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CURVATURE PINCHING THEOREM FOR MINIMAL

SURFACES WITH CONSTANT KAEHLER ANGLE

IN COMPLEX PROJECTIVE SPACES, II
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Abstract. We consider minimal surfaces with constant Kaehler angle in complex 

projective spaces. By using J-invariant higher order osculating spaces and pinched 
Gaussian curvature, we give characterization theorems for these minimal surfaces.

This is a continuation of our paper [12]. For each integer p with 0•¬p•¬n, it is 

known that there exists a full isometric minimal immersion •¬n ,P: S2(Kn,p)•¨Pn(C) of a 

2-dimensional sphere of constant Gaussian curvature Kn ,p=4ƒÏ/(n+2p(n-p)) into the 

complex projective n-space with the Fubini-Study metric of constant holomorphic 

sectional curvature 4ƒÏ(cf. [1] and [2]). In [12], using J-invariant first order osculating 

spaces, we gave characterization theorems for immersions •¬n,P for p•¬3. The purpose 

of this paper is to generalize these to the case of •¬n,P for p•¬4 (cf. Section 4). To study 

the problem, we use J-invariant higher order osculating spaces to find some scalars 

defined globally on M, and calculate their Laplacians (cf. Section 6). In this paper, we 

use the same terminology and notation as in [12] unless otherwise stated.

4. J-invariant higher order osculating spaces and the main theorems. Let X be a 

Kaehler manifold of complex dimension n of constant holomorphic sectional curvature 

4ƒÏ and x:M•¨X an isometric immersion of an oriented 2-dimensional Riemannian 

manifold M into X. Let C(s) be a smooth curve in M through a point p=C(0) of 

M with parameter s proportional to the arc length. We denote by DkC/dsk the k-th 

covariant derivative along C(s) in X. Let Tp(k)(C) be a subspace of Tp(X) spanned by 

{DC/ds, JDC/ds,...,DkC/dsk,JDkC/dsk} at s=0, where J is the complex structure of 

X. Tp(k) is defined to be the subspace spanned by all Tp(k)(C) for curves C lying on M 

through p and is called the J-invariant k-th osculating space of M at p. We then have 

•¬. Let Op(k+1) be the orthogonal complement of Tp(k) in 

Tp(k+1) and Npm the orthogonal complement of Tp(m) in Tp(X), so that we have 

Tp(k+1)=Tp(k)+Op(k+1) and Tp(X)=Tp(m)+Npm. We put Op1=Tp(1). Note that we have
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0•¬dim(Opk)•¬4 and, if dim(Opk)=0 for some k, then we have dim(Opr)=0 for all r•¬k.

A point p•¸M is called a J-regular point of order m if the J-invariant m-th osculating 

space Tp'(m) exists in a neighbourhood U of p and if each Op'k is of dimension 4 for any 

p'•¸U and k=1, 2,..., m. We denote 0k=•¾p•¸M Opk. We say that x(M) is a J-regular 

manifold if each Ok is of constant rank on M for any k. Note that rank(O1)=4 if and 

only if x is neither holomorphic nor anti-holomorphic.

Let p•¸M be a J-regular point of order m. Then we have an orthogonal 

decomposition of Tp(X) such that Tp(X)=Op1+¥¥¥+Opm+Npm. Now we define a 

J-canonical basis in Opk as follows: Let {e1,e2} be an orthonormal local frame of M 

and {e4k-3, e4k-2} an orthonormal system of normal vector fields along M such that 

it belongs to Opk at p (k•¬2). We put cos(ƒ¿)=<Je1,e2> and Cos(ƒ¿k)=<Je4k -3,e4k-2>. 

Then we have cos(ƒ¿)•‚•}1,cos(ƒ¿k)•‚•}1. Hence we can define local normal vector fields 

e4k-1, e4k along M such that {e4k-3, e4k-2, e4k-1, e4k} at p is an orthonormal basis of 

Opk in the following way:

•¬ cosec•¬

•¬ cosec•¬

By using them, we define local vector fields e4k-3
, e4k-2, e4k-1 and e4k, k=1,2,..., m, 

in a neighbourhood of ƒÏ as follows:

(4.1)•¬

•¬•¬•¬

where ƒ¿1=ƒ¿. Then {e4k -3, e4k-2, e4k-1, e4k} at p is a J-canonical basis of Opk, that is, 

an orthonormal basis of Opk with Je4k-3=e4k -2 and Je4k-1=e4k. Let {e4m+1,...,en} 

be an orthonormal system of normal vector fields along M such that it is a J-canonical 

basis of Npm at p.

