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Abstract. In many applications, the user of an image data-
base system points to an image, and wishes to retrieve sim-
ilar images from the database. Computer vision researchers
aim to capture image information in feature vectors which
describe shape, texture and color properties of the image.
These vectors are indexed or compared to one another dur-
ing query processing to find images from the database. This
paper is concerned with the problem of shape similarity
retrieval in image databases. Curvature scale space (CSS)
image representation along with a small number of global
parameters are used for this purpose. The CSS image con-
sists of several arch-shape contours representing the inflec-
tion points of the shape as it is smoothed. The maxima of
these contours are used to represent a shape. The method is
then tested on a database of 1100 images of marine crea-
tures. A classified subset of this database is used to evaluate
the method and compare it with other methods. The results
show the promising performance of the method and its su-
periority over Fourier descriptors and moment invariants.

Key words: Multi-scale analysis – Shape similarity – Cur-
vature scale space – Image database retrieval – Performance
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1 Introduction

Advances in memory technologies and processing speed
have made it feasible to store a large number of images in
computers. This has given rise to the problem of organising
them for a rapid access to their content. Animage database
systemaims to help people in this regard and enable them
to find their desired images as quickly as possible. In many
applications such as medicine, journalism, advertising and
fashion, the user of image database remembers something
about the content of his desired image or wishes to find
similar images to an existing image. In content-based image
database systems, intrinsic properties of images are captured
in some feature vectors which are indexed or compared to

Correspondence to: S. Abbasi

one another during query processing to find similar images
from the database.

Considerable amount of information exists in two dimen-
sional boundaries of objects which enables us to recognise
objects without using further information. As a result, shape
similarity retrieval plays an important role in content based
image database systems.

Different shape representation methods are employed for
shape similarity retrieval. In elastic (Del Bimbo et al. 1996)
and modal (Sclaroff 1996) matchings, it is assumed that each
object of the database is the deformed version of the query.
The similarity between the two is then measured without
introducing an explicit representation for the shape. These
approaches are computationally expensive. A remedy is in-
troduced in (Sclaroff 1996) by choosing a few prototype
shapes as the representatives of different categories of the
database. A sketch-based method which uses an abstract of
the image edges is presented in (Hirata and Kato 1993). In
another approach (Eggleston 1992), a set of shape features
like centroid, pixel count, percentage of bounding rectangle
fill, number of holes, perimeter etc.; are used to represent an
object. Since local information is vital for shape similarity
retrieval, it seems that representing an object with a set of
global parameters does not lead to very good results. In the
QBIC project (Niblack et al. 1993), shape features are based
on a combination of heuristic shape features such as area,
circularity, eccentricity, major axis orientation and a set of
algebraic moment invariants.

In conclusion, although the number of proposed meth-
ods is increasing rapidly, there are still a number of short-
comings associated with each method. While the robustness
of some methods is doubtful, other methods which exhibit
a reasonable degree of robustness are often computationally
expensive. In this paper, we introduce an efficient and robust
shape representation method for shape similarity retrieval.
The maxima of curvature scale space (CSS) image contours
together with a small number of global parameters are used
to represent a shape. The properties of the method are re-
viewed and the results of our experiments on a database of
1100 images of marine animals are presented. A comparison
between the performance of the method with two other well-
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known methods, Fourier descriptors and moment invariants,
are also presented.

The following is the organisation of the remainder of this
paper. In Sect. 2, the construction of the CSS image and the
properties of using its maxima as the shape representation
are explained. Section 3 is devoted to the CSS matching al-
gorithm. In Sect. 4, we explain the way we use the global
parameters prior to the CSS matching. In Sect. 5, special
factors which must be considered in using the CSS image
maxima as the shape representation are presented. Section
6 is concerned with the problem of evaluation of the per-
formance of the method which is carried out through a set
of classified shapes. The experimental results including the
effects of global parameters are presented in Sect. 7. Sec-
tion 8 deals with the results of comparison of the method
with Fourier descriptors and moment invariants. And finally,
Sect. 9 offers concluding remarks.

2 The CCS representation

2.1 Curvature

The curvature of a curve is defined as

κ(s) = lim
h→0

φ

h
,

where φ is the angle betweent(s) and t(s + h). t repre-
sents the tangent vector ands is the arc length parameter.
Curvature-zero crossingsof a curve are points where the
sign of curvature changes.

