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CURVATURE PROPERTIES OF RIEMANNIAN METRICS OF

THE FORM Sgf +H g ON THE TANGENT BUNDLE OVER A

RIEMANNIAN MANIFOLD (M, g)

AYDIN GEZER, LOKMAN BİLEN, CAGRI KARAMAN, AND MURAT ALTUNBAS

(Communicated by Levent KULA )

Abstract. In this paper, we define a special new family of metrics which
rescale the horizontal part by a nonzero differentiable function on the tangent
bundle over a Riemannian manifold. We investigate curvature properties of the
Levi-Civita connection and another metric connection of the new Riemannian

metric.

1. Introduction

The research in the topic of differential geometry of tangent bundles over Rie-
mannian manifolds has begun with S. Sasaki. In his original paper [17] of 1958,
he constructed a Riemannian metric Sg on the tangent bundle TM of a Riemann-
ian manifold (M, g), which depends closely on the base metric g. Although the
Sasaki metric is naturally defined, it was shown in many papers that the Sasaki
metric presents a kind of rigidity. In [10], O. Kowalski proved that if the Sasaki
metric Sg is locally symmetric, then the base metric g is flat and therefore Sg is
also flat. In [12], E. Musso and F. Tricerri demonstrated an extreme rigidity of
Sg in the following sense: if (TM, Sg) is of constant scalar curvature, then (M, g)
is flat. They also defined a new Riemannian metric gCG on the tangent bundle
TM which they called the Cheeger Gromoll metric. Given a Riemannian metric g
on a differentiable manifold M , there are well known classical examples of metrics
on the tangent bundle TM which can be constructed from a Riemannian metric
g, namely the Sasaki metric, the horizontal lift and the vertical lift. The three
classical constructions of metrics on tangent bundles are given as follows:

(a) The Sasaki metric Sg is a (positive definite) Riemannian metric on the tan-
gent bundle TM which is derived from the given Riemannian metric on M as
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follows:

Sg
(
HX,H Y

)
= g (X,Y )

Sg
(
HX,V Y

)
= Sg

(
V X,H Y

)
= 0

Sg
(
V X,V Y

)
= g (X,Y )

for all X,Y ∈ ℑ1
0(M).

(b) The horizontal lift Hg of g is a pseudo-Riemannian metric on the tangent
bundle TM with signature (n, n) which is given by

Hg
(
HX,H Y

)
= 0,

Hg
(
HX,V Y

)
= Hg

(
V X,H Y

)
= g (X,Y ) ,

Hg
(
V X,V Y

)
= 0

for all X,Y ∈ ℑ1
0(M).

(c) The vertical lift V g of g is a degenerate metric of rank n on the tangent
bundle TM which is given by

V g
(
HX,H Y

)
= 0

V g
(
HX,V Y

)
= V g

(
V X,H Y

)
= 0

V g
(
V X,V Y

)
= g (X,Y )

for all X,Y ∈ ℑ1
0(M).

Another classical construction is the complete lift of a tensor field to the tangent
bundle. It is well known that the complete lift Cg of a Riemannian metric g coincides
with the horizontal lift Hg given above. A ”nonclassical” example is the Cheeger-
Gromoll metric gCG on the tangent bundle TM . Other metrics on the tangent
bundle TM can be constructed by using the three classical lifts Sg, Hg and V g of
the metric g (for example, see [7, 19]).

V. Oproiu and his collaborators constructed natural metrics on the tangent bun-
dles of Riemannian manifolds possessing interesting geometric properties ([13, 14,
15, 16]). All the preceding metrics belong to a wide class of the so-called g-natural
metrics on the tangent bundle, initially classified by O. Kowalski and M. Sekizawa
[11] and fully characterized by M.T.K Abbassi and M. Sarih [1, 2, 3] (see also [9]
for other presentation of the basic result from [11] and for more details about the
concept of naturality).

In [20](see also [21, 22], B. V. Zayatuev introduced a Riemannian metric Sg on
the tangent bundle TM given by

Sgf
(
HX,H Y

)
= fg (X,Y ) ,

Sgf
(
HX,V Y

)
= Sgf

(
V X,H Y

)
= 0,

Sgf
(
V X,V Y

)
= g (X,Y ) ,

where f > 0, f ∈ C∞(M) (see also, [5, 18]). For f = 1, it follows that Sgf =S g,
i.e. the metric Sgf is a generalization of the Sasaki metric Sg. For the rescaled
Sasaki type metric on the cotangent bundle, see [6].

