of an

electrical filed takes the form

ηUij =















T
Cv

− p
Cv

∂T
∂P tot

E

∂T
∂Nj

− p
Cv

pCp

vCv
− ∂p

∂PE
− ∂p

∂Nj

∂El

∂S
∂El

∂V
∂E

∂P tot
E

∂E
∂Nj

∂µi

∂S
∂µi

∂V
∂µi

∂P tot
E

∂µi

∂Nj















(3.31)

4. Curvature of TD-metric of a general thermodynamical system

In this section, we consider a thermodynamical potential E = E(xi) as function of

the extensive variables xi and calculate the curvature of the corresponding thermo-

dynamical metric defined on the integral (constitutive) surface ΣE , by the equation

(2.3)

ηEij =
∂2E

∂xi∂xj
.

Christoffel symbols for this metric are given by

Γk
ij =

1

2

∑

m

ηij,mηkm, (4.1)

where ηij,m =
∂ηij

∂xm .

After some calculations, it can be shown that the curvature tensor of metric ηE is

given by

Rl
ijk = Γl

ki,j − Γl
ji,k + Γl

jpΓ
p
ki − Γl

kpΓ
p
ji =

1

4
(ηij,mηsn,k − ηsn,jηki,m)ηmnηls (4.2)

Therefore, Ricci Tensor of metric ηE is

Rik = Rj
ijk =

1

4
(ηij,mηsn,k − ηsn,jηki,m)ηmnηjs, (4.3)
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and its scalar curvature R(η) is, see also [31],

R = Rikη
ik =

1

4
(ηij,mηsn,k − ηsn,jηki,m)ηmnηjsηik. (4.4)

5. Hessian Surface of a thermodynamical potential and the sign of

scalar curvature R(ηE)

In this section we study the Hessian representation of a metric ηE of a 5-dim

thermodynamical system with two ”degrees of freedom” (using the terminology of

Mechanics) xi, i = 1, 2 in terms of an oriented 2D surface in 3D space of symmetrical

2× 2 matrices. We find a geometrical conditions on this surface determining regions

where scalar curvature of ηE is positive, negative, zero, singular. In later sections

we demonstrate, on examples of ideal, van der Waals and Berthelot gases - to what

physical consequences these properties of metric ηU lead to.

5.1. Scalar curvature, 2D case. For k = 2 and a metric η =

(

η11 η12

η21 η22

)

, we can

use the known formula for scalar curvature ([26], Ch.VIII, Sec.2)

R = − 1

4det(η)2
det







η11 η11,1 η11,2

η12 η12,1 η12,2

η22 η22,1 η22,2






− 1
√

det(η)





(

η11,2 − η12,1
√

det(η)

)

,2

−
(

η12,2 − η22,1
√

det(η)

)

,1



 ,

(5.1)

which, for the Weinhold metric reduces to the first term only:

R = − 1

4det(η)2
det







η11 η11,1 η11,2

η12 η12,1 η12,2

η22 η22,1 η22,2






. (5.2)

This expression shows that the scalar curvature goes to infinity as det(η)→ 0.

Remark 4. Notice that the condition on a function E that the metric ηE is degen-

erate everywhere, i.e.

det(ηE) = η11η22 − η2
12 = 0

is the simplest Monge-Ampere equation,[1]. Geometry on the surfaces defined

by such a function is very interesting and well studied (see, for instance [1] and the

bibliography therein) but has little relation to the case where E is a thermodynamical

potential of a physically interesting system.
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5.2. Hessian surface of a function E. Scalar curvature R is zero if and only if the

determinant in the numerator of expression (5.2) is zero. To determine where it can

take place, consider the Hessian mapping HessE of a function E mapping a 2D

(canonically oriented) domain D of variables x1, x2 into the 3D vector space of 2x2

symmetrical matrices Sym(2, R) with the coordinates ηij :

HessE : (x1, x2)→
(

E,11 E,12

E,12 E,22

)

. (5.3)

Image of this mapping is the 2D oriented surface HE in the vector space Sym(2, R).

This surface is endowed with the frame formed by the coordinate tangent vectors

to this surface ri(x) = HessE ∗x(
∂

∂xi ) at the nonsingular points of the surface where

these vectors are linearly independent. This determines orientation of the surface HE ,

or, what is the same, field of normal vectors N = r1(x
1, x2)× r2(x

1, x2), where × is

the standard vector product in R3.

Notice that, given a function E, the physically relevant domain D ⊂ R2 where map-

ping HessE is defined can be smaller then the natural domain D(E) of the function

E. As an example, let us note the condition of positivity of some physical quantities

(volume, pressure) or other lower boundary (Kelvin temperature) condition. Some-

times it is reasonable to assume that function E is defined on the boundary of domain

D. Correspondingly, not all the surface HE is interesting from the point of view of

physics. Example of such a situation is given below.

Condition of degeneracy of a matrix defines in the space Sym(2, R) the standard

conic (nilpotent cone)

η11η22 − η2
12 = 0. (5.4)

Subset of degeneracy sing(ηE) ⊂ D of the metric ηE is the pre-image under the

HessE of the intersection of surface HE and the cone (5.4).

Example 2. As the first example of the Hess(E) consider the ideal gas whose internal

energy U as a function of variables S, V and the mole number N has the form

U = U0 + CvN

(

V

N

)−
R

Cv

e
1

Cv
( S

N
−S0),
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see [16], Chapter 6. For one mole, taking N = 1 we find

ηU =
R

Cv

e
S

Cv

(

1
R
V −

R
Cv −V −

Cp

Cv

−V −
Cp

Cv CpV
−(1+

Cp

Cv
)

)

. (5.5)

Excluding variables S, V from the formula for Weinhold metric, it is easy to get

equation for the surface HU

Rη11η22 − Cpη
2
12 = 0. (5.6)

Thus the surface ΣU ⊂ Sym(2, R) is trivially isomorphic to the standard conic

xz − y2 = 0 in R3. Conic (5.5) defines the homogeneous nonlinear second order

(Monge-Ampere) PDE

RU,11U,22 − CpU
2
,12 = 0

satisfied by the energy function U of the ideal gas (see Theorem 2 below).

Comparing equations (5.4) and (5.6) we see that the signature degeneration may

happen on the Hessian surface of ideal gas only in nonphysical points η12 = η11η22 =

0 or under the condition Cp = R, i.e. when Cv = 0.

Example 3. As the second example, consider the van der Waals gas with molar

internal energy (9.6) and the Weinhold metric (9.8). Excluding eS/Cv and V from the

equation (9.8) we get equation for the Hessian surface HU for the vdW gas:

Rη22η11 − Cpη
2
12 = − 2aRη11η

3
12

(bη12 − Rη11)3
. (5.7)

Expression on the right is the (linear) correction to the ideal gas equation for the

Hessian surface ensuring nonzero curvature almost everywhere on this surface. Mul-

tiplying by the denominator we get the algebraic equation for HE

(bη12 − Rη11)
3(Rη22η11 − Cpη

2
12) + 2aRη11η

3
12 = 0.

given by the polynomial of the fifth order.