Consider a parametric vector equation for a curve:

Γ (u) = (x(u), y(u)) ,

whereu is an arbitrary parameter. The formula for comput-
ing the curvature function can be expressed as

κ(u) =
ẋ(u)ÿ(u) − ẍ(u)ẏ(u)

(ẋ2(u) + ẏ2(u))3/2
. (1)

If we convolve each component ofΓ with g(u, σ), a 1D
Gaussian kernel of widthσ, thenX(u, σ) andY (u, σ) rep-
resent the components of the resulting curve,Γ σ:

X(u, σ) = x(u) ? g(u, σ)

Y (u, σ) = y(u) ? g(u, σ).

According to the properties of convolution, the derivatives
of every component can be calculated easily:

Xu(u, σ) = x(u) ? gu(u, σ) ,

Xuu(u, σ) = x(u) ? guu(u, σ) ,

and we will have a similar formula forYu(u, σ) andYuu(u, σ).
Since the exact forms ofgu(u, σ) andguu(u, σ) are known,
the curvature onΓ σ can be computed easily:

κ(u, σ) =
Xu(u, σ)Yuu(u, σ) − Xuu(u, σ)Yu(u, σ)

(Xu(u, σ)2 + Yu(u, σ)2)3/2
. (2)

Fig. 1. Shrinkage and smoothing of the curve and decreasing of the
number of curvature zero-crossings during the evolution, from left:σ =
1, 4, 7, 10, 12, 14

2.2 The CSS image

Following the preprocessing stage, every object is repre-
sented by thex and y coordinates of its boundary points.
The number of these points varies from 400 to 1200 for im-
ages in our prototype databases. To normalise the arc length,
the boundary is resampled and represented by 200 equally
distant points. The curve is then smoothed by a Gaussian
function. The smoothed curve is calledΓ σ, whereσ denotes
the width of the Gaussian kernel,g(u, σ). The locations of
curvature zero-crossings onΓ σ are determined at different
levels of scale using Eq. 2. The process starts withσ = 1,
and at each level,σ is increased by∆σ, chosen as 0.1 in
our experiments. Asσ increases,Γ σ shrinks and becomes
smoother, and the number of curvature zero crossing points
on it decreases. Finally, whenσ is sufficiently high,Γ σ will
be a convex curve with no curvature zero-crossings (see Fig.
1). The process of creating ordered sequences of curves is
referred to as theevolutionof Γ .

If we determine the locations of curvature zero-crossings
of everyΓ σ during evolution, we can display the resulting
points in (u, σ) plane, whereu is the normalised arc length
andσ is the width of the Gaussian kernel. The result of this
process can be represented as a binary image called theCSS
image of the curve (see Fig. 2a). The intersection of every
horizontal line with the contours in this image indicates the
locations of curvature zero-crossings on the corresponding
evolved curve. For example, by drawing a horizontal line at
σ = 10.0, it is observed that there are 6 zero-crossing points
on Γ 10. These points can also be found on the boundary of
object in Fig. 1 forσ = 10.

As seen in Fig. 1, there are two curvature zero-crossings
on every concave or convex part of the shape, and as the
curve becomes smoother, these points approach each other
and create a contour in the CSS image of the shape. When
the segment is filled, the two points join and represent the
maximum of the relevant contour. The height of this con-
tour then reflects the depth and size of the concavity or
convexity. The deeper and larger the segment, the higher
the maximum. In other words, a contour maximum in the
CSS image, represents a segment of the shape.

2.3 Extracting maxima of CSS contours

We represent every image in the database with the locations
of its CSS contour maxima. For example, in Fig. 2 there are
seven maxima, and therefore the image will be represented
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Fig. 2. a A boundary and its CSS image.b Change in orientation causes a
circular shift in CSS image.c Noise creates small contours in CSS image

by seven pairs of integer numbers. The locations of max-
ima are not readily available and must be extracted from
the image (Mokhtarian et al. 1996a). The CSS contours are
usually connected everywhere except in a neighbourhood of
their maxima. We find the peaks of both branches of a con-
tour in the CSS image and consider the midpoint of the line
segment joining the pair as a maximum of the CSS image.

