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CURVATURE PINCHING FOR THREE-DIMENSIONAL MINIMAL
SUBMANIFOLDS IN A SPHERE

YI-BING SHEN

(Communicated by Jonathan M. Rosenberg)

Abstract. In this paper, some pinching theorems for the Ricci curvature and

the scalar curvature of three-dimensional compact minimal submanifolds in a

sphere are given.

1. Introduction

Let Mn be an «-dimensional compact orientable minimal submanifold in

a unit (« +/?)-sphere Sn+P . In [2] it was proved that if n > 4 and the Ricci

curvature of M" is larger than « - 2, then Mn is totally geodesic in Sn+P .

Recently, the corresponding problem for the three-dimensional case was treated

in [4]. The aim of this paper is to improve the result of [4] so that the theorem

of [2] is valid for the case « = 3 . Precisely, we prove

Theorem 1. Let M3 be a three-dimensional compact minimal submanifold in

a unit sphere S3+p . If the Ricci curvature of M3 is larger than 1 then M3 is

totally geodesic in S3+p .

Moreover, for lower codimension, we have

Theorem 2. Let M3 be a compact orientable minimal submanifold in S3+p with

p < 2. If the Ricci curvature of M3 is not less than (5p - 4)/(4p - 2) then M3
is totally geodesic in S3+p .

In the same way as in the proof of Theorem 1, we also obtain

Theorem 3. Let M3 be a compact minimal submanifold in S3+p . If the scalar

curvature of M3 is larger than 4 then M3 is totally geodesic.

Throughout this paper, all the manifolds dealt with are smooth and con-

nected.

2. Preliminaries

In this section we state some notations and basic formulas. More details can

be found in [4]. Let M3 be a three-dimensional compact Riemannian manifold
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that is minimally immersed in a unit (3 + p)-sphere S3+p . We choose a local

field of orthonormal frames <?■, ... , e^+p in S3+p such that, restricted to M3,

the vectors <?■ , e2, and e^ are tangent to M3. Unless otherwise stated, we agree

on the following ranges of indices: I < i, j, k, ■ ■■ <3; 4 < a, ß, ■ ■ ■ <3+p .

The second fundamental form of M3 in S3+p is

(2.1) o = ^2 hfjío'® œJ ® ea,
<*,i ,j

of which the length square is ||cr||2 = J2a ■ j(hfj)2.

Let UM —y M3 be the unit tangent bundle over M3. We define a function

/: UM -* R by

I
(2.2) f(u) = \\a(u, u)\\2 = £    E*?7M'V

for u = X], u'ei € C/A7. Since UM is compact, / attains its maximum at a

vector in UM. Suppose that this vector is v e UMXo for some point xn e M3.

By taking <?» = v at xq and letting

(2.3) fci-E*fi*&'

from the maximality of / we can choose vectors <?2 and e¡ at Xo such that

(cf. [4])

(2.4) f(v) = bu= max{||a(W,W)||2},
u€UM

(2.5) fy = U       (if]),
(2.6) 2j2(h°k)2 + bkk-bn<0       (k¿l),

a

(2-7) E(Ani)2 + EAnAn^°

at the point xn .

The Gauss equation of M3 is

(2.8) Kim = S'kSji - Su&jk + E(Af¿A;°/ - h%h%),
a

from which and the minimality it follows that

(2.9) R,j = 2ôjj - 2_^ Kk^Jk
a,k

and

(2.10) 7? = 6-||(7||2,

where 7?,^/, R¡j, and 7? denote the curvature tensor, the Ricci tensor, and

the scalar curvature of M3, respectively.

Summing up for i in (2.7) and using (2.5) and the Ricci identity, we easily

get [4]

(2.11) 0>3./» + 2 JT bkk{hfk)2-2f(v) Y, (Af*)*'- 5>**)2 -mbu
a,k¿\ a,k¿\ Ml

at the point xq .
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Finally, as is well known, the curvature tensor of a three-dimensional mani-

fold can be expressed as

(2.12) Ri]kl = ôikRji - ôuRjk + ônRik - ôjkRit - \R(oiko¡i - ôuôjk).