Intersection of this surface with the surface det(ηij) = 0 determines the curve of

the signature change (critical curve) for the vdW gas (in this representation)

η12[2aRη11η12 − Cv(bη12 −Rη11)
3] = 0
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Remark 5. It is interesting to notice that in these two examples the Hessian surface

HE is turned to be algebraic. In general case of Cv-const (see the constitutive

equation (7.3)) this is not so anymore.

5.3. Zero curvature condition. Equality of the determinant in the numerator of

the formula for curvature to zero is equivalent to the linear dependency of radius

vector HessE(x) of a point of the surface and two tangent vectors ri(x).

Endow the space Sym(2, R) with the canonical metric

(A, B) = TR(AB),

induced by the Killing metric on the Lie algebra sl(2, R), [14]. Choosing the orthonor-

mal basis:

X1 =

(

1 0

0 0

)

, X2 =
1√
2

(

0 1

1 0

)

, X3 =

(

0 0

0 1

)

,

allows to identify Sym(2, R) with R3

(

a b

b c

)

←→







a√
2b

c







and to introduce scalar product with the standard Euclidian scalar product < , >.

Then, the determinant in the numerator of formula (5.2) takes the form

23/2 < HessE(x1, x2),N(x1, x2) >, (5.8)

where N is the normal vector to the surface HE introduced above. Thus, we can

use alternatively picture of surface HE in Sym(2, R) and the standard Euclidian

R3-representation of this surface and other objects. We will use standard cartesian

coordinates (x, y, z) in R3.

Let Φ(x, y, z) = 0 be an equation of a surface Σ2 in R3 ≡ Sym(2, R) satisfying, on

some open set D ⊂ Σ where the surface Σ is smooth (nonsingular), to the condition

above: radius vector r̄ at each point of the surface is parallel (and belongs) to the

tangent plane of the surface at this point. This means, in particular, that tangent

planes at each point of the surface pass through the origin. Since radius vector r̄ at
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the point of the surface Φ(x, y, z) = 0 belongs to the tangent plane of the surface at

that point, then
∂

∂t
Φ(r̄ + tr̄) = 0

at each point of the domain D. From this it follows that

r̄ · ∇Φ = 0

on the subset D of the surface Φ(x, y, z) = 0. In other words, radial vector field

q = r̄ · ∇ is tangent to the surface Φ(x, y, z) = 0. Therefore, subset D of this surface

is invariant under the (local) action of the group of dilations - phase flow of vector

field q.

Thus, in an open subset D where R = 0, surface HE(D) is conical and vice versa.

Consider now the projectivization P2(R) = P (Sym(2, R)) of the 3D vector space

Sym(2, R). Image of the conical surface HE(D) in this projective space is one-

dimensional and, near nonsingular points (on an open subset of this image) is a

smooth curve. In homogeneous coordinates (x, y, z) of P (Sym(2, R)), this curve is

(locally) given by an equation

L(x, y, z) = 0, (5.9)

with a homogeneous function L. This equation is also the equation of the surface

HE(D) ⊂ Sym(2, R) near almost all points.

Vice versa, if a surface in Sym(2, R) is given by a homogeneous equation of the

type (5.5), it is conical.

As a result we see that components of Hessian of function U must satisfy to the

following homogeneous (nonlinear in general) second order PDE

L(Ex1x1, Ex1x2, Ex2x2) = 0. (5.10)

These arguments prove the following:

Theorem 1. Let k = 2, and let E(x1, x2) be a smooth function. Following statements

are equivalent

(1) Weinhold metric ηE has zero scalar curvature on an open subset D ⊂ R2.

(2) Image of subset D under the Hessian mapping HessE : R2 → Sym2(2, R) is

a conical surface.
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(3) Function E satisfies to a homogeneous second order partial differential equa-

tion

L(Ex1x1, Ex1x2 , Ex2x2) = 0

on the open set D.

Consider in more details the case where the conical surface HE is a plane. This case

has no, as far as we know, a direct physical application but is interesting as allowing to

get the explicit necessary and sufficient condition on the thermodynamical potential

E to have zero scalar curvature R(ηE)).

In this case there is a constant vector γ ∈ Sym(2, R) such that radius vector

HessE(x) of the surface is orthogonal to γ at all points (x1, x2) ∈ D.

In these terms, condition of zero curvature above takes the form

γ1η11(x) + γ2η12(x) + γ3η22(x) = 0

for all x ∈ V . Vector γ is defined up to a multiplication by a nonzero factor.

Last equation can be rewritten as the 2nd order linear PDE for the function

U(x1, x2):

LU =

(

γ1
∂2

∂x1 2
+ γ2

∂2

∂x1x2
+ γ3

∂2

∂x2 2

)

U = 0. (5.11)

Linear nondegenerate transformation in the plane (x1, x2) transforms linear differen-

tial operator of the second order with constant coefficients L to one of three canonical

forms:

(1) If γ1γ3 − 1/4γ2
2 > 0, to the (elliptic) form

∆ =
∂2

∂u1 2
+

∂2

∂u2 2
.

(2) If γ1γ3 − 1/4γ2
2 = 0, to the (degenerate) form

D =
∂2

∂u1 2
+

∂2

∂u2 2
.

(3) If γ1γ3 − 1/4γ2
2 < 0, to the (hyperbolic) form

� =
∂2

∂u1 2
− ∂2

∂u2 2
.
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Correspondingly, solutions of equation (5.10) can be described as the composition

of an arbitrary solution of one of these three model equations with a linear non-

degenerate transformation in the plane (x1, x2).

This finishes the proof of the first part of the following theorem.

Theorem 2. For a thermodynamical system with two degrees of freedom and a con-

stitutive relation E = E(x1, x2) the following statements are equivalent:

(1) Scalar curvature R of the (Weinhold) metric η = ∂2E
∂xi∂xj equals zero in an open

set D ⊂ R2 and image of D under the Hessian mapping is the (part of) plane.

(2) Each point z ∈ D has a neighborhood W such that the generating function

E(x1, x2) satisfies to an equation

LE =

(

γ1
∂2

∂x1 2
+ γ2

∂2

∂x1x2
+ γ3

∂2

∂x2 2

)

E = 0. (5.12)

with some γ ∈ R3 and

(a) (elliptic case) If γ1γ3−1/4γ2
2 > 0, then E is the composition of a harmonic

function on R2 with a nondegenerate linear transformation of the plane

(x1, x2).

(b) (degenerate case) If γ1γ3 − 1/4γ2
2 = 0, then E is the composition of an

arbitrary function f(x1) of variable x1 with a nondegenerate linear trans-

formation of the plane (x1, x2).

(c) (hyperbolic case) If γ1γ3 − 1/4γ2
2 < 0, E is the composition of a function

of the form f(x1 + x2) + g(x1 − x2) with arbitrary functions f, g of one

variable with a nondegenerate linear transformation of the plane (x1, x2).