Our purpose is to study some properties of a special new family of metrics on
the tangent bundle constructed from the base metric, and generated by positive

functions on M, which the metric is in the form f G̃ = Sgf+
Hg. The paper can

be considered as a contribution in the topic, considering for study a special new
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family of metrics on the tangent bundle. It is worth mentioning that a metric from
this new family is g-natural only if the generating function is constant. So the
considered family is far from being a subfamily of the class of g-natural metrics,
and its study could be of interest in some sense.

The present paper is organized as follows: In section 2, we review some intro-
ductory materials concerning with the tangent bundle TM over an n-dimensional
Riemannian manifold M and also introduce the adapted frame in the tangent bun-

dle TM . In section 3, we present a Riemannian metric of the form f G̃ = Sgf+
Hg

defined by

f G̃
(
HX,H Y

)
= fg (X,Y )

f G̃
(
HX,V Y

)
= f G̃

(
V X,H Y

)
= g (X,Y )

f G̃
(
V X,V Y

)
= g (X,Y )

for all X,Y ∈ ℑ1
0(M), where f > 1, f ∈ C∞(M) and compute the Christoffel

symbols of the Levi-Civita connection f ∇̃ of f G̃ with respect to the adapted frame.

In section 4 and 5, we compute all kinds of curvatures of the metric f G̃ with respect
to the adapted frame and give some geometric results concerning them. In section

5, we give conditions for which the metric f G̃ is locally conformally flat. Section 6

deals with another metric connection with torsion of the metric f G̃.
Throughout this paper, all manifolds, tensor fields and connections are always

assumed to be differentiable of class C∞. Also, we denote by ℑp
q(M) the set of

all tensor fields of type (p, q) on M , and by ℑp
q(TM) the corresponding set on the

tangent bundle TM .

2. Preliminaries

2.1. The tangent bundle. Let TM be the tangent bundle over an n-dimensional
Riemannian manifold (M, g), and π be the natural projection π : TM → M . Let
the manifold M be covered by a system of coordinate neighborhoods (U, xi), where
(xi), i = 1, ..., n is a local coordinate system defined in the neighborhood U . Let
(yi) be the Cartesian coordinates in each tangent space TPM at P ∈ M with
respect to the natural basis

{
∂

∂xi |P
}
, where P is an arbitrary point in U with

coordinates (xi). Then we can introduce local coordinates (xi, yi) on the open set
π−1 (U) ⊂ TM . We call such coordinates as induced coordinates on π−1 (U) from
(U, xi). The projection π is represented by (xi, yi) → (xi). The indices I, J, ... run
from 1 to 2n, while i, j, ... run from n+ 1 to 2n. Summation over repeated indices
is always implied.

Let X = Xi ∂
∂xi be the local expression in U of a vector field X on M . Then

the vertical lift V X and the horizontal lift HX of X are given, with respect to the
induced coordinates, by

(2.1) V X = Xi∂i,

and

(2.2) HX = Xi∂i − ysΓi
skX

k∂i,

where ∂i =
∂

∂xi , ∂i =
∂

∂yi and Γi
jk are the coefficients of the Levi-Civita connection

∇ of g.
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Explicit expressions for the Lie bracket [, ] of TM are given by Dombrowski in
[4]. The bracket operation of vertical and horizontal vector fields is given by the
formulas

(2.3)


[
HX,H Y

]
= H [X,Y ]−V (R(X,Y )u)[

HX,V Y
]
= V (∇XY )[

V X,V Y
]
= 0

for all vector fields X and Y on M , where R is the Riemannian curvature of g
defined by R (X,Y ) = [∇X ,∇Y ]−∇[X,Y ] (for details, see [19]).

2.2. The adapted frame. We insert the adapted frame which allows the tensor
calculus to be efficiently done in TM. With the connection ∇ of g on M , we can
introduce adapted frames on each induced coordinate neighborhood π−1(U) of TM .

In each local chart U ⊂ M , we write X(j) =
∂

∂xj
, j = 1, ..., n. Then from (2.1) and

(2.2), we see that these vector fields have, respectively, local expressions

HX(j) = δhj ∂h + (−ysΓh
sj)∂h

V X(j) = δhj ∂h

with respect to the natural frame
{
∂h, ∂h

}
, where δhj denotes the Kronecker delta.

These 2n vector fields are linearly independent and they generate the horizontal
distribution of ∇g and the vertical distribution of TM , respectively. We call the
set
{
HX(j),

V X(j)

}
the frame adapted to the connection ∇ of g in π−1(U) ⊂ TM .