Small contours of the CSS image are related to noise
or small ripples of the curve. In order to avoid complicated
and inefficient matching, small maxima are not included in
the representation. In most cases, even if small contours are
considered, they do not play a major role in the final match-
ing value between an input shape and a model from the
database. In our system, if a maximum is less than1

6 of the
largest maximum of the same CSS image, it is considered
as noise. As a result, only major concavities and convexities
of a shape will contribute to the representation.

2.4 Properties of the CSS image

The CSS representation is robust with respect to scale, noise
and change in orientation. A rotation of the object usually
causes a circular shift on its representation, which is easily
determined during the matching process (compare Fig. 2a
and b). Note that the effect of a change in the starting point is
also the same. Due to arc length normalisation, scaling does
not change the representation, and as Fig. 2 shows, noise may
create some small contours on the CSS image, but the main
contours and therefore the corresponding maxima remain
unaffected.

Compactness is another aspect of the CSS representa-
tion. A shape is represented by about less than ten pairs of
integer values which can be determined without any ambi-
guity. The matching algorithm which compares two sets of
representations and assigns a match value as the measure of
similarity between the shapes is also simple and fast.

Another property of the CSS image is that it retains the
local properties of the shape. Every contour of the CSS im-
age corresponds to a concavity or a convexity of the shape.
A local deformation of the shape mainly causes a change

Fig. 3. CSS image and its maxima,left: re-sampled boundary with the
marked starting point,middle: CSS image,right: normalised maxima of
CSS images

in the corresponding contour of the CSS image. Using this
property, one can include more local information about the
shape in the CSS image. For example, it is possible to use the
average curvature of a segment together with the maximum
of its CSS contour. Alternatively, one can find the corre-
sponding corners of each pair of curvature zero-crossings.

In shape similarity retrieval, the task is not to accurately
recognise the input among the existing models, but it is to
find the most similar models to the input and rank them in
terms of a similarity measure. The CSS representation is a
reliable tool to handle this task.

3 CSS matching

As mentioned before, every object in the database is rep-
resented by the locations of the maxima of its CSS image.
In this section, we first explain the basic concepts of our
matching algorithm, which compares two sets of maxima
and assigns a matching value to them. The matching value
represents the similarity measure between the actual bound-
aries of objects. A more complete description of the CSS
matching algorithm then follows.

Each contour of the CSS image corresponds to a concav-
ity or a convexity of the relevant object as presented in Fig.
3. It is obvious that regions 6 and 1 of the first object must
be matched with regions 7 and 8 of the second object, re-
spectively. Looking at the locations of the relevant maxima
on the first and second row of Fig. 3, we realize that they are
in quite different positions. This is due to different starting
points. If we change the starting points properly, then the
locations of corresponding maxima on CSS images will be
close to each other. This can be observed on the third row
of Fig. 3.

Therefore, the first step in CSS matching is to shift one
of the two sets of maxima so that the effect of randomly
selected starting point is compensated. Since the exact value
of required shift is not available, we choose several values
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Fig. 4. Four possible choices for matching of the two sets of maxima related
to first and second rows of the previous figure

for it and then find the best match among them. The best
choice is a value that shifts one CSS image so that its ma-
jor maximum covers the major maximum of the other CSS
image. Other possible choices are those values which ac-
complish the same with the second and possibly the third
major maxima.

For the two sets of maxima shown in Fig. 3, four choices
are shown in Fig. 4. Considering this figure, one can quickly
realize that the first one is the best. Every maximum of the
first CSS image is matched with a maximum of the sec-
ond one, and two maxima remain unmatched. The matching
value will be the summation of the the straight-line distances
between the matched pairs plus the vertical coordinates of
the unmatched maxima.

For convenience, from now on, we call the inputimage
and the images in the databasemodels. The maxima of every
model are sorted according to theirσ-coordinates during the
process of maxima extraction.

It should be noted that, in addition to the CSS maxima,
we also use severalglobal parametersto discard dissimilar
shapes, prior to the CSS matching. These parameters and the
way we use them are described in Sect. 4.

The complete matching algorithm which compares the
two sets of maxima, one from the image and the other from
the model is as follows.

1. Create a node consisting of the largest scale maximum of
the image and the largest scale maximum of the model.
Initialise thecostof this node to the absolute difference
of σ-coordinates of the image and the model. Compute
a CSS shift parameterα for each node:

α = Um − Ui ,

whereU is the horizontal coordinate of a maximum, and
i and m refer to image and model, respectively. This
parameter is used to compensate the effect of different
start points or change in orientation.