We denote the coframe fields dual to these frames by {ƒÆ4k-3, ƒÆ4k-2, ƒÆ4k-1, ƒÆ4k}, 
{ƒÆ4k-3,ƒÆ4k-2,ƒÆ4k-1,ƒÆ4k} and {ƒÆ4m+1,...,ƒÆn}, respectively. For ƒ¿•¬2m+1, we put 

e2ƒ¿-1=e2ƒ¿-1 and e2ƒ¿=e2ƒ¿, so that we have ƒÆ2ƒ¿-1=ƒÆ2ƒ¿-1 and ƒÆ2ƒ¿=ƒÆ2ƒ¿. If we put 

•¬ where i2=-1, then {•¬ƒ¿} is a local field of unitary coframes on X and 

we have, by (4.1):
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(4.2)

•¬•¬•¬

Now we introduce inductively the higher order fundamental forms {hƒÉ
ki1¥¥¥ik} of M 

in X. Let {ƒÆAB} be the Riemannian connection form of X with respect to the canonical 

1-form {ƒÆA}, and {•¬} the unitary connection form of X with respect to {wƒ¿}. We shall 

use the following ranges of indices:

(4.3)

•¬ ,

•¬ ,

•¬•¬

We denote the restriction of forms on X to M by the same letters. We then have

(4.4)

•¬•¬•¬

By the exterior differentiation of(4.4) and the Riemannian structure equations, we get

(4.5)

•¬•¬•¬

From these we get inductively the quantities hƒÉki1¥¥¥ik in the following way:

(4.6)

•¬•¬•¬

Then they have the following properties:
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(4.7)

(1) hƒÉki1¥¥¥ik are symmetric in the set of indices i1,i2,¥¥¥,ik,

(2) ‡”ihƒÉki1¥¥¥i¥¥¥i¥¥¥ik=0,

(3) •¬

The vector-valued symmetric k-form ‡”hƒÉ
ki1¥¥¥ikƒÆi1¥¥¥ƒÆikeƒÉk is called the k-th fundamental 

form of M in X.

We introduce the following notation for brevity: 1[k]=1¥¥¥1 (k times) and put 

V1(k)=‡”ƒÉ
khƒÉk1[k-1]1eƒÉk, V2(k)=‡”ƒÉkhƒÉk1[k-1]2eƒÉk' which are elements of Opk at p for 

k=2,3,..., m. Define also V1(m+1)=‡”ƒ¿hƒ¿1[m]1eƒ¿ and V2(m+1)=‡”ƒ¿hƒ¿1[m]2eƒ¿, which are 

called the (m+l)-th normal vectors at a J-regular point of order m.
Now we can state the main theorems in this paper.

THEOREM 4.1. Let X be a Kaehler manifold of complex dimension n of positive 

constant holomorphic sectional curvature 4ƒÏ and M a complete connected Riemannian 

2-manifold. Let x:M•¨X be a full isometric minimal immersion with constant Kaehler 

angle ƒ¿, which is neither holomorphic, anti-holomorphic nor totally real. Suppose there 

exists an integer m such that each point of M is J-regular of order (m+1) and that the 

Gaussian curvature K of M satisfies K•¬2{1-(2m+3)cos(ƒ¿)}ƒÏ/(m+1)(m+2)>0 on M. 

Then K is constant on M. Moreover, x is locally congruent to •¬n
,m+l•

THEOREM 4.2. Let x:M•¨X be as in Theorem 4.1, and s=[n/2-1]-1([a] means 

the integer part of a). Further assume that M is a J-regular manifold. If K satisfies 

K•¬2{1-(2s+3)cos(ƒ¿)}ƒÏ/(s+1)(s+2)•¬0, then K is constant on M so that x is locally 

congruent to either •¬.

This generalizes Theorem 3.10 in [12].