By denoting

Ej = HX(j),(2.4)

Ej = V X(j),

we can write the adapted frame as {Eβ} =
{
Ej , Ej

}
.

Using (2.1), (2.2) and (2.4), we have

(2.5) V X =

(
0
Xh

)
=

(
0
Xjδhj

)
= Xj

(
0
δhj

)
= XjEj ,

and

(2.6) HX =

(
Xjδhj

−XjΓh
sjy

s

)
= Xj

(
δhj
−Γh

sjy
s

)
= XjEj

with respect to the adapted frame {Eβ} (see [19]).

3. The Riemannian metric and its Levi-Civita connection

Let (M, g) be a Riemannian manifold. A Riemannian metric f G̃ is defined on
TM by the following three equations

f G̃(HX,HY ) = fg(X,Y ),(3.1)
f G̃(HX, V Y ) = f G̃(V X,HY ) = g(X,Y ),
f G̃(V X, V Y ) = g(X,Y )

for all X, Y ∈ ℑ1
0(M), where f > 1 and f ∈ C∞(M).
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From the equations (3.1), by virtue of (2.5) and (2.6), The metric f G̃ and its in-

verse f G̃−1 respectively have the following components with respect to the adapted
frame {Eβ}:

(3.2) f G̃ = (f G̃αβ) =

(
fgij gij
gij gij

)
and

(3.3) f G̃−1 = (f G̃αβ) =

(
1

f−1g
ij − 1

f−1g
ij

− 1
f−1g

ij f
f−1g

ij

)
.

We now consider local 1-forms ωλ in π−1(U) defined by ωλ = Ãλ
Bdx

B , where

(3.4) A−1 = Ãλ
B =

(
Ãh

j Ãh
j̄

Ãh̄
j Ãh̄

j̄

)
=

(
δhj 0

ysΓh
sj δhj

)
is the inverse matrix of the matrix

(3.5) A = A A
β =

(
A h

j

A h̄
j

A h
j̄

A h̄
j̄

)
=

(
δhj 0

−ysΓh
sj δhj

)
of the transformation Eβ = A A

β ∂A. We easily see that the set {ωλ} is the coframe

dual to the adapted frame {Eβ}, e.i. ωλ(Eβ) = Ãλ
BA

B
β = δλβ .

Since the adapted frame field {Eβ} is non-holonomic, we put

[Eα, Eβ ] = Ω γ
αβ Eγ

from which we have

Ω α
γβ = (EγA

A
β − EβA

A
γ )Ãα

A.

According to (2.4), (3.4) and (3.5), the components of non-holonomic object Ω α
γβ

are given by

(3.6)

{
Ω k

ij
= −Ω k

ji
= Γk

ji

Ω k
ij = −Ω k

ji = −y
s
R k

ijs

all the others being zero, where R k
ijs are local components of the Riemannian

curvature tensor R of the Riemannian manifold (M, g).

Let f ∇̃ be the Levi-Civita connection of the Riemannian metric f G̃. Putting
f ∇̃EαEβ = f Γ̃γ

αβEγ , from the equation f ∇̃X̃ Ỹ −f ∇̃Ỹ X̃ =
[
X̃, Ỹ

]
, ∀X̃, Ỹ ∈

ℑ1
0(TM), we have

(3.7) f Γ̃α
γβ −f Γ̃α

βγ = Ω α
γβ .

The equation (f ∇̃
X̃

f G̃)(Ỹ , Z̃) = 0, ∀X̃, Ỹ , Z̃ ∈ ℑ1
0(TM) has the form

(3.8) Eα
f G̃γβ − f Γ̃ε f

δγ G̃εβ − f Γ̃ε
δβ

f G̃γε = 0

with respect to the adapted frame {Eβ}. Thus we have from (3.7) and (3.8)

(3.9) f Γ̃α
βγ =

1

2
f G̃αε(Eβ

f G̃εγ +Eγ
f G̃βε −Eε

f G̃βγ) +
1

2
(Ω α

βγ +Ωα
βγ +Ωα

γβ),
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where Ωα
γβ = f G̃αε f G̃δβΩ

δ
εγ , f G̃αε are the contravariant components of the metric

f G̃ with respect to the adapted frame.
Taking account of (3.3), (3.6) and (3.9), for various types of indices, we find the

following relations

(3.10)

f Γ̃k
ij = Γk

ij +
1

2(f−1)y
p(R k

pij +R k
pji ) + 1

2(f−1)
fAk

ij
f Γ̃k

ij
= 1

2(f−1)y
pR k

pij

f Γ̃k
ij
= 1

2(f−1)y
pR k

pji

f Γ̃k
ij = − 1

2(f−1)
fAk

ij − 1
2y

pR k
ijp − 1

2(f−1)y
p(R k

pij +R k
pji )

f Γ̃k
ij
= − 1

2(f−1)y
pR k

pij

f Γ̃k
ij
= Γk

ij − 1
2(f−1)y

pR k
pji

f Γ̃k
ij
= 0

f Γ̃k
ij
= 0

with respect to the adapted frame, where fAk
ij is a tensor field of type (1, 2) defined

by fAk
ij = (fiδ

k
j + fjδ

k
i − fk

. gji), fi = ∂if .