3. Proofs of Theorems 1 and 3

We restrict ourselves to the point xn where the function / defined by (2.2)

attains its maximum. Then, from (2.3) and (2.4) one can easily see that

(3.1) (bkk)2<h2(hnA hl(hkk)2)<(bn)2

for k t¿ 1 , from which and the three-dimensional minimality it follows that

(3.2) Z>22<0,        ¿>33<0,        5>«)2< (EM   =(M2-
mi        Wi   y

From (2.3) and (2.9) we have

(3.3) -  ^(«^)2 = 7?11-2 + ö11.

a,Ml

Substituting (3.3) into (2.11) and using (3.2), one can obtain

(3.4)

0>3f(v) + 2 Y bkk(halk)2 + 2f(v)(Rn-2 + bn)-^bkk)2-f(v)bu
a,Ml M-

= -f(v) + 2 Y bkk(haxk)2 + 2f(v)Rn+f(v)bu-Y.^k)2
a,k^\ Ml

> -f(v) + 2 Y bkk(h°k)2 + 2f(v)Ru.
a,Ml

On the other hand, by (3.2), (2.6), and (3.1), we have respectively

(3.5) J] Att(ASk)2>ÍE*fc*(*ii-A*fc) = -¿E(A«)2
a,Ml Ml

and

(3.6) 53 bkk(haxk)2 > -f(v) 53 (h«k)2 = f(v)(Rn -2 + bn).
a,Ml a,Ml

Introducing (3.5) and (3.6) into (3.4), we get

(3.7)   0> -f(v) + 2f(v)Rii+f(v)(Ru-2) + (èn)2-E(^)2
Ml

>3f(v)(Rn-i:

Thus, if the Ricci curvature of M3 is larger than 1 then (3.7) implies that

f(v) = 0, i.e., ||<t||2 vanishes identically. This proves Theorem 1.
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In the similar manner, it follows from (2.11), (3.5), (3.6), and (3.1) that

0>3/(«)+ I   Y bkk(h°k)2-2f(v) 53 (h«k)2
\q,M1 a,Ml

(3-8) + ( 53 bkk(h°k)2 - Y(bkk)2 - (bnY
\o,Mi Ml

>3/(t0-3/(f0 53 (ha2k)2-\f(v)bu-\Y^)2
a,Ml Ml

>|/(^)|2-E(^)2-2 E(%y
( a, ' a, Ml

>|/(V){2-||ct||2(x0)}.

Thus, if the scalar curvature of M3 is larger than 4, i.e., \\a\\2 < 2, then

(3.8) implies that f(v) = 0, i.e., M3 is totally geodesic. Theorem 3 is proved.

4. Proof of Theorem 2

For a compact orientable minimal submanifold M3 in S3+p, a standard

calculation gives (cf. [4, Lemma 1.2])

(4.1)   / i2 53 krjfàRitjk^hnKkjà+^M'-mn'iio,
Jw [  ctj.k.l p J

where * 1 denotes the volume element of M3.

Let Q(x) be the function assigns to each point x of M3 the minimum

of the Ricci curvatures of M3 at that point x. For each a, let a, be the

eigenvalues of the matrix (hfj). Then, by (2.12) we have

53   hfj(haklRluk + hf,Rlkjk) = 53(a2 - a,àj)(Ru + Rn - \R)
i,j,k,l i4i

= 3 53 a27?,; - \R 53 a2 > (3Q - \R) 5>&)2 >
i i i,j

from which and (4.1) it follows that

/   ||(7||2(6ö-JR + i||(7||2-3ri<0,
Jm}

i.e., by (2.10),

(4.2) / 3 ||cr||2 Uq - 9 + ^-||<7||2) '1 < 0.

On the other hand, the well-known Simons inequality [5] for « = 3 is

(4.3) j^ \\a\\2 (—^-j - ||(7||2) *1 <-jMi \\Vo\\2*l < 0,
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from which and (4.2) we get

(4'4> LM2(Q-^)'ii0-

Thus, if Q > (5p - 4)/(4p - 2), then (4.4) implies that ||er||2 = 0 identically.
We now consider the case that Q = (5p - 4)/(4p - 2). Then, (4.2) becomes

which together with (4.3) gives that Vcr — 0, and hence, since \\a\\2 is con-

stant, ||ct||2 = 0 or 3p/(2p - 1). Since the Ricci curvature of M3 is positive

everywhere, M3 cannot be the Clifford hypersurface. Now, Theorem 2 follows

directly from the well-known result of [1] for « = 3 .

Remark. It is clear that the pinching values given here are not the best possible.

In general, for each pair («, p), there is a best pinching value for minimal M"

in Sn+P. Really, in [2] the pinching constant « - 2 for the Ricci curvature

is not sharp for « ^ 4 and p ^ 1 . In [3], it was proved that there exists an

isometric minimal immersion of SjL into S9, where S3,% denotes the 3-sphere

with constant sectional curvature l/8. On the other hand, it is well known that

every three-dimensional Einstein manifold is of constant curvature. So, perhaps

one can surmise that the best possible pinching value of the Ricci curvature for

minimal M3 in S3+p would be \ . However, we have not demonstrated it.
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