5. A J-regular point of order m. In this section, adopting the normalized k-th 

normal vectors as a basis of each Opk for k=2,...
,m, we calculate the (m+1)-th 

fundamental forms and the (m+1)-th normal vectors in terms of some complex-valued 

smooth functions defined locally on M and study their properties. In [12], we have 

treated the case m=2. Let M be a complete connected 2-dimensional Riemannian 

manifold such that the Gaussian curvature K of M satisfies K•¬ƒÂ>0 for some positive 

number ƒÂ and x: M•¨X an isometric minimal immersion with constant Kaehler angle ƒ¿

. We assume that every point p of M is J-regular of order m (•¬3) and that the k-th 

normal vectors V1(k) and V2(k) are perpendicular to each other and of the same non-zero 

length for k=3,...,m. Normalizing these vectors
, we adopt them as a basis of Opk, so 

that we have •¬ and cos(ƒ¿k)=<Je
4k-3, e4k-2>•‚•}1

 on M. Then with respect to these frames we assume
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(5.1)
h4k-3 ,1[k-1]1=-h4k-2,1[k-1]2,

h4k-3
,1[k-1]2=h4k-2,1[k-1]1=htk,1[k-1]1=htk,1[k-1]2=0, (tk•¬4k-1).

We put

(5.2)

•¬•¬•¬

where c2k-1 ,2[k-1] and others are real-valued smooth functions locally defined on M. 
We assume that they satisfy the following:

(5.3)

•¬•¬•¬•¬•¬•¬•¬•¬•¬

By (5.3), we ha

ve•¬•¬

for k=3,...,m-1,

(5.4)

•¬•¬•¬•¬

Now, we calculate the (m+1)-th fundamental forms and the (m+1)-th normal
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vectors. Using the third equality in (4.6) and (5.1), we have, for ƒÉ•¬2m+1,

(5.5)

•¬•¬

By taking the exterior derivatives of (4.2) and using the structure equation of X, we 

get, for k=1,2,...,m:

(5.6)

•¬•¬•¬•¬

Substituting (5.1), (5.2), the eighth and the ninth equalities in (5.3) and (5.6) into (5.5), 
we have

(5.7)

•¬•¬•¬•¬

By taking the exterior derivatives of the sixth through the ninth equalities in (5.3), we 
have

(5.8)

•¬•¬

with •¬

•¬
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•¬

with •¬

where c2m
,2[m], cƒÉ,2[m],a2m-1,1[m] and aƒÉ,1[m] are complex-valued smooth functions defined 

locally on M.

PROPOSITION 5.1. Let M be a complete connected 2-dimensional Riemannian 

manifold such that the Gaussian curvature K of M satisfies K•¬ƒÂ>0 for some positive 

number ƒÂ. Let x:M•¨X be an isometric minimal immersion with constant Kaehler angle ƒ¿

, which is neither holomorphic, anti-holomorphic nor totally real. We assume that each 

point of M is J-regular of order m, and all formulas in Section 5 are valid on M. Then 

we have •¬.

PROOF. Using the first equality in (5.8), we have

•¬,

•¬•¬•¬

Combining the third equality in (5.4) with the above equality, we have

•¬•¬

By assumption, we see that M is compact and a2m ,1[m-2]•‚0 on M. Hence, using the 

above equality, we have C2m ,2[m-1]=0. q.e.d.

The (m+1)-th normal vectors V1(m+1) and V2(m+1) of Npm at p are given as follows: 

For ƒÉ•¬2m+1

•¬•¬

We Put •¬•¬ and cos

•¬, •¬. Then, using (5.7), we have 

•¬ at P•¸ƒ¶(m+l) and cos(ƒ¿m+l)=•¬

. Also, using the third equality in (4.7), we see 

that Op(m+1) is spanned by V1(m+1), V2(m+2), JV1(m+1) and JV2(m+1) at p. Hence, if we
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assume that each point of M is J-regular of order (m+1), then ƒ¶(m+1)=•¬ and 

cos(ƒ¿(m+1)•‚0,•}1.

Next we define H(m+1)2ƒÉ-1 and H(m+1)2ƒÉ by

•¬

and we put

•¬

Using (5.7), we have H(m+1)=•¬• Note that|H(m+l)|2 is a globally 

defined smooth function on M. The geometric meaning of|H(m+1)|2 follows from the 

identity •¬.

PROPOSITION 5.2. In addition to the assumption in Proposition 5.1, we assume that 
each point of M is J-regular of order (m+1). Then we have H(m+1)=0 on M.

PROOF. Using Proposition 5.1 and (5.8), we have

(5.9)

•¬•¬

from which we have H(m+1)=0 q .e.d.

LEMMA 5.3.

•¬•¬•¬•¬

PROOF. Using Proposition 5.1 and the second equality in (5.8), we have

•¬

which implies
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•¬•¬•¬

By a direct calculation of •¬ we get the first formula of Lemma 5 .3. 

In a similar way, by the fourth equality in (5 .8), we can prove the formula for 

•¬. q.e.d.