4. The Riemannian curvature tensor

The Riemannian curvature tensor R of the connection ∇ is obtained from the
well-known formula

R (X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

for allX,Y ∈ ℑ1
0(M). With respect to the adapted frame {Eβ}, we write f ∇̃EαEβ =

f Γ̃γ
αβEγ , where

f Γ̃γ
αβ denote the Levi-Civita connection constructed by f G̃. Then

the Riemannian curvature tensor f R̃ has the components

f R̃ σ
αβγ = Eα

f Γ̃σ
βγ − Eβ

f Γ̃σ
αγ + f Γ̃σ

αϵ
f Γ̃ϵ

βγ − f Γ̃σ
βϵ

f Γ̃ϵ
αγ − Ω ϵ

αβ
f Γ̃σ

ϵγ .

From (3.6) and (3.10), we obtain the components of the Riemannian curvature

tensor f R̃ of the metric f G̃ as follows:

f R̃ k
mij

= 0,
f R̃ k

mij
= 0,

f R̃ k
mij

= 1
f−1R

k
mij + 1

4(f−1)2
ypys(R k

pmh R h
sij −R k

pih R h
smj ),

f R̃ k
mij

= − 1
f−1R

k
mij − 1

4(f−1)2
ypys(R k

pmh R h
sij −R k

pih R h
smj ),

f R̃ k
mij

= 1
2(f−1)R

k
mji + 1

4(f−1)2
ypysR k

pmhR
h

sji ,
f R̃ k

mij
= − 1

2(f−1)R
k

mji − 1
4(f−1)2

ypysR k
pmhR

h
sji ,
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(4.1)
f R̃ k

mij
= − 1

2(f−1)R
k

ijm − 1
4(f−1)2

ypysR k
pih R h

sjm ,
f R̃ k

mij
= 1

2(f−1)R
k

ijm + 1
4(f−1)2

ypysR k
pih R h

sjm ,
f R̃ k

mij = − 1
2R

k
ijm − 1

2(f−1) (R
k

mij +R k
mji ) +

1
2(f−1)y

p∇iR
k

pmj

− 1
4(f−1)2

ypys[R k
pmh(R

h
sij +R h

sji )−R h
smj (R

k
pih + (f − 1)R k

ihp )]

− 1
4(f−1)2

yp[2fiR
k

pmj +R k
pmh

fA
h
ij−R h

pmj
fA

k
ih],

f R̃ k
mij = 1

2(f−1) (R
k

mij +R k
mji )− 1

2(f−1)y
p∇iR

k
pmj

+ 1
4(f−1)2

ypys[R k
pmh(R

h
sij +R h

sji )−R h
smjR

k
pih ]

+ 1
4(f−1)2

yp[2fiR
k

pmj +R k
pmh

fA
h
ij−R h

pmj
fA

k
ih],

f R̃ k
mij

= 1
2R

k
mji + 1

2(f−1) (R
k

imj +R k
ijm )− 1

2(f−1)y
p∇mR k

pij

− 1
4(f−1)2

ypys[R h
sij ((f − 1)R k

mhp +R k
pmh)−R k

pih (R h
smj +R h

sjm )]

+ 1
4(f−1)2

yp[2fmR k
pij − (R h

pij
fA

k
mh−R k

pih
fA

h
mj)],

f R̃ k
mij

= − 1
2(f−1) (R

k
imj +R k

ijm ) + 1
2(f−1)y

p∇mR k
pij

+ 1
4(f−1)2

yp[−2fmR k
pij +R h

pij
fA

k
mh−R k

pih
fA

h
mj ]

− 1
4(f−1)2

ypys[R k
pih (R h

smj +R h
sjm )−R h

sij R k
pmh]

f R̃ k
mij

= 1
2(f−1)y

p(∇mR k
pji −∇iR

k
pjm) + 1

4(f−1)2
ypys(R h

sji R k
pmh −R h

sjmR k
pih )