2. If there are more than one maximum in the model which
have aσ-coordinate close (within 80%) to the largest
scale maximum of the image, create extra nodes consist-
ing of the largest scale maximum of the image and that
respective additional maximum of the model. Also cre-
ate the same nodes for the second largest scale maximum
of the image and the respective maxima of the model.
Initialise the cost and compute the CSS shift parameter
for each node accordingly.

3. Create two lists for each node obtained in steps 1 and
2. The first list will contain the image curve maxima
and the second list will contain the model curve maxima
matched within that node at any point of the matching
procedure. Initialise the first and second list of each node
by the corresponding maxima determined in the first two
steps.

4. Expand each node created in steps 1 and 2 using the
procedure described in step 5.

5. To expand a node, select the largest scale image curve
CSS maximum (which is not in the first list) and apply
that node’s shift parameterα to map that maximum to
the model CSS image. Locate the nearest model curve
CSS maximum (which is not in the second list). If the
two maxima are in a reasonable horizontal distance (0.2
of the maximum possible distance), define the cost of
the match as the straight-line distance between the two
maxima. Otherwise, define the height of the image curve
CSS maximum as the cost of the match.
If there are no more image curve CSS maxima left, define
the cost of match as the height of the highest model curve
CSS maximumnot in the node’s second list. Likewise, if
there are no more model curve CSS maxima left, define
the cost of match as the height of the selected image
curve maximum. Note that this cases may occur when the
number of image maxima isdifferent from the number
of model maxima.
Add the match cost to the node cost. Update the two lists
associated with the node.

6. Select the lowest cost node. If there are no more model or
image curve CSS maxima that remain unmatched within
that node, then return that node as the lowest cost node.
Otherwise, go to step 5 and expand the lowest cost node.

7. Reverse the place of the image and the model and repeat
steps 1 to 6 to find the lowest cost node in this case.

8. Consider the lowest node as the final matching cost be-
tween the image and the model.

Using this algorithm and considering its amendment which
follows immediately in Sect. 3.1, the system associates a
matching value to every candidate and then displays then
best matched as its output, wheren has already been selected
by the user.

3.1 The problem of mirror-images in CSS matching

If a model in the database is similar to the mirror-image of
the input, the CSS image of the model may also be similar
to the mirror-image of the CSS image of the input. Since, by
just a circular shift, it is not possible to map the correspond-
ing maxima in this case, the above mentioned algorithm
will fail to discover the similarity between the input and the
model. Therefore, the mirror-image of the input should also
be compared to the existing models of the database. Using
the input maxima, we can easily calculate a new set of max-
ima which belongs to the CSS image of the mirror-image of
the input. We can then either repeat steps 1 to 8 for the new
set and consider the lowest matching cost between the two,
or construct new nodes in step 1 for the new set and expand
all nodes simultaneously.

4 Global parameters

The matching algorithm is not applied to all models of the
database. We use a number of global parameters to reject
dissimilar shapes to the input prior to the matching process.
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To reject the dissimilar images based on the global pa-
rameters, we first calculateαe, αc andαa as follows:

αe =
| ei − em |

max(ei, em)
αc =

| ci − cm |
max(ci, cm)

αa =
| ai − am |

max(ai, am)

wheree andc represent the eccentricity and circularity of the
boundary anda represents the aspect ratio of the CSS image,
while i andm stand for image and model, respectively.

According to their definition,αe, αc andαa are between
zero and one. We need to choose a threshold for each of
these parameters so that, if one of them is above the rele-
vant threshold, the corresponding model is rejected. For our
system, we chose all threshold values,αet, αct and αat as
0.3. Lower threshold values may result in missing similar
shapes, while , with higher values, the number of candidates
increases, and using global parameters will become sense-
less. However, it should be noted that the performance of
the system is not sensitive to small changes of these values,
and this will be demonstrated later in Sect. 7.2.

5 Comments on the CSS representations

As the results of our experiments show, the proposed method
has shown a very good performance in shape similarity re-
trieval. In this section, we explain some aspects of the rep-
resentation that should be considered in this application of
the CSS image.