(3) Statement of part two is valid in the whole open connected set D with the same

vector γ.

Proof. To prove the last statement of Theorem 2, notice that, unless surface HE

degenerates to a straight line, E cannot satisfy to two equations with nonparallel

vectors γk. As a result, local statement of the theorem can be extended to the whole

connected set D with the same vector γ. �

5.4. Positive and negative scalar curvature - geometrical condition. Generi-

cally, the set of points (x1, x2) where R(ηE) = 0 represent the curve (possibly singular

i.e. consisting of isolated points) on the plane (x1, x2) - pre-image under the mapping
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HessE of the set - points that are singular for the mapping HE → P (Sym(2, R)) of

projectivization.

If at some point (x1, x2), R(x1, x2) 6= 0, then the sign of R(x1, x2) is invariant

under the relabelling of variables x1, namely, when we change y1 = x2, y2 = x1, in

the expression (5.2) for curvature, denominator is not changing while the two last

columns of the determinant of the matrix in the numerator are permuted. But at

the same time, first and last rows of the matrix in the numerator are permuted too

restoring the sign of the scalar curvature.

Definition 1. Let Σ2 be an oriented surface in R
3. We call the surface Σ2 (with the

normal N̄), radially convex (correspondingly, radially concave)) if r̄ · N̄ > 0 for

all r̄ ∈ Σ2 (correspondingly r̄ · N̄ < 0 for all r̄ ∈ Σ2).

Then, as the arguments above shows, the following statement is true,

Theorem 3. Let V ⊂ HE be an open subset of the surface HE. Following statements

are equivalent:

(1) R > 0 (correspondingly R < 0) for r̄ ∈ V ,

(2) Surface HE|V is radially convex (correspondingly radially concave).

5.5. Conformal equivalence of Weinhold and Ruppeiner metrics and the

curvatures. Recalling ([5, 18]) that thermodynamical metrics ηU and ηS are related

by contact transformations, generated by the mapping φ of canonical ”internal en-

ergy” chart (U, (T, S), (−P, V ), (µi, Ni)) to the entropy chart (S, (−T−1, U), (−p
T

, V ), (µi

T
, Ni)).

More specifically, we have, for the contact form in these two charts

φ∗ωS = τωU , τ = T−1, (5.13)

Correspondingly, equilibrium surface ΣU is mapped onto the corresponding surface

ΣS. For metrics ηU , ηS on these surfaces we have the following conformal equiv-

alence relation ([32, 19]:

φ∗ηS = τηU , τ = T−1, (5.14)

noticeably with the same conformal factor 1
T

as the contact form ω.
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Recall ([25], Ch.18) that if two metrics on a smooth manifold M are conformally

equivalent:

ḡ = e2σg, (5.15)

with some function σ ∈ C∞(M), then, their scalar curvatures are related by

e2σR(ḡ) = R(g)− 2(n− 1)S, (5.16)

where n is the dimension of the manifold M and S = gikSik, with

Sij = ∇g
jσi − σ,iσ,j +

1

2
gijg

klσ,kσ,l.

Thus after conformal transformation one get in the expression for scalar curvature

the additional term

S = gijSij = gij∇g
jσi − gijσ,iσ,j +

1

2
gijgijg

klσ,kσ,l = ∇g
jσ

j − ‖dσ‖2g +
n

2
‖dσ‖2g. (5.17)

First term on the right in the last part of this formula is the covariant divergence

with respect to the original metric g of the gradient (with respect to g) of function σ:

divg(∇gσ) = ∆gσ.

Thus,

S = ∆gσ +
n− 2

2
‖dσ‖2g.

For n = 2, the second term vanishes and we get for scalar curvatures the following

relation

e2σR(ḡ) = R(g)− 2(∆gσ). (5.18)

In our case above σ = −1
2
ln(T ), so we get relation between curvatures of Ruppeiner

ηS and Weinhold ηU (expressed in coordinates (S, V )):

R(ηS) = TR(ηU) + T∆gln(T ). (5.19)

It follows from this that scalar curvatures of both metrics are zero simultaneously if

and only if the logarithm of temperature ln(T ) is the harmonic function of (S, V ).
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6. Curvature of a general 2-D elementary system

In this section we study the scalar curvature of a general 2-dim elementary ther-

modynamical system.

We found in Section 3 the Weinhold metric of any two-dimensional elementary

system of entropy S and volume V to be, (3.14),([19]),:

ηU = (ηUij) =
1

Cv

(

T −Tα
k

−Tα
k

Cp

vk

)

Determinant of the tensor ηU (with respect to the standard Euclidian metric) is

det(ηUij) =
TCp

V kC2
v

− T 2α2

k2C2
v

=
T

kC2
v

(
Cp

V
− Tα2

k
) =

T

kC2
v

(
Cv

V
+

Tα2

k
− Tα2

k
) =

T

kV Cv

(6.1)

Using definition of k as above, we finally get

det(ηUij) = − T

Cv
(
∂p

∂V
)T (6.2)

Excluding T from being zero, the metric ηU is degenerate along the curve

(
∂p

∂V
)T = 0 (6.3)

which is usually presented in one of two forms: p = p(V ) or/and T = T (V ). The

critical triple point of the system is the extremum point of these functions.

Note that it is possible to write the isothermal compressibility in terms of the

determinant:

k =
T

V Cvdet(ηUij)
(6.4)

Remark 6. Determinant of our matrix ηUij is the denominator of the expression (5.2)

for the scalar curvature R for such a system. This implies that if det(ηUij)→ 0, then

R → ∞. Therefore, along this curve the Weinhold metric of the thermodynamical

phase space changes signature and its curvature is singular. As we will see, in the

example of the van der Waals gas, this is also the curve along which phase transition

occurs. Thus, this curve determines the boundary of the equilibria region Eq on the

constitutive surface ΣU .
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Remark: Speed of sound.

Let νi
sound and νa

sound respectively be the speed of sound in terms of isothermal and

adiabatic compressibility k and kS. It is known that kS = Cv

Cp
k. So, the speed of

sound in a thermodynamical system is given by

νa
sound =

√

vCpdet(ηUij)

Tρ
∝ 1

R
or

νi
sound =

√

vCvdet(ηUij)

Tρ
∝ 1

R

where R is the scalar curvature of the system.

In region where det(ηU) 6= 0 the inverse of ηUij is given by

ηij
U =

(

Cp

T
V α

V α kV

)

(6.5)

Let’s calculate now the third derivatives of the energy E. We get

η11,1 =
T

C2
v

(1− (
∂Cv

∂S
)v) (6.6)

η11,2 = − T

C2
v

(
α

k
+ (

∂Cv

∂V
)s) (6.7)

η12,2 =
1

k2C2
v

(−kTCv(
∂α

∂V
)s + Tkα(

∂Cv

∂V
)s + TCvα(

∂k

∂V
)s + Tα2) (6.8)

η22,2 =
1

k2C2
v

(2TCvα(
∂α

∂V
)s − Tα2(

∂Cv

∂V
)s −

Tα3

k
− kC2

v

V 2

−(
C2

v

V
+

2TCvα
2

k
)(

∂k

∂V
)s) (6.9)

Now, since η11,2 = η12,1 , where

η12,1 = − T

C2
v

(
α

k
(1− (

∂Cv

∂S
)v) +

Cv

k
(
∂α

∂S
)v −

Cvα

k2
(
∂k

∂S
)v) (6.10)
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we get the following

Lemma 2. Identity I.