+ 1
4(f−1)2

yp[2fiR
k

pjm − 2fmR k
pji +R h

pji
fA

k
mh−R h

pjm
fA

k
ih],

f R̃ k
mij = 1

2y
p(∇iR

k
mjp −∇mR k

ijp ) + 1
2(f−1)y

p[∇i(R
k

pmj +R k
pjm)

−∇m(R k
pij +R k

pji )] + 1
4(f−1)2 y

p[2fm(R k
pij +R k

pji )

−2fi(R
k

pmj +R k
pjm) + (R h

pmj +R h
pjm)fA

k
ih − (R h

pij +R h
pji )fA

k
mh

+R k
pih

fA
h
mj −R k

pmh
fA

h
ij + (f − 1)(R k

ihp
fA

h
mj −R k

mhp
fA

h
ij)]

+ 1
4(f−1)2 y

pys[R k
pih (R h

smj +R h
sjm )−R k

pmh(R
h

sij +R h
sji )

+(f − 1)(R k
ihp (R h

smj +R h
sjm )−R k

mhp(R
h

sij +R h
sji )

+R k
phmR h

ijs −R k
phi R

h
mjs − 2R h

mis R
k

phj )]

+ 1
4(f−1)2 [2fm

fA
k
ij−2fi

fA
k
mj+

fAk
ih

fAh
mj − fAk

mh
fAh

ij

+ 2(f − 1)(∇i
fA

k
mj −∇m

fA
k
ij)],

f R̃ k
mij

= R k
mij + 1

2(f−1)y
p(∇iR

k
pjm −∇mR k

pji ) + 1
4(f−1)2

yp[2fmR k
pji − 2fiR

k
pjm

−R h
pji

fAk
mh +R h

pjm
fAk

ih] +
1

4(f−1)2
ypys[(f − 1)R k

ihp R h
sjm +R k

phi R
h

sjm

−(f − 1)R k
mhpR

h
sji −Rk

pmhR
h

sji ]
f R̃ k

mij = R k
mij + 1

2(f−1)y
p[∇m(R k

pij +R k
pji )−∇i(R

k
pmj +R k

pjm)]

+ 1
4(f−1)2

yp[−2fm(R k
pij +R k

pji ) + 2fi(R
k

pmj +R k
pjm ) + (R h

pij +R h
pji )fAk

mh

−(R h
pmj +R h

pjm )fAk
ih +R k

pmh
fAh

ij −R k
pih

fAh
mj ]

+ 1
4(f−1)2

ypys[R k
pmh(R

h
sij +R h

sji )− (f − 1)R k
phmR h

ijs −R k
pih (R h

smj +R h
sjm )

+(f − 1)R k
phi R

h
mjs + 2(f − 1)R h

mis R
k

phj ]− 1
4(f−1)2

[ 2fm
fAk

ij − 2fi
fAk

mj

+fAk
ih

fAh
mj − fAk

mh
fAh

ij + 2(f − 1)(∇i
fAk

mj −∇m
fAk

ij)]

with respect to the adapted frame {Eβ} .
We now compare the geometries of the Riemannian manifold (M, g) and its

tangent bundle TM equipped with the Riemannian metric f G̃.
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Theorem 4.1. Let (M, g) be a Riemannian manifold and TM be its tangent bundle

with the Riemannian metric f G̃. Then TM is flat if M is flat and

2fm
fAk

ij − 2fi
fAk

mj +
f Ak

ih
fAh

mj − fAk
mh

fAh
ij + 2(f − 1)(∇i

fAk
mj −∇m

fAk
ij) = 0.

Proof. It follows from the equations (4.1) that if

2fm
fAk

ij − 2fi
fAk

mj +
f Ak

ih
fAh

mj − fAk
mh

fAh
ij + 2(f − 1)(∇i

fAk
mj −∇m

fAk
ij) = 0,

then R ≡ 0 implies f R̃ ≡ 0. �

Corollary 4.1. Let (M, g) be a Riemannian manifold and TM be its tangent bundle

with the Riemannian metric f G̃. Assume that f = C(const.). In the case, TM is
flat if and only if M is flat.