Global information. In Subsect. 8.1, we mention that the
largest magnitude pair of components (F1 and F−1) of
Fourier descriptors represent an ellipse quite similar to the
outline of the contour. Such information does not exist in
the CSS representation, which consists of the maxima of the
CSS image contours. As a result, two shapes with the same
local deformations will have the same representations, even
if one of them looks like a circle and the other looks like a
rectangle. This is the main reason for using global parame-
ters along with the maxima of the CSS image to represent a
shape.

At the same time, it should be noted that one of these
parameters is the aspect ratio of the CSS image. This, in
turn, indicates that there is some implicit global information
in the CSS image maxima.

The problem of shallow concavities.Since the process of
smoothing can be approximated by heat equation deforma-
tion (Kimia and Siddiqi 1996), it can be shown that the
shallow concavities can create the same large contours as the
deep ones in the CSS image. Therefore, a shallow concavity
may be matched with a deep one during the CSS matching.
The problem can be solved by adding more information to
the CSS image maxima (Abbasi et al. 1997).

Normalisation of rotation and starting point.The normali-
sation is applied by a circular shift to the maxima of the CSS
image during the CSS matching. The measure of this shift
is determined by the horizontal distance between the highest
maximum of one CSS and the highest or the second highest

(a) (b) (c) (d)

Fig. 5a–d.Occlusion may cause a change in the size of the remaining CSS
contour

maximum of the other one. This is symbolised byα in item
1 of the matching algorithm. Applying a circular shift to the
CSS maxima is equivalent to a change in orientation of the
curve. In fact, we change the orientation of one curve, so
that the major segments of the two curves cover each other.

Due to difference in shape of major segments, it may
happen that the best circular shift which matches the two
objects cannot be achieved by this method. As a result, the
matching value may be more than expectation, and this af-
fects the output ranking. A remedy is to generate more nodes
with slightly different shift parameters. However, if the num-
ber of nodes is too large, the efficiency of the matching al-
gorithm and the speed of the system are affected. We have
slightly increased the number of nodes and have achieved
better results.

Occlusion. Minor occlusions do not dramatically change the
CSS image of a shape and can be detected by the matching
algorithm. Particularly, when major concavities of the shape
remain intact. However, if several major segments of a shape
are covered, the relevant contours in the CSS image will dis-
appear. As a result, the remaining contours occupy a larger
portion of the CSS image and their corresponding maxima
will also be larger. An example is shown in Fig. 5. The first
three maxima of the CSS image in Fig. 5b are related to the
upper part of the shape in Fig. 5a. These maxima do not ex-
ist in the CSS image presented in Fig. 5d, due to covering
the upper part of the shape. This part is presented by a small
contour at the extreme left of the CSS image in Fig. 5d. It
is observed that the configurations of the similar contours of
the two CSS images are the same. The similar part consists
of two larger contours, one inside the other, accompanied by
one smaller contour at each side. However, the maxima in
Fig. 5d are significantly larger than the maxima in Fig. 5b.
This is due to the fact that a segment in Fig. 5c is represented
by larger number of samples in comparison with the same
segment in Fig. 5a.

The problem of noise, and ripples.As mentioned before,
small contours in the CSS image which are not considered
in representation, are related to ripples on the boundary of
shape. As a result, two shapes with the same sets of con-
cavities will have the same representations, even if one of
them contains small ripples. In other words, the ripples are
considered as noise, even if they carry some useful infor-
mation. Circularity is the ratio of perimeter squared to the
area. It is used to distinguish between rippled boundaries
and smoothed ones, If two shapes are similar, but one of
them includes ripples, then the area of both shapes will be
in the same range, whereas the perimeters will be different.
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Fig. 6a–q.Classified database used for objective evaluation

6 Performance evaluation

Shape similarity retrieval is involved with the notion of sim-
ilarity which cannot be measured. As a result, the evaluation
of the system performance turns out to be a difficult task. A
subjective evaluation involving human subjects is presented
in (Mokhtarian et al. 1996b). The subjects are asked to find
similar shapes to a number of queries from a small database.
The results are then compared to the results of the system.

