Curvature Tensors and Covariant Derivatives.

SHÛKICHI TANNO (Sendai) (*)

Summary. – The problems considered here are of two types. (i) What are implications of vanishing k-th covariant derivatives of curvature tensors? (ii) Under what conditions on curvature tensors, does the k-th covariant derivative $\nabla^{k}T = 0$ for a tensor T mean $\nabla T = 0$?

1. - Introduction.

Let (M, g) be a Riemannian manifold with (positive definite) Riemannian metric tensor g or a pseudo-Riemannian manifold with (definite or indefinite) Riemannian metric tensor g. By $R = (R_{jkl}^i)$ we denote the Riemannian curvature tensor:

$$R(X, Y)Z = \nabla_{[X,Y]}Z - [\nabla_X, \nabla_Y]Z,$$

where X, Y, Z are vector fields on M and ∇ denotes the Riemannian connection defined by g. By $R_1 = (R_{ik} = R_{ikr}^r)$ and $S = (g^{rs}R_{rs})$ we denote the Ricci curvature tensor and the scalar curvature, respectively.

NOMIZU and OZEKI [5] proved the following Proposition.

PROPOSITION (NOMIZU and OZEKI [5]). – If a Riemannian manifold (M, g) is complete and irreducible, and if an arbitrary tensor T has the vanishing k-th covariant derivative, i.e., $\nabla^k T = 0$ for some integer $k \ge 1$, then $\nabla T = 0$.

We replace « completeness » by curvature tensor conditions.

THEOREM 1. – Let (M, g) be a Riemannian manifold. Assume one of the following conditions:

- (i) At some point x of M, R_1 is non-singular,
- (ii) at some point x of M and for some tangent vectors X, Y at x, R(X, Y) is non-singular,
- (ii') at some point x of M, the index of nullity is zero. Then, for an arbitrary tensor T, $\nabla^k T = 0$ for some $k \ge 1$ implies $\nabla T = 0$.

In the case T = R, NOMIZU and OZEKI [5] and later NOMIZU (without assuming completeness) proved the following Proposition.

^(*) Entrato in Redazione il 16 Maggio 1972.

PROPOSITION (NOMIZU and OZEKI [5], NOMIZU). – In a Riemannian manifold (M, g), if $\nabla^k R = 0$ for some $k \ge 1$, then $\nabla R = 0$.

This is a generalization of a result of LICHNEROWICZ [2], [3] for the case T = R. Analogously we have

THEOREM 2. – Let (M, g) be a Riemannian manifold. By C and P we denote the Weyl's conformal curvature tensor and projective curvature tensor.

- (1) If $\nabla^k R_1 = 0$ for some $k \ge 1$, then $\nabla R_1 = 0$.
- (2) If $\nabla^k S = 0$ for some $k \ge 1$, then S = constant.
- (3) If $\nabla^k C = 0$ for some $k \ge 1$, then $\nabla C = 0$.
- (4) If $\nabla^k P = 0$ for some $k \ge 1$, then $\nabla P = 0$ and $\nabla R = 0$.

The author is grateful to Professor K. NOMIZU who gave him a letter containing a proof of the above Proposition. Proof of Theorem 2 is basically the same as one for the Proposition.

Generally, if T is a (homogeneous) tensor constructed by $[\nabla^r R, \nabla^s R_1, \nabla^t C, \nabla^u P;$ r, s, t, u = 0, 1, ... finite] and satisfies $\nabla^k T = 0$ for some $k \ge 1$, then $\nabla T = 0$, where $\nabla^o R = R$, etc.

THEOREM 3. – Let (M, g) be an irreducible Riemannian manifold. If

(iii) at some point x of M, $(\nabla^j S)_x = 0$ for some $j \ge 1$ and $S_x \ne 0$, then, for a tensor T, $\nabla^k T = 0$ for some $k \ge 1$ implies $\nabla T = 0$.

Next we consider pseudo-Riemannian manifolds.

THEOREM 4. – Let (M, g) be a pseudo-Riemannian manifold of signature (p, q). Assume that

- (a) the restricted homogeneous holonomy group is irreducible,
- (b) $[\dim M = m = \text{odd or } m = 2]$ or $[m = \text{even} \ge 4 \text{ and } p \neq q]$,
- (c) (M, g) satisfies one of the conditions: (i), (ii), (ii') in Theorem 1, (iii) for j = 1 in Theorem 3.