(
∂Cv

∂V
)s +

α

k
(
∂Cv

∂S
)v =

Cv

k
(
∂α

∂S
)v −

Cvα

k2
(
∂k

∂S
)v (6.11)

Similarly, since η12,2 = η22,1, where

η22,1 =
1

k2C2
v

(Tα2(1− (
∂Cv

∂S
)v + 2TCvα(

∂α

∂S
)v −

2TCvα
2

k
(
∂k

∂S
)v −

C2
v

V
(
∂k

∂S
)v) (6.12)

we have

Lemma 3. Identity II

k(
∂

∂V
ln

k

α
)S = (

∂α

∂S
)v − (

α

k
+

Cv

TV α
)(

∂k

∂S
)v (6.13)

Now, for the components of the Ricci Curvature we have

R11 =
1

4
(((η21,1)

2−η11,1η21,2)η
11η22+(η21,1η21,2−η11,1η22,2)η

12η22+((η21,2)
2−η11,2η22,2)(η

22)2)

(6.14)

R12 = R21 =
1

4
((η11,1η21,2−(η21,1)

2)η11η12+(η11,1η22,2−η21,2η11,2)(η
12)2+(η11,2η22,2−(η21,2)

2)η12η22)

(6.15)

R22 =
1

4
((η21,1)

2−η22,1η11,1)(η
11)2+(η21,2η11,2−η11,1η22,2)η

11η12+((η21,2)
2−η12,1η22,2)η

11η22)

(6.16)

It is easy to show that

R11η
11 = R22η

22 (6.17)

and so, scalar curvature is given by,

R = 2(R11η
11 + R12η

12) (6.18)
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After some calculation, we get

R11 =
T 2

4C4
vdet(ηij)

[HG +
Cvα

k2
F (

TV α

k
F − J)] (6.19)

where

H = (
α

k
− Cv

V
+

Cp − Cv

α
(
∂α

∂V
)s −

Cp

k
(
∂k

∂V
)s + (

∂Cv

∂V
)s) (6.20)

G = (
∂Cv

∂V
)s +

α

k
(
∂Cv

∂S
)v (6.21)

F = k(
∂

∂V
ln

k

α
)S (6.22)

and

J = 1− (
∂Cv

∂S
)V (6.23)

Then,from the (1, 1) component of the Ricci Curvature we derive that

R12 = R21 = −α

k
R11 (6.24)

and

R22 =
Cp

TV k
R11 (6.25)

Therefore, Ricci tensor have the form

Rij = R11

(

1 −α
k

−α
k

Cp

TV k

)

=
Cv

T
ηijR11 (6.26)

Scalar curvature is equal to

R =
2Cv

T
R11 (6.27)

and using (6.19) we get the following result,

Theorem 4. Scalar curvature of a general two-dimensional elementary system is

given by

R =
T

2C3
vdet(ηij)

[HG +
Cvα

k2
F (

TV α

k
F − J)] (6.28)
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where

H = (
α

k
− Cv

V
+

Cp − Cv

α
(
∂α

∂V
)s −

Cp

k
(
∂k

∂V
)s + (

∂Cv

∂V
)s), (6.29)

G = (
∂Cv

∂V
)s +

α

k
(
∂Cv

∂S
)v, F = k(

∂

∂V
ln

k

α
)S (6.30)

and

J = 1− (
∂Cv

∂S
)v (6.31)

7. Case of constant Cv

Here we discuss the class of systems where Cv is constant - class where both the

ideal gas and van der Waals gas are included. In this case we can easily get the

general form of the constitutive law U = U(S, V ), calculations of the previous section

simplifies and we will be able to discuss curvature of metric ηU in more details.

Remark 7. Notice that if molar internal energy U is given as a function of volume

V and the temperature T , then the Helmholz equation

(
∂U

∂V
)T = T 2 ∂

∂T

( p

T

)

|V ,

leads (see [16], Ch. 6) to the formula

Cv = Cvideal
+

∫ V

∞

T

(

∂2p

∂T 2

)

V

dV.

relating the heat capacity of any 2TD-system to one for ideal or vdW gas. From this

formula it follows that, for a 2TD-system for which the integral above converges, heat

capacity Cv is constant if and only if
(

∂2p

∂T 2

)

V

= 0,

(i.e. when p is the linear function of T ).

Let us find possible constitutive laws S = S(T, V ), U = U(S, V ) for which Cv −
const. Recall that Cv = T ( ∂S

∂T
)V . Rewrite this as

∂S

∂T
=

Cv

T
,
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and integrate:

S = Cvln(T ) + f(V ), (7.1)

with arbitrary function f(V ).

On the other hand, T = ∂U
∂S

. Substituting this in the definition of Cv in the form
∂T
∂S

= T
Cv

, we get for U equation

∂2U

∂S2
− 1

Cv

∂U

∂S
= 0. (7.2)

Integrating once we get
∂U

∂S
=

U

Cv
+ g(V ),

with an arbitrary function g(V ). Setting f = f1 and g = f2 and solving this equation

we get the fundamental constitutive law in the form

U(S, V ) = f1(V )eS/Cv − Cvf2(V ), (7.3)

with arbitrary functions fi(V ).

Example 4. Case of the ideal gas is obtained here if we take f1 = V −
R

Cv , f2 = 0

since U = V −
R

Cv e
S

Cv with U0 = 0 and S0 = 0 .(see section 9).

Example 5. For the Van der Waals gas we take f1 = (V − b)−
R

Cv , f2 = a
CvV

since

U = (V − b)−
R

Cv e
S

Cv − a
V

with U0 = 0 and S0 = 0.(see section 10).