Here, we present an objective evaluation, which involves
a small classified subset of our database. There are 17 classes
in this database, each consisting of about 8 objects. The
whole database is presented in Fig. 6. These objects are se-
lected carefully so that the within-class similarity is reason-
ably high. There are also particular characteristics in each
group to distinguish it from other groups. We have made ev-
ery effort to perform a fair classification, and have paid more
attention to the whole appearance of shapes, rather than tak-
ing into account the shape features which are used by our
method. We also believe that our classified database pro-
vides a good base to compare the performance of different
methods we have tried.

The procedure of evaluating and marking the perfor-
mance of the system is as follows.

– Choose one of the objects in class one as the input query,
and determine the firstn outputs of the system. These
are the most similar images of the database to the input
according to the system.n = 15 is chosen for this test.

– Count the number of outputs which are in the same class
as the input. Divide this number by the number of mem-
bers of this class, multiply it by 100 and let the result be
the performance measure of the system for that particular
object.

– Repeat the previous steps for all members of class one.
Determine the performance of the system for class one
by averaging the performance measure of all members
of this class.

– Determine the performance measures for all classes, re-
peating the above steps.

– Finally, find the performance measure of the system for
the whole classified database by averaging the perfor-
mance measures of all classes.

Using this method, we measure the performance of the sys-
tem on different approaches and compare them in the fol-
lowing sections.

7 Results

In this section, the results of our experiments are presented
and discussed. We start with the original CSS matching,
which uses the maxima of the CSS image to represent the
shape. It will then be compared to a modified version which
includes the mirror-image considerations. These are in Sub-
sect. 7.1. In the first step of the new matching algorithm, we
also create more nodes. As a result, the chance for a better
normalisation in the starting point and change in orientation
increases. We present the results of our experiments on using
the CSS representation with the global parameters in shape
similarity retrieval in Subsect. 7.2.

7.1 CSS without global parameters

This is the first version of our system and is calledreference
method. We modified the CSS matching (Mokhtarian 1995)
by considering additional nodes and solving the problem of
mirror-image. Two examples are presented in Fig. 7a and b.
In both examples, the input query has appeared as the first
output of the system. In Fig. 7a, the seventh output is not as
similar to the query as the other outputs. The dissimilarity
between the two shapes is mainly due to the global appear-
ance of them. We can deal with this problem by using global
parameters. This argument also applies to the seventh output
of Fig. 7b.

The results of objective evaluation for this approach is
presented in the first row of Table 1. The result for group
04 is 100%. This means that, whenever one of the members
of this group is used as the query, all other members appear
in the first 15 outputs of the system. The same results are
achieved for groups 05, 11 and 14. Apart from groups 03,
07 and 10, the results for other groups are more or less
acceptable. Groups 03 and 07 include shapes with shallow
concavities (Abbasi et al. 1997), and group 10 consists of
strange shapes which are not quite similar to each other.
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Table 1. Effects of not using the mirror-image consideration. WM and RM stand for reference method and without mirror-image respectively. Thethird
row shows the difference in percent caused by cancelling the mirror-image consideration

G 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 T
RM 88 86 59 31 100 100 78 33 72 95 31 100 78 89 100 86 59 76
WM 78 53 44 30 98 100 44 35 69 95 25 61 78 69 86 72 52 64
dif -10 -33 -15 -1 -2 0 -34 2 -3 0 -6 -39 0 -20 -14 -14 -7 -12

(a) (b) (c) (d)

Fig. 7. a andb reference method.c andd without mirror-image consider-
ation

However, considering objects of other groups, we believe
that these objects can be considered as a group.

Note that, for this test, we have not used any global
parameters except the aspect ratio of the CSS images.

7.1.1 CSS without mirror-image

The problem of mirror-image in CSS matching is explained
in Sect. 3.1. Here we repeat the queries of Fig. 7a and b
by disabling the mirror-image consideration. The results are
presented in Fig. 7c and d, respectively. It is observed that
the orientation of outputs is the same as that of the input
queries in these cases. Some good models like the first three
outputs of Fig. 7b have not appeared in Fig. 7d. The same
comment applies to the fifth and the sixth output of Fig. 7a.
The problem with the eighth output of this example is related
to its shallow concavities described in Sect. 5.

The results of the objective evaluation is presented in the
second row of Table 1. A dramatic drop in performance mea-
sure is observed when we remove the modifications. This
drop is more considerable for groups like 06 and 11, which
include shapes with different orientations.