Then, for a tensor T, $\nabla^2 T = 0$ implies that ∇T is null and the inner product (T, T) is constant.

THEOREM 5. – Let (M, g) be a pseudo-Riemannian manifold of signature (p, q). Assume that (a) and (b) in Theorem 4. Then we have

- (1) $\nabla^2 R = 0$ implies that ∇R is null and (R, R) is constant.
- (2) $\nabla^2 R_1 = 0$ implies that ∇R_1 is null and (R_1, R_1) is constant.

(3) $\nabla^2 S = 0$ implies that S = constant.

(4) $\nabla^2 C = 0$ implies that ∇C is null and (C, C) is constant.

(5) $\nabla^2 P = 0$ implies that ∇P is null and (P, P) is constant.

Theorems 4 and 5 are generalised, if a pseudo-Riemannian manifold (M, g) is non-degenerately reducible in the sense of Wu[9] and if respective part satisfies the required conditions.

Next, generalizing a result of GLODEK [1], we get

THEOREM 6. – Let (M, g) be a pseudo-Riemannian manifold, $m \ge 4$. If the Weyl's conformal curvature tensor C is parallel, i.e. $\nabla C = 0$, then C = 0 or S = constant.

As an application of Theorem 1 we have

COROLLARY. – Let (M, g, J) be an almost Hermitian manifold with almost complex structure tensor J and almost Hermitian metric tensor g. If the Ricci curvature tensor R_1 is non-singular at some point, and if $\nabla^k J = 0$ for some $k \ge 1$, then (M, g, J) is Kählerian.

Finally, we have

THEOREM 7. – Let (M, g, J) be a Kählerian manifold, $m \ge 4$. If $\nabla^k C = 0$ for some $k \ge 1$, then $\nabla R = 0$, i.e., (M, g, J) is locally symmetric.

In the proof of Theorem 7, we have also

THEOREM 8. – Let (M, g, J) be a Kählerian manifold. Then $\nabla_i R_{jk} - \nabla_j R_{ik} = 0$, if and only if $\nabla_i R_{jk} = 0$.

2. - Proof of Theorems 1, 2 and 3.

Let (M, g) be a Riemannian manifold. Let T be a tensor and let $T^{a...b}_{c...d}$ be its components in a local coordinate neighborhood U. Assume that $\nabla^k T = 0$ for some $k \ge 2$. We put $\nabla^0 T = T$. We define a scalar f by

(2.1)
$$f = (\nabla^{k-2} T, \nabla^{k-2} T)$$
$$= \nabla_r \dots \nabla_s T^{a\dots b}{}_{c\dots d} \nabla^r \dots \nabla^s T^{e\dots f}{}_{u\dots v} g_{ae} \dots g^{dv}$$

where $\nabla^r = g^{rt} \nabla_t$ and $u, v, a, b, r, s, ... = 1, 2, ..., m = \dim M$. $\nabla^k T = 0$ implies

(2.2)
$$\nabla_w \nabla_v \nabla_u f = 0 \; .$$

Assuming that U is sufficiently small, let $U = U_0 \times U_1 \times ... \times U_N$ be local decomposition of U corresponding to the restricted homogeneous holonomy group. Then the metric tensor g is decomposed into

(2.3)
$$g = \begin{pmatrix} g_0 & & 0 \\ & g_1 & \\ & & \ddots & \\ 0 & & & g_N \end{pmatrix},$$

where g_0 is the flat part and $(U_1, g_1), \ldots, (U_N, g_N)$ are irreducible. The parallel symmetric tensor $\nabla^2 f = (\nabla_n \nabla_u f)$ is written as (cfr. EISENHART [11])

(2.4)
$$\nabla^2 f = \begin{pmatrix} \nabla^2 f | U_0 & & 0 \\ & c_1 g_1 & & \\ & & \ddots & \\ 0 & & & c_N g_N \end{pmatrix},$$

where c_1, \ldots, c_N are constant.