Taking derivatives by both variables and excluding S from these relations we find

the following state equation

p = −CvT
f ′

1(V )

f1(V )
+ Cvf

′

2(V ). (7.4)

Calculating derivative of (7.3) and denoting fi(V ) = fi for i=1,2, we get

(
∂U

∂S
)v =

f1

Cv

e
S

Cv , (
∂U

∂V
)s = f

′

1e
S

Cv − Cvf
′

2, (7.5)

η11 = (
∂2U

∂S2
)v =

f1

C2
v

e
S

Cv (7.6)

η12 = η21 = (
∂2U

∂S∂V
) =

f
′

1

Cv

e
S

Cv (7.7)
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η22 = (
∂2U

∂V 2
)s = f

′′

1 e
S

Cv − Cvf
′′

2 (7.8)

As a result we get the metric ηU in the form

ηUij =





f1

C2
v
e

S
Cv

f
′

1

Cv
e

S
Cv

f
′

1

Cv
e

S
Cv f

′′

1 e
S

Cv − Cvf
′′

2



 (7.9)

with the determinant

det ηij =
e

2S
Cv

C2
v

(f1f
′′

1 − (f
′

1)
2 − e

−S
Cv Cvf1f

′′

2 )

=
e

2S
Cv

C2
v

(f1f
′′

1 − (f
′

1)
2)− e

S
Cv

C2
v

f1f
′′

2 (7.10)

Consider, now, a special case of a constitutive relation (7.9) with the same f1 and

with f2 = 0(ideal gas), and mark this case with 0. For this case

det ηij,0 =
e

2S
Cv

C2
v

(f1f
′′

1 − (f
′

1)
2) (7.11)

This determinant is zero if and only if f1f
′′

1 − (f
′

1)
2 = 0, i.e. if f1 = c1e

c2V with

positive constants ci.

Now we have the important relation

Lemma 4.

det ηij,real
= det ηij,0 −

e
S

Cv

C2
v

f1f
′′

2 (7.12)

Calculate third derivatives of U of the form (6.3):

η11,1 =
f1

C3
v

e
S

Cv =
1

Cv
η11 (7.13)

η12,1 = η21,1 = η11,2 =
f

′

1

C2
v

e
S

Cv =
1

Cv
η12 (7.14)

η12,
2

= η21,
2

= η22,
1

=
f

′′

1

Cv

e
S

Cv =
1

Cv

η22 + f
′′

2 (7.15)



30 MANUEL SANTORO AND SERGE PRESTON

η22,2 = f
′′′

1 e
S

Cv − Cvf
′′′

2 (7.16)

Using these derivatives in formula (6.19) for the component R11 of the Ricci tensor

we get:

R11 =
e

S
Cv f1f

′′

2

4Cve
S

Cv (f1f
′′

1 − (f
′

1)
2 − e

−S
Cv Cvf1f

′′

2 )2
(f1f

′′

1 − (f
′

1)
2) (7.17)

which can be written as

R11 =
e

S
Cv f1f

′′

2

4C3
v

det ηij,0

(det ηij,real
)2

(7.18)

So, finally we get scalar curvature to be

R =
e

S
Cv f1f

′′

2

2TC2
v

det ηij,0

(det ηij,real
)2

=
Tf1f

′′

2 [f1f
′′

1 − (f
′

1)
2]

2[T (f1f
′′

1 − (f
′

1)
2)− f 2

1 f
′′

2 ]2
(7.19)

This leads to the following statement:

Proposition 1. Let Cv = const and let the internal energy U(S, V ) be given by the

fundamental constitutive relation

U(S, V ) = f1(V )eS/Cv − Cvf2(V ), (7.20)

then the curvature of Weinhold metric is zero in a domain D ⊂ R2,

R(ηU)|D = 0

if and only if one of three cases holds:

(1)

f1 = c1e
c2V ,

for some positive constants ci,

(2)

f2 = AV + B,

with some constants A, B, that includes the case of ideal gas.

(3)

f1(V ) = 0,

degenerate case.
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It is interesting to see how the scalar curvature is expressed, in the case Cv−const,

in terms of isothermal compressibility k. We calculate

η11,1 =
T

C2
v

=
1

Cv
η11, η11,2 = η12,1 = − Tα

C2
vk

=
1

Cv
η12, (7.21)

η12,2 = η22,1 =
1

k2C2
v

(α2T − C2
v

V
(
∂k

∂S
)v) =

1

T
((η12)

2 − T

V k2
(
∂k

∂S
)v), (7.22)

η22,2 =
1

k2C2
v

(2
C2

vα

V k
(
∂k

∂S
)v −

C2
v

V
(
∂k

∂V
)s −

Tα3

k
− kC2

v

V 2
). (7.23)

Moreover (6.15) reduces to the following

Lemma 5. Identity III

(
∂α

∂k
)v =

α

k
(7.24)

From which we also get that (6.13) becomes

α(
∂

∂V
ln

α

k
)S =

Cv

TV k
(
∂k

∂S
)v (7.25)

Proposition 2. Scalar curvature of metric ηU , in the case of a constant Cv, is given

by

R =
Cv

2Tk2
(
∂k

∂S
)v((

∂k

∂S
)v +

k

Cv

) =
Cv

2T

(

∂ln(k)

∂S v

)

×
(

∂ln(k)

∂S v
+

1

Cv

)

(7.26)

Proof. Since Cv is constant, we can use (6.22) and (7.25) to get

F = − Cv

TV α
(
∂k

∂S
)v (7.27)

Therefore, after some calculation and considering G = 0 and det(ηij) = T
kV Cv

, we

get (7.26). �

Corollary 1. Curvature R(ηU) is negative if and only if

− 1

Cv

<
∂ln(k)

∂S
|v < 0.
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8. Ideal Gas

Here we consider the ideal gas, the simplest model example of a TD system with

two degrees of freedom. For more detailed discussion of Weinhold metric(s) for ideal

gas in different representations we refer to [23]. Except its illustrative interest, ideal

gas will serve us as a reference point in the further study of curvature of metric ηE

for non-ideal gases.

Internal energy U of the ideal gas as a function of S, V and the mole number N

has the form

U = U0 + CV N

(

V

N

)−
R

Cv

e
1

CV
( S

N
−S0), (8.1)

with some reference constants U0, S0, see [16], Chapter 6. Other equations of state

are obtained from (8.1) in a standard way:

pV = NRT, U = CV NT, TS + µN = CP NT. (8.2)

We will take N = 1. Then it is known that

S = S0 + Cv lnU + R ln V

from which we can solve for U obtaining

U = U(S, V ) = U0 + CvV
−

R
Cv e

S−S0

Cv

Weinhold metric for an Ideal Gas is given by (3.14). Setting S0 = 0, we get

ηUij
=

1

Cv

(

T −p

−p Cpp
V

)

=
R

Cv
e

S
Cv





1
R
V −

R
Cv −V −

Cp

Cv

−V −
Cp

Cv CpV
−(1+

Cp

CV
)



 . (8.3)

In this case Cv and Cp are positive constants. From (5.5) we get

det(η) =
p

V C2
v

(TCp − pV ) =
pT

V Cv
=

R

Cv
e2 S

Cv V −2(
Cp

Cv
) > 0 (8.4)

which is always positive. Thus, Weinhold metric is positive definite on the con-

stitutive surface ΣU .
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Inverse of ηUij is given by

ηij
U =

(

Cp

T
V
T

V
T

V
p

)

(8.5)

Now, (6.6) through (6.9) become

η11,1 =
T

C2
v

, η11,2 = η12,1 = η21,1 = − p

C2
v

(8.6)

η22,1 = η12,2 = η21,2 =
pγ

vCv

, η22,2 = −(γ + 1)
pγ

v2
(8.7)

where γ = Cp

Cv
.