7.2 CSS with global parameters

Eccentricity and circularity contain considerable information
about the global shape of an object. When this information
is used in conjunction with the maxima of the CSS image,

which basically contain local information of the shape, the
best results are achieved.

We study the effects of these parameters in two stages.
In stage one, we observe the improvement caused by each of
these parameters. Then we study the effects of using them to-
gether. Using circularity alone may increase the performance
measure of the method by up to 7% which is achieved by
settingαct to any value in the wide range of 0.28–0.46. This
is shown in Fig. 8a. Note that we have not used eccentricity
in this experiment. Also note that, when we choose a value
for αct, it is fixed for all images of the database.

Since the aspect ratio of the CSS image was used with the
reference method, it is also used in the experiments of this
section. This makes the comparison easier and more mean-
ingful. The total performance measure for the CSS matching
plus aspect ratio as the global parameter was 76%, as it is
shown in Table 1.

The better results are achieved when we use eccentricity
alone. Any value forαet in the range of 0.28–0.42 leads
to 10% improvement in the performance measure, which is
quite considerable. The total performance measure is 86%.
Figure 8b represents the results of this experiment.

Now, we chooseαet as 0.33 and study the performance
of the system by changing the value ofαct. This time, the
increase in the performance measure is 14% when we choose
αct between 0.37 and 0.55. This is shown in the plot of
Fig. 8c. Note that, for the values in the range of 34%–67%,
this figure will be 13%.

If αct is fixed as 0.4, andαet is chosen and fixed at any
value between 0.28 and 0.4, then the same results, ie 14%
increase is achieved. This is shown in Fig. 8d.

We can conclude that, by using these three global param-
eters, the performance measure of the system will be more
than 90% in a wide range of threshold values.

8 Comparison with other methods

8.1 Fourier descriptors (FDs)

A closed curve,Γ (t) = (x(t), y(t)), can be considered as a
complex periodic function oft, where−∞ ≤ t ≤ +∞. This
function can then be sampled byN equidistant points. The
discrete Fourier transform ofΓ (t) is then defined as

Fk =
N−1∑

n=0

e−j2πnk/NΓn − N/2 + 1 ≤ k ≤ N/2 − 1 ,

whereΓn is thenth sample ofΓ (t).
As stated in Wallace and Wintz (1980),F1 always has

the highest magnitude amongFks (F0 is not considered),
provided that the contour is traced in the counterclockwise
manner and the contour does not cross itself. We will observe
that this may not be true in some special cases.
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Fig. 8a–d.Effects of using global parameters.a Circularity alone,αet = 1.
b Eccentricity alone,αct = 1. c Both butαet is fixed at 0.33. d Both but
αct is fixed at 0.4. Note: For all cases,αat is fixed at 0.25

Provided that the starting point, position, orientation and
scale have been chosen properly, the degree of similarity
between two sets of FDs can be measured by the sum of
Euclidean distances of corresponding components. This will
be proportional to the sum of Euclidean distances of the
contour points. A method suggested in Wallace and Wintz
(1980) is supposed to normalise the FDs. All contours of the
database are turned so that the orientation and the starting
points of all similar shapes become similar, and therefore
the Euclidean distance is minimised.

Applying the inverse Fourier transform, we can recreate
a contour from its FDs. In particular,F1 andF−1 create an
ellipse which is quite similar to the outline of the contour
without any details. Each pair, likeFi andF−i, will create a
particular ellipse which is tracedi times. The superposition
of these ellipses recreates the contour.

Using 20 pairs of FDs of every contour of our data-
base, we employed the method explained in Wallace and
Wintz (1980) to normalise them. We then used the Euclidean
distance between the FDs of the input query and those of
the models to find the most similar shapes.

A number of examples are given in Fig. 9. We can learn
the following points from these examples.

– In the first three examples, the input query can be cov-
ered by an ellipse which is presented byF1 and F−1,
and therefore the results are globally similar to the input
query.

– The main reason for the good results of the second ex-
ample is that the input query is symmetrical. This is not
true for Fig. 9d and e, and therefore the results of these
examples are not good enough.

– The problem of mirror-image is not considered in the
method. Looking at group 06, we realise that there are
several other shapes similar to the mirror-image of the

(a) (b) (c) (d) (e)

Fig. 9a–e.Examples of query results based on Fourier descriptors method

input query of the third example, which have not ap-
peared as outputs.