236

Now, we define a subspace N_x of the tangent space M_x at x by

$$N_x = \{X \in M_x \colon R(X, Y) = 0 \text{ for all } Y \in M_x\}.$$

Then the dim N_x is called the index of nullity at x.

PROOF OF THEOREM 1. – If R_1 is non-singular at some point x, we consider U containing x. Then U has no flat part, i.e., $U = U_1 \times ... \times U_N$. This is the same for (ii) and (ii'). If we denote product coordinates (x^u) by

$$(x^u) = [x^{\alpha} \text{ in } U_1, x^{\lambda} \text{ in } U_2, \dots, x^{\omega} \text{ in } U_N].$$

Then, (2.4) implies

 $\nabla_{\boldsymbol{\alpha}} \nabla_{\boldsymbol{\lambda}} f = 0 \; .$

Since the Clistoffel's symbol $\Gamma^{u}_{\alpha\lambda} = 0$, (2.5) implies

$$\partial^2 f/\partial x_{\alpha} \partial x_{\lambda} = 0 \; .$$

Therefore, we can conclude that

(2.6)
$$f = f_1(x^{\alpha}) + f_2(x^{\lambda}) + \dots + f_N(x^{\omega})$$

Hence, we have $\nabla^2 f | U_{\theta} = c_{\theta} g_{\theta} = \nabla^2 f_{\theta}$, where ∇ denotes also the Riemannian connection on $(U_{\theta}, g_{\theta}), \ \theta = 1, ..., N$. That is, we get

$$\nabla_{\mu}\nabla_{\nu}f_{\theta} + \nabla_{\nu}\nabla_{\mu}f_{\theta} = 2c_{\theta}(g_{\theta})_{\mu\nu}.$$

Indices μ, ν, ξ, η run from dim $(U_1 \times ... \times U_{\theta-1}) + 1$ to dim $(U_1 \times ... \times U_{\theta})$. If we put $Z^{\mu} = (g_{\theta})^{\mu\nu} \nabla_{\nu} f_{\theta}$, then Z is an infinitesimal homothety on (U_{θ}, g_{θ}) . Consequently, denoting by L_Z the Lie derivation by Z, we get

(2.7)
$$L_{Z}(\Gamma_{\theta})_{\mu\nu}^{\xi} = \nabla_{\mu}\nabla_{\nu}Z^{\xi} + (R_{(\theta)})_{\nu\mu\eta}^{\xi}Z^{\eta} = 0.$$

Since $\nabla^3 f = 0$ implies $\nabla^3 f_{\theta} = 0$, we have $\nabla_{\mu} \nabla_{\nu} Z^{\xi} = 0$. Hence,

$$(R_{(\theta)})^{\xi}_{\nu\mu\eta}Z^{\eta} = 0$$
 and $(R_{1(\theta)})_{\nu\eta}Z^{\eta} = 0$.

Since $R = R_{(1)} + R_{(2)} + ... + R_{(N)}$ and $R_1 = R_{1(1)} + R_{1(2)} + ... + R_{1(N)}$, ((i), (ii) or (ii')) implies Z = 0. That is, f_{θ} is constant. Hence, f is constant on U. This means $\nabla_{\theta}\nabla_{u}f = 0$. Since $g^{uu}\nabla_{\theta}\nabla_{u}f = (\nabla^{k-1}T, \nabla^{k-1}T)$, we get $\nabla^{k-1}T = 0$ on U. Because $\nabla^{k-1}T$ is parallel, $\nabla^{k-1}T = 0$ holds on M. Continuing these steps, we get $\nabla T = 0$.

PROOF OF THEOREM 3. – In the proof of Theorem 1, we can put N = 1. Define f as before. Then we have an infinitesimal homothety $Z: L_Z g = 2cg$, and

(2.8)
$$L_Z S = L_Z (g^{rs} R_{rs}) = -2cS \; .$$

Since L_z and the covariant differentiation are commutative, we get

(2.9)
$$L_{z}(\nabla^{j-1}S) = -2c\nabla^{j-1}S.$$

On the other hand, we have

$$(2.10) L_{\mathbf{Z}}(\nabla^{i-1}S)_{\mathbf{r}s\dots\mathbf{t}} = Z^{u}\nabla_{u}\nabla_{\mathbf{r}}\nabla_{s}\dots\nabla_{t}S + (j-1)\,c\nabla_{\mathbf{r}}\nabla_{s}\dots\nabla_{t}S \ ... \ \nabla_{t}S \ ... \ ... \ ... \ \nabla_{t}S \ ... \$$