5. The scalar curvature

We now turn our attention to the Ricci tensor and scalar curvature of the Rie-
mannian metric f G̃. Let f R̃αβ = f R̃ σ

σαβ and f r̃ =f G̃αβ f R̃αβ denote the Ricci

tensor and scalar curvature of the Riemannian metric f G̃, respectively. From (4.1),

the components of the Ricci tensor f R̃αβ are characterized by
(5.1)

f R̃ij = − 1
4(f−1)2 y

pysR m
pih R h

sjm ,
f R̃ij = − 1

2(f−1)Rij +
1

2(f−1)y
p(∇pRij −∇iRpj)− 1

4(f−1)2 y
pysR m

pih R h
sjm

+ 1
4(f−1)2 y

p(n− 4)fmR m
pij ,

f R̃i j = − 1
2(f−1)Rji +

1
2(f−1)y

p(∇pRji −∇jRpi)− 1
4(f−1)2 y

pysR h
sjmR m

pih

+ 1
4(λ−1)2 y

p(n− 4)fmR m
pji ,

f R̃ij =
f−2
f−1Rij +

1
2(f−1)y

p(2∇pRij −∇iRpj −∇jRpi)

+ 1
4(f−1)2 y

p[(n− 4)fm(R m
pij +R m

pji )] + 1
4(f−1)2 y

pys[−R m
pih R h

sjm

+(f − 1)R m
phi R h

mjs + 2(f − 1)R h
mis R

m
phj + (f − 1)R m

ihp R h
smj ]

− 1
4(f−1)2

[2fm
fAm

ij − 2fi
fAm

mj − fAm
mh

fAh
ij + fAm

ih
fAh

mj

+2(f − 1)(∇i
fAm

mj −∇m
fAm

ij )]

with respect to the adapted frame {Eβ}. From (3.3) and (5.1), the scalar curvature

of the Riemannian metric f G̃ is given by

f r̃= 1
f−1r −

1
2(f−1)2 y

pysRphikR
hik

s − 1
4(f−1)3 g

ij [2fm
fAm

ij − 2fi
fAm

mj

−fAm
mh

fAh
ij +

fAm
ih

fAh
mj + 2(f − 1)(∇i

fAm
mj −∇m

fAm
ij )].

Thus we have the result as follows.

Theorem 5.1. Let (M, g) be a Riemannian manifold and TM be its tangent bundle

with the metric f G̃. Let r be the scalar curvature of g and f r̃ be the scalar curvature

of f G̃. Then the following equation holds:

f r̃=
1

f − 1
r − 1

2(f − 1)2
ypysRphikR

hik
s − fL,

where
fL = 1

4(f−1)3 g
ij [2fm

fAm
ij − 2fi

fAm
mj − fAm

mh
fAh

ij

+fAm
ih

fAh
mj + 2(f − 1)(∇i

fAm
mj −∇m

fAm
ij )].

From the Theorem 5.1, we have the following conclusion.
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Corollary 5.1. Let (M, g) be a Riemannian manifold and TM be its tangent bundle

with the metric f G̃. If f r̃= 0, then fL = 0 implies r = 0.

Let (M, g), n > 2, be a Riemannian manifold of constant curvature κ, i.e.

R m
phi = κ(δmp ghi − δmh gpi)

and

r = n(n− 1)κ

where δ is the Kronecker’s. By virtue of Theorem 5.1, we have

f r̃ =
1

f − 1
r − 1

2(f − 1)2
ypysRphikR

hik
s − fL

=
1

f − 1
r − 1

2(f − 1)2
ypys gkmR m

phi ghlgitR k
slt −f L

=
1

f − 1
n(n− 1)κ−f L

− 1

2(f − 1)2
ypys gkm(κ(δmp ghi − δmh gpi))g

hlgit(κ(δks glt − δkl gst))

=
1

f − 1
n(n− 1)κ−f L

− 1

2(f − 1)2
κ
2

ypys(gkpδ
l
i − gpiδ

l
k)(δ

k
s δ

i
l − δkl δ

i
s)

=
1

f − 1
n(n− 1)κ− 1

2(f − 1)2
2(n− 1)κ

2

gpsy
pys−fL

=
(n− 1)κ

f − 1
(n− κ

f − 1
∥y∥2)− fL.

Hence we have the theorem below.

Theorem 5.2. Let (M, g), n > 2, be a Riemannian manifold of constant curvature

κ. Then the scalar curvature f r̃ of (TM,f G̃) is

f r̃ =
(n− 1)κ

f − 1
(n− κ

f − 1
∥y∥2)− fL.

where ∥y∥2 = gpsy
pys and

fL = 1
4(f−1)3 g

ij [2fm
fAm

ij − 2fi
fAm

mj − fAm
mh

fAh
ij

+fAm
ih

fAh
mj + 2(f − 1)(∇i

fAm
mj −∇m

fAm
ij )].

6. Locally conformally flat tangent bundles

In this section we investigate locally conformally flatness property of TM equipped

with the Riemannian metric f G̃.