– For the input of Fig. 9e,F1 does not have the largest
magnitude as claimed in Wallace and Wintz (1980), and
therefore the method fails to apply a proper normalisa-
tion.

The same conclusions can be made by considering the results
of the objective evaluation presented in Table 2, where they
are compared to the CSS with global parameters.

We have very good results for groups 00, 02 and 07. On
the other hand, very poor results are observed for groups
05, 06, 08, 10, and 11. In group 00, the orientations and
the starting points are the same for all contours. This is
a result of using the same algorithm for extracting these
contours from the original color images. Shapes in group 02
are also symmetric and shapes in group 07 are unique in
terms of the largest ellipse. For more complex shapes, like
group 08 and shapes with different orientations like groups
06 and 11, we observe a poor performance. For some of the
contours of group 05,F1 does not have the largest magnitude
component, and therefore we come across very poor results.

In conclusion, the FD method introduced by Wallace
and Wintz (1980) is simple, quite fast, easy to implement
and contains good global information of the shape. On the
other hand, lack of local support and ambiguities in starting
point and orientation are the most important shortcomings of
the method. Moreover, we observed that Wallace and Wintz
(1980) have not considered the problem of mirror-image and
their assumption overF1 as the component with the largest
magnitude among FDs is not always correct.

8.2 Moment invariants

The geometric moment of orderp+q of the boundary points
of a shape is defined as follows:

µpq =
∑

x

∑

y

xpyq .

The same definition also applies to the points of the solid
shape. The originalmoment invariantsintroduced by Hu
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Table 2. FD results in comparison with the CSS + global parameters

G 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 T
CSS 89 86 81 95 100 100 91 98 75 92 81 100 94 89 100 95 69 91
FD 100 84 100 75 78 42 80 100 36 98 13 70 78 98 73 97 48 75
dif -11 2 -19 20 22 68 9 -2 39 -6 68 30 16 -9 27 -2 21 16

Table 3. Moment invariants results in comparison with the CSS + global parameters

G 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 T
CSS 89 86 81 95 100 100 91 98 75 92 81 100 94 89 100 95 69 91
MI 34 78 91 100 88 41 72 86 47 53 23 91 53 45 72 73 58 65
dif 55 8 -10 -5 12 59 19 12 28 39 58 9 41 43 28 22 11 26

(1962) are seven functions ofµpq, wherep andq are between
0 and 3. These functions, calledM1 to M7, are invariant to
rotation, reflection or a combination of them. Scale invari-
ance can be achieved by normalising the functions using
radius of gyration, which is defined as follows:

r = (µ20 + µ02)
1
2 .

This parameter is proportional to the size of object boundary.
A set of six normalised moment invariants is obtained as
follows:

M
′
2 =

M2

r4
, M

′
3 =

M3

r6
, M

′
4 =

M4

r6
,

M
′
5 =

M5

r12
, M

′
6 =

M6

r8
, M

′
7 =

M7

r12
.

We use the latter to represent the boundary as well as
solid shape, and experimentally compare this method to our
proposed method. Each object is then represented by a 12-
dimensional feature vector, including two sets of moment
invariants, one from object boundary and the other from
solid shape. The Euclidean distance is used to measure the
similarity between different shapes.

The results of objective evaluation is presented in Ta-
ble 3. The best results are for groups 02, 03, 07. These are
globally different from the other groups.

It seems that moment invariants may be used to represent
some global properties of the shape, but they cannot be used
as the shape representation.

9 Conclusion

We introduced a method for shape similarity retrieval from
large image databases. The maxima of the CSS image to-
gether with a small number of global parameters were used
to represent the closed planar shapes. The representation
and its associated matching algorithm were explained. The
method was tested on a database of 1100 images of marine
animals.

With regard to evaluation of the method, we examined
an objective test involving a classified subset of the data-
base. We then compared our method with a couple of the
most well-known methods in shape representation, namely
Fourier descriptors and moment invariants. Different indi-
vidual examples as well as the objective results showed the
superiority of our method over these methods.

In comparison with other methods discussed in Sect. 1,
the CSS representation and its associated matching algorithm

provide a clear, straightforward and robust method which
can be used in shape similarity retrieval.

A demo of this work is available at the following
web-site: http://www.ee.surrey.ac.uk/Research/VSSP/
imagedb/demo.html.
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