By assumption $\nabla^{j}S = 0$ at a point x of M, (2.9) and (2.10) implies that $(j+1) \cdot c(\nabla^{j-1}S) = 0$ holds at x. Hence, we get o = 0 or $\nabla^{j-1}S = 0$ at x. Continuing these steps, finally we have c = 0 or $\nabla S = 0$ at x. If $\nabla S = 0$ at x, $L_{Z}S = Z^{u}\nabla_{u}S = 0$ holds at x. Since $S \neq 0$ at x, by (2.8) we have c = 0. Therefore in any case we have c = 0 and $\nabla_{v}\nabla_{u}f = 0$. Consequently $(\nabla^{k-1}T, \nabla^{k-1}T) = 0$ and $\nabla^{k-1}T = 0$. Finally $\nabla T = 0$.

PROOF OF THEOREM 2. – Since tensors we consider here are all curvature tensors, in a local decomposition corresponding to the restricted homogeneous holonomy group, if suffices to prove Theorem 2 in each part. So we assume (M, g) is irreducible. In stead of the Ricci curvature tensor R_1 , the Weyl's conformal curvature tensor C, projective curvature tensor P, we write T. Put $f = (\nabla^{k-2}T, \nabla^{k-2}T)$. Then $Z^{\mu} = g^{\nu\mu}\nabla_{\nu}f$ is an infinitesimal homothety: $L_Z g = 2cg$. Hence $L_Z T = 0$. Since L_Z and ∇ are commutative,

(2.11)
$$L_{z}(\nabla^{k-1}T) = \nabla^{k-1}L_{z}T = 0.$$

On the other hand, using $\nabla^k T = 0$ and $\nabla_v Z^u = c \delta^u_v$, we have

(2.12)
$$L_{z}(\nabla^{k-1}T) = (k+1) c \nabla^{k-1}T.$$

By (2.11) and (2.12), we have c = 0 or $\nabla^{k-1}T = 0$. c = 0 implies $\nabla^{k-1}T = 0$. Continuing these steps we have $\nabla T = 0$. This proves (1), (3) and (4) for $[\nabla P = 0]$.

Next, we show (2). Put $f = (\nabla^{k-2}S, \nabla^{k-2}S)$. By (2.8), we have $L_Z \nabla^{k-1}S = -2c\nabla^{k-1}S$. On the other hand, we have

$$L_{Z}(\nabla^{k-1}S_{rs,..t}) = (k-1) c(\nabla^{k-1}S_{rs,..t})$$

by $\nabla^k S = 0$. Hence, $(k+1) c \nabla^{k-1} S = 0$ follows. c = 0 implies $\nabla^{k-1} S = 0$ on M. Therefore, we have $\nabla^{k-1} S = 0$ on M, and $\nabla S = 0$ on M. To complete our proof for (4), we need the following

PROPOSITION (MATSUMOTO [4]). – In a pseudo-Riemannian manifold (M, g), $\nabla P = 0$ implies $\nabla R = 0$.

REMARK. – R_{II}^* -spaces defined by ROTER [6] are locally symmetric, in the positive definite case, by the second Proposition in the Introduction.

3. - Proof of Theorems 4 and 5.

In a study of pseudo-Riemannian manifolds of signature (p, q), the following lemma is sometimes useful.

LEMMA (TANNO [7]). – Assume that $[\dim M = m = \text{odd or } m = 2]$ or $[m = \text{even} \ge 4$ and $p \ne q]$. If the restricted homogeneous holonomy group is irreducible and if a symmetric (0, 2)-tensor g^* is invariant by the group, then $g^* = \sigma g$ for some scalar σ .

Further, if g^* is parallel, then σ is constant.