Theorem 6.1. Let M be an n-dimensional Riemannian manifold with the Rie-
mannian metric g and let TM be its tangent bundle with the Riemannian metric
f G̃. The tangent bundle TM is locally conformally flat if and only if M is locally
flat and f = C(constant).
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Proof. The tangent bundle TM with the Riemannian metric f G̃ is locally confor-
mally flat if and only if the components of the curvature tensor of TM satisfy the
following equation:

(6.1)
f R̃αγβσ = −

f r̃
2(2n−1)(n−1)

{
f G̃αβ

f G̃γσ − f G̃ασ
f G̃γβ

}
+ 1

2(n−1) (
f
G̃γσ

f R̃αβ−f G̃ασ
f R̃γβ+

f G̃αβ
f R̃γσ− f G̃γβ

f R̃ασ),

where f R̃αγβσ = f G̃σϵ
f R̃ ϵ

αγβ .

From (6.1), we have the following special cases:

f R̃mijk = −
f r̃

2(2n− 1)(n− 1)
(gmjgik − gmkgij) +

1

2(n− 1)
(gik

f R̃mj(6.2)

−gmk
f R̃ij + gmj

f R̃ik − gij
f R̃mk)

and

f R̃mijk = −
f r̃

2(2n− 1)(n− 1)
(gmjgik − gmkgij) +

1

2(n− 1)
(gik

f R̃mj(6.3)

−gmk
f R̃ij + gmj

f R̃ik − gij
f R̃mk).

By the first and second equation in (4.1) and (3.2), from f R̃αγβσ = f G̃σϵ
f R̃ ϵ

αγβ ,

we obtain f R̃mijk = 0 and f R̃mijk = 0. Hence from (6.2) and (6.3), we obtain

(6.4)
f r̃

(2n− 1)
(gmjgik − gmkgij) = gik

f R̃mj − gmk
f R̃ij + gmj

f R̃ik − gij
f R̃mk

and

(6.5)
f r̃

(2n− 1)
(gmjgik − gmkgij) = gik

f R̃mj − gmk
f R̃ij + gmj

f R̃ik − gij
f R̃mk,

it follows that f R̃ik = f R̃ik. By means of the first and second equations in (5.1),
we get

Rij = 0, fm = 0, i.e. f = C(constant)

and

(6.6) f R̃ij = − 1

4(f − 1)2
ypysR m

pih R h
sjm .

Transvecting (6.5) by gik, we obtain

(6.7)
(n− 1)f r̃

(2n− 1)
gmj = (n− 2)f R̃mj + gikgmj

f R̃ik.

Transvecting (6.7) by gmj , we get

(6.8)
n(n− 1)

(2n− 1)
f r̃ = 2(n− 1)gik f R̃ik.
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On the other hand, from (6.6), we have

gik f R̃ik = − 1

4(f − 1)2
ypysgik R m

pih R h
skm(6.9)

=
1

4(f − 1)2
ypysRpilhR

ilh
s

= −1

2
f r̃.

Thus by (6.8) and (6.9), we obtain f r̃ = 0, then it follows RpilhR
ilh

s = 0 by using
f = C(constant). This shows Rpilh = 0. This completes the proof. �

7. Curvature properties of another metric connection of the
Riemannian metric f G̃

Let ∇ be a linear connection on an n−dimensional differentiable manifold M .
The connection ∇ is symmetric if its torsion tensor vanishes, otherwise it is non-
symmetric. If there is a Riemannian metric g on M such that ∇g = 0, then the
connection ∇ is a metric connection, otherwise it is non-metric. It is well known
that a linear connection is symmetric and metric if and only if it is the Levi-
Civita connection. In section 4, we have considered the Levi-Civita connection
f ∇̃ of the Riemannian metric f G̃ on the tangent bundle TM over (M, g). The

connection is the unique connection which satisfies f ∇̃α
f G̃βγ = 0 and has a zero

torsion. H. A.Hayden [8] introduced a metric connection with a non-zero torsion

on a Riemannian manifold. Now we are interested in a metric connection (M)∇̃of
the Riemannian metric f G̃ whose torsion tensor

(M)∇T ε
γβ is skew-symmetric in the

indices γ and β. We denote components of the connection (M)∇̃ by (M)Γ̃. The

metric connection (M)∇̃ satisfies

(7.1) (M)∇̃α
f G̃βγ = 0 and (M)Γ̃γ

αβ − (M)Γ̃γ
βα =

(M)∇T γ
αβ .