6. Proofs of Theorems. We assume that p•¸M is a J-regular point of order 

(m+1). By Proposition 5.2, we have that V1(m+1) and V2(m+1) are perpendicular to each 

other and of the same length. Normalizing these vectors we adopt them as a basis of 

Op'(m+1) in a neighbourhood of p, so that we have •¬ and 

•¬ and cos•¬. With respect to these 

new frames, we have

(6.1)
h4m+1

,1[m]1=-h4m+2,1[m]2(•‚0),

h4m+1
,1[m]2=h4m+2,1[m]1=hƒÉ,1[m]1=hƒÉ,1[m]2=0, (ƒÉ•¬4m+3).

Substituting (6.1) into (5.5), we have

(6.2)

•¬•¬•¬•¬•¬•¬

On the other hand, by taking the exterior derivatives of (4.2) for k=1,2,..., (m+1) 
and using the structure equations for X, we have, for k, l=1,2,...,(m+1),

•¬

=cos•¬

+sin•¬
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•¬•¬

-sin•¬

(6.3)

•¬•¬•¬•¬•¬

-sin•¬

In the first and second equalities in (2.2) and the eighth and ninth equalities in (5.3) 

we put k=m. Then we have h4m-3
,1[m]=-sec(ƒ¿m/2)c2m-1,2[m-2]=-cosec(ƒ¿m/2)a2m,1[m-2], 

c 2m-1,2[m-2]w2m-1,ƒÉ=cƒÉ,2[m-1]ƒÓ and a2m,1[m-2]w2m,ƒÉ=aƒÉ,1[m-1]ƒÓ for ƒÉ2•¬m+1, re-

spectively. Substituting these equalities and (6.3) into (6.2), we get

c os•¬

+sin•¬cos•¬-sin•¬

(6.4)

-sin•¬+cos•¬
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sin•¬

+c os•¬

•¬•¬

Solving the above equations, we have

•¬•¬•¬

Moreover, since H(m+1)=0, we see that c2m+1 ,2[m-1] is real-valued and c2m+2,2[m-1]=0. 
Summarizing these results, we have

(6.5)

•¬•¬•¬•¬

Now substituting (6.5) into the eighth and ninth equalities in (5.3), we have

(6.6)

•¬•¬•¬

Moreover, by (5.8), we have

(6.7)•¬•¬•¬•¬
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•¬•¬

Hence, (6.5), (6.6), (6.7) and Lemma 5.3 show that (5.2), (5.3) and (5.4) are valid for 
k=(m+1).

We define smooth functions on M by

(6.8)

•¬

Note that these functions are scalar invariants of x, which can be seen in a way similar 

to that in [12, p. 372]. Using (5.2) and (5.3), we get •¬
, where Ak 

satisfies •¬ for k=3,...,m and A2=c3
,2. Hence, 

using (5.4) and Lemma 5.3, we have:

LEMMA 6.1.

(6.9)

•¬•¬

(6.10)

•¬•¬

Note that (6.10) coinsides with (3.8) in [12] for m=2.
Now we give the proofs of the main theorems.

PROOF OF THEOREM 4.1. By (6.10) and the assumption, •¬ is a 

non-zero subharmonic function on a compact manifold M, which is constant on M. 

This shows that K=2{1-(2m+3) cos(ƒ¿)}ƒÏ/(m+1)(m+2). Hence, by Ohnita's theorem 

[10], we get Theorem 4.1. q.e.d.

COROLLARY 6.2. Let x: M•¨X be as in Theorem 4.1. If M is a J-regular manifold 

and the Gaussian curvature K satisfies 2{1-(2m+1)cos(ƒ¿)}/m(m+1)>K•¬2{1-(2m+

3)cos(ƒ¿)}ƒÏ/(m+1)(m+2)•¬0 on M, then we have K=2{1-(2m+3)cos(ƒ¿)}ƒÏ/(m+

1)(m+2).

PROOF. By the J-regularity of M and the assumption, we have •¬ 

on M. Hence, each point of M is J-regular of order (m+1). By Theorem 4.1, we are 

done. q .e.d.

Proof of THEOREM 4.2. We may assume that each point of M is J-regular of order 

s. If •¬ at a point p of M, then we get •¬ on M . Hence, 

each point of M is J-regular of order (s+1). By Theorem 4.1, we see that x is locally
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congruent to •¬ on M, then, by (6.9), we see that x is locally 

congruent to •¬ q.e.d.
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