PROOF OF THEOREM 4. – Put f = (T, T). Then $\nabla_v \nabla_u f$ is parallel. Hence, $\nabla_v \nabla_u f = eg_{vu}$ for some constant c. $g^{uv} \nabla_v f = Z^u$ is an infinitesimal homothety. Hence, (i), (ii), (ii') of Theorem 1 imply that c = 0 (cf. (2.7), etc.). Consequently, $(\nabla T, \nabla T) = 0$. That is, ∇T is a null tensor. Next, $\nabla_v \nabla_u f = 0$ implies that $\nabla_u f$ is parallel. Since (M, g) is irreducible, we have $\nabla_u f = 0$. This means (T, T) is constant.

Next, assume that (iii) for j=1 in Theorem 3. Then $L_Z S = -2cS$ gives c=0. Thus, ∇T is null and (T, T) is constant.

PROOF OF THEOREM 5. - Let T be one of R, R_1, S, C, P . Put f = (T, T). Then $Z^u = g^{uv} \nabla_v f$ satisfies $L_Z g = 2cg$. If T is one of R, R_1, C, P , we have $L_Z \nabla T = 0$. As in definite case, we have c = 0. Further, ∇T is null and (T, T) is constant.

As for T = S, we have $L_Z \nabla_r S = -2c \nabla_r S$ and

$$L_Z \nabla_r S = Z^u \nabla_u \nabla_r S + c \nabla_r S = c \nabla_r S$$
.

Hence, c = 0 or $\nabla_r S = 0$ follows. $\nabla_r S = 0$ means that S = constant. c = 0 means that $\nabla_u f$ is parallel, and $\nabla_u f = 0$. Consequently, (S, S), and hence, S is constant.

4. - Proof of Theorem 6.

GLODEK proved the following Proposition.

PROPOSITION (GLODEK [1]). – Every conformally symmetric (i.e., $\nabla C = 0$) pseudo-Riemannian manifold (M, g) is conformally flat (i.e., C = 0) or $\nabla_r S$ is null.

Put
$$C_{ijkl} = g_{ir} C_{jkl}^{r}$$
, $a = 1/(m-2)$ and $b = 1/(m-1)(m-2)$. Then

$$(4.1) C_{ijkl} = R_{ijkl} - a[R_{jk}g_{il} - R_{jl}g_{ik} + g_{jk}R_{il} - g_{jl}R_{ik}] + bS[g_{jk}g_{il} - g_{jl}g_{ik}].$$

To prove Theorem 6, we show that if $\nabla_r S$ is not vanishing, C = 0.

PROOF of THEOREM 6. – In [1] it is shown that

(4.2)
$$\nabla_i SC_{hikl} - \nabla_j SC_{hikl} + \nabla_k SC_{hlij} - \nabla_l SC_{hkij} = 0.$$

Assume that $\nabla_i S$ is not vanishing at some point x of M. Then we can take a suitable local coordinate system about x such that $(\nabla_i S)$ has components $(\nabla_1 S, 0, ..., 0)$, $\nabla_1 S \neq 0$, at x.

In (4.2), if we put (i = 1) and $(j, k, l \neq 1)$, then we have $C_{hikl} = 0$ for every h. That is

(4.3)
$$C_{1jkl} = 0$$
 for $j, k, l \neq 1$,

(4.4)
$$C_{hikl} = 0$$
 for $h, j, k, l \neq 1$.

In (4.2), if we put (h = i = k = 1) and $(j, l \neq 1)$, then we have

$$(4.5) C_{1i1i} + C_{1i1j} = 0 .$$

Since $C_{ijkl} = C_{klij}$, (4.5) gives

(4.6)
$$C_{1j1l} = 0$$
 for $j, l \neq 1$.

Thus, (4.3), (4.4), and (4.6) show that C = 0 at x. Since $\nabla C = 0$, we have C = 0 on M. This completes the proof of Theorem 6.

5. - Proof of Corollary and Theorem 7.

240

Let (M, g, J) be an almost Hermitian manifold with almost complex structure tensor J and an almost Hermitian metric tensor g (which is positive definite). J and gsatisfy

$$(5.1) JJX = -X,$$

(5.2)
$$g(JX, JY) = g(X, Y)$$
.

(M, g, J) is Kählerian, if and only if $\nabla J = 0$. Then Corollary follows from Theorem 1.