On the equation (7.1) is solved with respect to (M)Γ̃γ
αβ , one finds the following

solution [8]

(7.2) (M)Γ̃γ
αβ = f Γ̃γ

αβ + Ũγ
αβ ,

where f Γ̃γ
αβ is components of the Levi-Civita connection of the Riemannian metric

f G̃,

(7.3) Ũαβγ =
1

2
(
(M)∇Tαβγ +

(M)∇Tγαβ +
(M)∇Tγβα)

and

Ũαβγ = U ϵ
αβ

f G̃ϵγ ,
(M)∇Tαβγ = T ϵ

αβ
f G̃ϵγ .

If we put

(7.4)
(M)∇T r

ij = ypR r
ijp

all other
(M)∇T γ

αβ not related to
(M)∇T r

ij being assumed to be zero. We choose this
(M)∇T γ

αβ in TM which is skew-symmetric in the indices γ and β as torsion tensor
and determine a metric connection in TM with respect to the Riemannian metric
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f G̃ (see also, [16, p.151-155]. By using (7.3) and (7.4), we get non-zero components

of Ũγ
αβ as follows:

Ũk
ij =

−1

2(f − 1)
yp(R k

pij +R k
pji ),

Ũk
ij =

1

2
ypR k

ijp +
1

2(f − 1)
yp(R k

pij +R k
pji ),

Ũk
ij

=
−1

2(f − 1)
ypR k

pij ,

Ũk
ij

=
1

2(f − 1)
ypR k

pij ,

Ũk
ij

=
−1

2(f − 1)
ypR k

pji ,

Ũk
ij

=
1

2(f − 1)
ypR k

pji

with respect to the adapted frame. From (7.2) and (3.10), we have components of

the metric connection (M)∇̃ with respect to f G̃ as follows:

(M)Γ̃k
ij = Γk

ij +
1

2(f−1)
fAk

ij ,
(M)Γ̃k

ij = − 1
2(f−1)

fAk
ij ,

(M)Γ̃k
ij
= Γk

ij ,
(M)Γ̃k

ij
= 0, (M)Γ̃k

ij
= 0

(M)Γ̃k
ij
= 0, (M)Γ̃k

ij
= 0,(M)Γ̃k

ij
= 0

with respect to the adapted frame, where R s
hji are the local coordinate components

of the curvature tensor field R of g.

Remark 7.1. The metric connection (M)∇̃ and he Levi-Civita connection f ∇̃ on
TM of the Riemannian metric f G̃ coincide if and only if the base manifold M is
flat.

The non-zero components of the curvature tensor (M)R̃ of the metric connection
(M)∇̃ are given as follows:

(M)R̃ k
mij =R k

mij − 1
4(f−1)2

[ 2fm
fAk

ij − 2fi
fAk

mj

+fAk
ih

fAh
mj − fAk

mh
fAh

ij + 2(f − 1)(∇i
fAk

mj −∇m
fAk

ij)]
(M)R̃ k

mij = 1
4(f−1)2

[ 2fm
fAk

ij − 2fi
fAk

mj

+f Ak
ih

fAh
mj − fAk

mh
fAh

ij + 2(f − 1)(∇i
fAk

mj −∇m
fAk

ij)]
(M)R̃ k

mij
=R k

mij

with respect to the adapted frame.
The non-zero component of the contracted curvature tensor field (Ricci tensor

field) (M)R̃γβ = (M)R̃
α

αβγ of the metric connection (M)∇̃ is as follows:

(M)R̃ij=Rij − 1
4(f−1)2

[ 2fm
fAm

ij − 2fi
fAm

mj

+fAm
ih

fAh
mj − fAm

mh
fAh

ij + 2(f − 1)(∇i
fAm

mj −∇m
fAm

ij )]
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For the scalar curvature (M)r̃ of the metric connection (M)∇̃ with respect to f G̃ ,
we obtain

(M)r̃ =
1

f − 1
r −f L

where

fL =
1

4(f − 1)3
gij [2fm

fAm
ij − 2fi

fAm
mj − fAm

mh
fAh

ij +
fAm

ih
fAh

mj

+2(f − 1)(∇i
fAm

mj −∇m
fAm

ij )].

Thus we have the following theorem.

Theorem 7.1. Let M be an n-dimensional Riemannian manifold with the Rie-
mannian metric g and let TM be its tangent bundle with the Riemannian metric
f G̃. Then the tangent bundle TM with the metric connection (M)∇̃ has a vanishing

scalar curvature with respect to the Riemannian metric f G̃ if the scalar curvature
r of the Levi-Civita connection of g is zero and fL = 0.
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