For the component R11 of the Ricci Tensor Rij of ideal gas we get

R11 = (R− Cp)
Cp

C4
v

+ (Cp + Cv −R)
Cp

C4
v

− Cp

C3
v

= 0. (8.8)

Using (6.26), we get the known result (see [23]):

Rij = 0 ∀i, j = 1, 2. (8.9)

and, therefore,

R(ηU) = 0 (8.10)

Zero curvature of Weinhold metric (as well as of Ruppeiner metric based on en-

tropy [30]) is positively correlated with the known suggestion to use thermodynamical

curvature as the characteristic of interactions on the microscopic level of media de-

scription.

9. Van der Waals Gas

Let’s consider now a Van der Waals gas whose equation of state is given by

(p +
a

V 2
)(V − b) = RT, (9.1)
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where a and b are positive constants. This equation represents the behavior of real

gases more accurately than the ideal gas by introducing two additional positive con-

stants a and b characteristic (of molecule interaction in the gas and of the part of

the volume occupied by the molecules correspondingly, see [5]) of the particular gas

under consideration.

For the coefficients α and k we get

α =
RV 2

pV 3 − aV + 2ab
=

RV 2(V − b)

RTV 3 − 2a(V − b)2
(9.2)

and

k =
(V − b)V 2

pV 3 − aV + 2ab
=

V 2(V − b)2

RTV 3 − 2a(V − b)2
(9.3)

Therefore the relation between the coefficient of expansion and the isothermal com-

pressibility is given by α = R
(V −b)

k.

The entropy of VdW gas per one mole (N = 1) is given by,[16],

S = R ln (V − b)(U +
a

V
)

Cv
R

+ S0. (9.4)

The internal energy of Van der Waals gas as a function of S and V is obtained from

the last equation, namely

U = U0 + (V − b)−
R

Cv e
S

Cv − a

V
(9.5)

Then, the Weinhold metric of this gas is given by

ηUij =

(

T
Cv

− TR
(V −b)Cv

− TR
(V −b)Cv

( TR
(V −b)2

(1 + R
Cv

)− 2a
V 3 )

)

(9.6)

=

(

1
C2

v
e

S
Cv (V − b)−

R
Cv − R

C2
v
e

S
Cv (V − b)−(1+ R

Cv
)

− R
C2

v
e

S
Cv (V − b)−(1+ R

Cv
) R

C2
v
e

S
Cv (Cv + R)(V − b)−(2+ R

Cv
) − 2a

V 3

)

, (9.7)
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with Cv being constant. In the limit a → 0, b → 0 to the Ideal Gas we get exactly

the metric (8.3). The determinant is then given by

det(ηij) =
RT 2V 3 − 2aT (V − b)2

V 3Cv(V − b)2
=

T

V 3(V − b)Cv

(pV 3 − aV + 2ab) (9.8)

=
1

C2
v

e
S

Cv

(V − b)
R

Cv

[
Re

S
Cv

Cv(V − b)2+ R
Cv

− 2a

V 3
] (9.9)

which is zero along the curve γη

S = S(V ) = Cv[(2 +
R

Cv
) ln (V − b) + ln (

2aCv

RV 3
)] (9.10)

or, when pV 3 − aV + 2ab = 0, supposing of course that our system is at non-zero

temperature.

The determinant of the metric ηU is positive if entropy is large enough

S = S(V ) > Cv[(2 +
R

Cv
) ln (V − b) + ln (

2aCv

RV 3
)]

and negative if the opposite is true.

The inverse of tensor ηUij is given by

ηij
U =

(

(Cv

T
+ R2V 3

RTV 3−2a(V −b)2
) RV 3(V −b)

RTV 3−2a(V −b)2

RV 3(V −b)
RTV 3−2a(V −b)2

V 3(V −b)2

RTV 3−2a(V −b)2

)

(9.11)

.

Now, we calculate the third derivatives of the energy U. We get

η11,1 =
T

C2
v

; η12,1 = η21,1 = η11,2 = − RT

(V − b)C2
v

; (9.12)

η12,2 = η21,2 = η22,1 =
RT

Cv(V − b)2
(1 +

R

Cv
); η22,2 =

6a

V 4
− RT

(V − b)3
(1 +

R

Cv
)(2 +

R

Cv
)

(9.13)

Then, the component R11 of the Ricci Tensor is given by

R11 =
aRTV 3(V − b)2

2C2
v (RTV 3 − 2a(V − b)2)2

(9.14)
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From (6.27), we get the scalar curvature R(ηU) of the Weinhold metric to be

R(ηU) =
aRV 3

Cv(pV 3 − aV + 2ab)2
(9.15)

The scalar curvature goes to zero as a → 0 or as V → ∞. Since the quantity a
V 2

characterizes the attractive interaction within a system, scalar curvature seems to be

a measure of the attraction among particles while its dependence on the parameter b

is more quantitative then qualitative. On the other hand, as we have seen before if

det(ηij) → 0 then R → ∞ i.e. at the curve γη of the signature change, scalar

curvature R has the singularity inverse quadratic by the distance to the

curve.

Remark 8. It is interesting to note that, combining (7.15) and Example 5 (see Sec.

7), we get

(
∂η22

∂S
)v =

η22

Cv

+
2a

CvV 3
, (9.16)

.

So, it seems reasonable to consider the quantity

(
∂η22

∂S
)v −

η22

Cv
= δ(S, V ) (9.17)

as a measure of non-interaction of the system as long as Cv is constant. In the case

of the Ideal Gas, δ(S, V ) = 0. For the Van der Waals Gas, δ(S, V ) = 2a
CvV 3 . notice

that the parameter b is not present in δ(S, V ). In the limit where a→ 0, with a fixed

volume, Van der Waals gas becomes Ideal even if b 6= 0.

Let’s now look at what happens when R → ∞. As we discussed earlier, when R

goes to infinity, the system is described by a degeneracy curves γη on which phase

transition seems to happen. Now, since the critical point is obtained whenever both

(∂p
∂v

)T = 0 and (∂2p
∂v2 )T = 0 are satisfied, it is evident that, the idea of phase transition

is given by the degeneracy of the Weinhold metric. What follows are the derivations

of the critical point for the Van der Waals gas through the zero-determinant of the

metric matrix ηUij. Indeed, considering the denominator of R being zero, we obtain:

pV 3 − aV + 2ab = 0 (9.18)
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Then, we get the curve γη in the p-V plane

p(V ) = (V − 2b)
a

V 3
(9.19)

Taking derivative with respect to V, we get

dp

dV
= (3b− V )

2a

V 4
(9.20)

which is zero when

Vc = V = 3b (9.21)

This is exactly the critical value of the volume for the van der Waals gas. Now,

substituting this value back into the equation (9.22), we get the critical value for

pressure

pc = p =
a

27b2
(9.22)

Naturally, if we consider the denominator of the scalar curvature with T and V in

it and set it to zero we get the degeneracy curve γη in the T-V plane

T (V ) =
2a(V − b)2

RV 3
(9.23)

and since Vc = 3b then we get,

Tc =
8a

27bR
(9.24)

Consider, now, pr = p
pc

, Vr = V
Vc

and Tr = T
Tc

.