PROOF OF THEOREM 7. – By (3) of Theorem 2, it suffices to show that $\nabla C = 0$ implies $\nabla R = 0$. So, assume that a Kählerian manifold (M, g, J), $m \ge 4$, satisfies $\nabla C = 0$. It is known that $\nabla_r C^r_{jkl} = 0$ implies

(5.3)
$$\nabla_{i}R_{jk} - \nabla_{k}R_{jl} = [1/2(m-1)](g_{jk}\nabla_{i}S - g_{jl}\nabla_{k}S) .$$

By Glodek's theorem or Theorem 6, we have either C = 0 or S = constant. If C = 0 in a Kählerian manifold, we have (cf. YANO and MOGI [10])

- (A) for m > 6, (M, g, J) is locally flat,
- (B) for m=4, S = constant.

Therefore, in any case, we see that S = constant. (5.3), then, gives

$$\nabla_t R_{jk} = \nabla_k R_{j1}$$

It is known that (cf. YANO and MOGI [10])

Since $\nabla S = 0$, operating ∇_t to (5.5) we get

$$(5.6) \qquad \qquad \nabla_i R_{jk} J^j_r J^k_s = \nabla_i R_{rs}$$

Now we show that $\nabla_i R_{ik} = 0$. In fact,

$$\nabla_i R_{jk} = \nabla_i R_{rs} J_j^r J_k^s \qquad \qquad \text{by} \ (5.6)$$

$$= (\nabla_{\mathbf{r}} R_{\mathbf{p}\mathbf{q}} J^{\mathbf{p}}_{\mathbf{i}} J^{\mathbf{q}}_{\mathbf{s}}) J^{\mathbf{r}}_{\mathbf{j}} J^{\mathbf{s}}_{\mathbf{k}} \qquad \text{by} \quad (5.6)$$

- $= \nabla_q R_{pr} J^p_i J^q_s J^r_j J^s_k \qquad \qquad \text{by} \ (5.4)$
- $= \nabla_q R_{ab} J^a_r J^b_r J^p_i J^a_s J^r_j J^s_k \qquad \text{by} \ (5.6)$
- $= -\nabla_k R_{ii} \qquad \qquad \text{by } (5.1) .$

Hence, using (5.4), we have $\nabla_i R_{jk} = 0$. $\nabla_i S = 0$, $\nabla_i R_{jk} = 0$, (4.1), and $\nabla_h C_{ijkl} = 0$ give $\nabla_h R_{ijkl} = 0$. Therefore, we have $\nabla R = 0$.

PROOF OF THEOREM 8 is contained in the above Proof of Theorem 7.

REFERENCES

- E. GLODEK, Some remarks on conformally symmetric Riemannian spaces, Colloq. Math., 23 (1971), pp. 121-123.
- [2] A. LICHNEROWICZ, Courbure, nombres de Betti, et espaces symétriques, Proc. Int. Cong. Math., 2 (1952), pp. 216-223.
- [3] A. LICHNEROWICZ, Géometrie des groupes de transformations, Paris, Dunod, 1958.
- [4] M. MATSUMOTO, On Riemannian spaces with recurrent projective curvature, Tensor, N.S., 19 (1968), pp. 11-18.
- [5] K. NOMIZU H. OZEKI, A theorem on curvature tensor fields, Proc. Nat. Acad. Sci., 48 (1962), pp. 206-207.
- [6] W. ROTER, Some remarks on second order recurrent spaces, Bull. Polon. Sci. Ser. Sci. Math. Astr. Phys., 12 (1964), pp. 207-211.
- [7] S. TANNO, Strongly curvature-preserving transformations of pseudo-Riemannian manifolds, Tôhoku Math. Journ., **19** (1967), pp. 245-250.
- [8] S. TANNO, Transformations of pseudo-Riemannian manifolds, Journ. Math. Soc. Japan, 21 (1969), pp. 270-281.
- [9] H. WU, On the de Rham decomposition theorem, Illinois Journ. Math., 8 (1964), pp. 291-311.
- [10] K. YANO I. MOGI, On real representations of Kählerian manifolds, Ann. Math., 61 (1955), pp. 170-189.
- [11] L. P. EISENHART, Symmetric tensors of the second order whose first covariant derives are zero, Trans. Amer. Math. Soc., 25 (1923), pp. 297-306.