Then

pr =
3Vr − 2

V 3
r

(9.25)

and

Tr =
(3Vr − 1)2

4V 3
r

(9.26)

Naturally, the two curves intersect at the critical point.
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Solving (9.21) for Vr, we have the three roots of volume in terms of pressure, namely

V 1
r (p) =

((3)
1

2 sign(p) cos(h(p))− sin(h(p))

p
1

2

(9.27)

V 2
r (p) = −((3)

1

2 sign(p) cos(h(p))− sin(h(p))

p
1

2

(9.28)

V 3
r (p) =

2h(p)

p
1

2

(9.29)

where h(p) = arcsin(p
1

2 )
3

.

Now, solving (9.26) for Vr, we similarly get the roots of volume in terms of tem-

perature, namely

V 1
r (T ) = ((3f(T ))

1

2 cos(
g(T )

3
)

1

4|T | + (f(T )
1

2 sin(
g(T )

3
)

1

4T
+

3

4T
) (9.30)

V 2
r (T ) = −((3f(T ))

1

2 cos(
g(T )

3
)

1

4|T | + (f(T )
1

2 sin(
g(T )

3
)

1

4T
+

3

4T
) (9.31)

V 3
r (T ) =

3

4T
− (f(T )

1

2 sin(
g(T )

3
)

1

2T
) (9.32)

where f(T ) = 9− 8T and

g(T ) = arctan(
(8T 2 − 36T + 27)(−f(T ))

3

2

8(f(T )
3

2 )(T 3(T − 1))
1

2

) (9.33)

Therefore, substituting these last three solutions in (9.28), we get

pi
r(T ) =

3V i
r (T )− 2

(V i
r (T ))3

(9.34)

with i = 1, 2, 3.

In particular, for i = 3, we get the interesting coexistence curve(Fig.1),

Considering i = 1, 2, instead, we get (Fig.2,3)

Now, differentiating (9.28) and (9.29), then we get

dpr

dTr

=
8

3Vr − 1
(9.35)



CURVATURE OF THE WEINHOLD METRIC 39

Figure 1. Solution 1: Coexistence curve

Figure 2. Solution 2

Figure 3. Solution 3
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The important conclusion we gain by looking at the Van der Waals gas is that

the singular locus Sing(ηU) of Weinhold metric carries important information on

the critical behavior of the one component system. In particular, along the curve

Sing(ηU) = γη phase transitions happens and exterma of coordinate functions along

this curve corresponds to the critical points of the system.

10. Berthelot’s gas

Consider Berthelot’s gas (see [16], Chapter 6) whose conventional equation of state

is

(p +
a

TV 2
)(V − b) = RT, (10.1)

where a and b are positive constants having the same meaning as for the Van der

Waals gas. For this gas, Cv is not constant. In particular,

(Cv)Bert = (Cv)ideal +
2a

V T 2
(10.2)

Moreover,

k =
TV 2(V − b)2

RT 2V 3 − 2a(V − b)2
=

TV 2(V − b)

pTV 3 − aV + 2ab
(10.3)

and

α =
(V − b)(RT 2V 2 + a(V − b))

T (RT 2V 3 − 2a(V − b)2)
=

(V − b)(pTV 2 + 2a)

T (pTV 3 − aV + 2ab)
(10.4)

Therefore the relation between k and α is given by

α

k
=

R

V − b
+

a

T 2V 2
(10.5)

It is also interesting to look at the rates of change of the heat capacity at constant

volume. In particular, denoting (Cv)Bert by Cv and considering (10.2), we get

(
∂Cv

∂S
)v = − 4a

CvV T 2
(10.6)
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and

(
∂Cv

∂V
)s =

2a

CvV T 2
(

2a

T 2V 2
+

2R

(V − b)
− Cv

V
) (10.7)

The Weinhold metric ηij of the Berthelot’s gas given by

ηUij =

(

T
Cv

− 1
Cv

( RT
(V −b)

+ a
TV 2 )

− 1
Cv

( RT
(V −b)

+ a
TV 2 )

RT 2V 3
−2a(V −b)2

TV 3(V −b)2
+ T

Cv
( R

(V −b)
+ a

T 2V 2 )
2

)

(10.8)

The determinant is then given by

det (ηUij) =
RT 2V 3 − 2a(V − b)2

CvV 3(V − b)2
(10.9)

If we set the determinant of ηUij equal zero we get the singular locus Sing(ηU) of

the Bertellot gas

RT 2V 3 − 2a(V − b)2 = 2p2V 3(V − b)2 − aR(V − 2b)2 = 0 (10.10)

and solving the first equation for T we get

T (V ) = ±(V − b)

V
(

2a

RV
)

1

2 (10.11)

Taking derivative with respect to V, we get

dT

dV
= ± 1

2V
(

2a

RV
)

1

2 (2− 3(V − b)

V
) (10.12)

which is zero when

Vc = V = 3b (10.13)

considering a 6= 0. This implies that

Tc = ±(
8a

27Rb
)

1

2 (10.14)

and, therefore, since p(V ) = aV −2ab
TV 3 whenever det (ηUij) = 0, we have

pc = ±(
aR

216b3
)

1

2 (10.15)
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We could normalize both p and T as function of V. Then

p2
r =

4(3Vr − 2)2

V 3
r (3Vr − 1)

(10.16)

and

T 2
r =

3Vr − 1

4V 3
r

(10.17)

Let’s calculate the inverse matrix. We have

ηij
U =

(

Cv

T
+ RV (RT 2V 2+a(V −b))

T (RT 2V 3−2a(V −b)2)
+ a(V −b)(RT 2V 2+a(V −b))

V T 3(RT 2V 3−2a(V −b)2)
V (V −b)(RT 2V 2+a(V −b))

T (RT 2V 3−2a(V −b)2)
V (V −b)(RT 2V 2+a(V −b))

T (RT 2V 3−2a(V −b)2)
TV 3(V −b)2

RT 2V 3−2a(V −b)2

)

(10.18)

It is convenient, now, to calculate the third derivatives without grouping, in par-

ticular,

η11,1 =
T

C2
v

+
4a

V TC3
v

(10.19)

η12,1 = η21,1 = η11,2 = − R

(V − b)
η11,1 +

a

C2
vTV 2

(1 + (
∂Cv

∂S
)v) (10.20)

η12,2 = η21,2 = η22,1 =
R2

(V − b)2
η11,1 −

2aR

C2
vTV 2(V − b)

(1 + (
∂Cv

∂S
)v) +

RT

Cv(V − b)2

+
a

CvTV 3
[

4a2

C2
vT

4V 2
− 3a

CvV T 2
+ 2] (10.21)

η22,2 = − R3

(V − b)3
η11,1+

α

k
[

12a2R

T 3V 3C3
v (V − b)

+
7aR

TV 2C2
v (V − b)

+
2aR

TC2
v

− 6a

CvTV 3
− 3RT

Cv(V − b)2
]

− 2RT

(V − b)2
[

3aR

T 2V 2C2
v

− 1

(V − b)
]− a

TV 4
[

4a3

C3
vT

6V 3
− 5a2

C2
vT

4V 2
+ 6] (10.22)

Then, from (6.27), we get the scalar curvature to be

R(ηU) = 2a
(T 4V 4RCvP (Cv, V ) + T 2V 3RaQ(Cv, V ) + a2W (Cv, V ))

C3
vT

3V (RT 2V 3 − 2a(V − b)2)2
, (10.23)
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where

P (Cv, V ) = (2Cv − R)V 2 − 3CvbV + Cvb
2

Q(Cv, V ) = −RV 5 + 3RbV 4 − 3Rb2V 3 + (Rb3 + Cv + R)V 2 − b(b− 2V )(R + Cv)

and

W (Cv, V ) = −RV 7+4RbV 6−6Rb2V 5+(2Cv+R+4Rb3)V 4−(8Cv+3R+Rb3)bV 3+(12Cv+3R)b2V 2−

−(8Cv + R)b3V + 2Cvb
4

Notice that, as for VdW gas, as a goes to zero then scalar curvature R goes to zero

as well, while it is not true in the case of b being zero.

11. Geodesic equations

We found the Christoffel coefficients for a general 2-dimensional thermodynamical

phase space to be

Γk
ij =

1

2

∑

m

ηij,mηkm (11.1)

Now, the geodesic equations in a general form are given by

d2xk

dt2
+ Γk

ij

dxi

dt

dxj

dt
= 0 (11.2)

For our case in which E = U(S, V ), the geodesic equations are of the form

d2S

dt2
+ Γ1

11(
dS

dt
)2 + 2Γ1

12

dS

dt

dV

dt
+ Γ1

22(
dV

dt
)2 = 0 (11.3)

d2V

dt2
+ Γ2

11(
dS

dt
)2 + 2Γ2

12

dS

dt

dV

dt
+ Γ2

22(
dV

dt
)2 = 0 (11.4)

Let’s look at the Christoffel coefficients in more details.

Γ1
11 =

1

2
(η11,1η

11 + η11,2η
12) Γ2

11 =
1

2
(η11,1η

21 + η11,2η
22) (11.5)
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Γ1
12 = Γ1

21 =
1

2
(η12,1η

11 + η12,2η
12) Γ2

12 = Γ2
21 =

1

2
(η12,1η

21 + η12,2η
22) (11.6)

Γ1
22 =

1

2
(η22,1η

11 + η22,2η
12) Γ2

22 =
1

2
(η22,1η

21 + η22,2η
22) (11.7)

Considering the following relations:

F = k(
∂

∂V
ln

k

α
)S (11.8)

J = 1− (
∂Cv

∂S
)V (11.9)

D =
α

k
+ (

∂Cv

∂V
)s (11.10)

and

B =
α

V
+ (

∂α

∂V
)s (11.11)

then, we can calculate the coefficients explicitly,

Γ1
11 =

1

2
[
Cp

C2
v

J − TV α

C2
v

D] (11.12)

Γ1
12 = Γ1

21 = −1

2
[

1

Cv
D +

TV α2

k2Cv
F ] (11.13)

Γ1
22 =

1

2
[

α

kCv
D − TV α3

k3Cv
F − 1

k
B] (11.14)

Γ2
11 =

1

2
[
TV α

C2
v

J − TV k

C2
v

D] (11.15)

Γ2
12 = Γ2

21 =
1

2
[
TV α

kCv
F ] (11.16)

Γ2
22 = −1

2
[
Cp

kCv
F +

1

α
B] (11.17)

Therefore we have the following proposition:
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Proposition 3. The geodesic equations for a general two dimensional thermodynam-

ical system are given by

d2S

dt2
+

1

2
[
Cp

C2
v

J−TV α

C2
v

D](
dS

dt
)2−[

1

Cv
D+

TV α2

k2Cv
F ]

dS

dt

dV

dt
+

1

2
[

α

kCv
D−TV α3

k3Cv
F−1

k
B](

dV

dt
)2 = 0

(11.18)

d2V

dt2
+

1

2
[
TV α

C2
v

J−TV k

C2
v

D](
dS

dt
)2+[

TV α

kCv
F ]

dS

dt

dV

dt
−1

2
[
Cp

kCv
F+

1

α
B](

dV

dt
)2 = 0 (11.19)

In the case in which Cv is constant, then B and F are the same while the other

relations become

G = 0 (11.20)

J = 1 (11.21)

D =
α

k
(11.22)

So, now, our Christoffel’s coefficients become

Γ1
11 =

1

2Cv
(11.23)

Γ1
12 = Γ1

21 = −1

2
[

α

kCv
+

TV α2

k2Cv
F ] (11.24)

Γ1
22 =

1

2
[

α2

k2Cv

− TV α3

k3Cv

F − 1

k
B] (11.25)

Γ2
11 = 0 (11.26)

Γ2
12 = Γ2

21 =
1

2
[
TV α

kCv
F ] (11.27)

Γ2
22 = −1

2
[
Cp

kCv
F +

1

α
B] (11.28)

So, finally, our geodesic equation with Cv constant are given by
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Lemma 6.

d2S

dt2
+

1

2Cv
(
dS

dt
)2 − [

α

kCv
+

TV α2

k2Cv
F ]

dS

dt

dV

dt
+

1

2
[

α2

k2Cv
− TV α3

k3Cv
F − 1

k
B](

dV

dt
)2 = 0

(11.29)

d2V

dt2
+ [

TV α

kCv

F ]
dS

dt

dV

dt
− 1

2
[
Cp

kCv

F +
1

α
B](

dV

dt
)2 = 0 (11.30)

12. Conclusion

In this work we have studied the scalar (Gauss) curvature of Weinhold metric for

a thermodynamical systems with two thermodynamical degrees of freedom. We get

criteria for the positivity, nullity and negativity of scalar curvature in terms of Hes-

sian surface of the thermodynamical potential, found scalar curvature for a general

thermodynamical systems with two thermodynamical degrees of freedom. We have

studied relation of the signature change of Weinhold metric and the scalar curvature

to the curves of phase transition of these systems. As examples we have considered

the systems with the heat capacity Cv constant, in particular the Ideal and Van der

Waals gases, and the Berthelot gas. Results obtained here suggest a kind of dual-

ity relation between the constitutive surface of a 2D thermodynamical system in the

Gibbs space (Space with coordinates (U, S, V ) in the case of internal energy) and its

Hessian surface. Relations between the convexity properties of both surfaces, curva-

ture and signature of thermodynamical metric, extremal properties of corresponding

thermodynamical potential and the phase transitions in the thermodynamical system

present interesting and, in our opinion, highly promising direction of the future work.
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