Curvature Tensors and Covariant Derivatives.

Shûkichi Tanno (Sendai) (*)

Abstract

Summary. - The problems considered here are of two types. (i) What are implications of vanishing k-th covariant derivatives of curvature tensors? (ii) Under what conditions on curvature tensors, does the k-th covariant derivative $\nabla^{k} T=0$ for a tensor T mean $\nabla T=0$?

1. - Introduction.

Let (M, g) be a Riemannian manifold with (positive definite) Riemannian metric tensor g or a pseudo-Riemannian manifold with (definite or indefinite) Riemannian metric tensor g. By $R=\left(R_{j k}^{i}\right)$ we denote the Riemannian curvature tensor:

$$
R(X, Y) Z=\nabla_{[X, Y]} Z-\left[\nabla_{X}, \nabla_{Y}\right] Z,
$$

where X, Y, Z are vector fields on M and ∇ denotes the Riemannian connection defined by g. By $R_{1}=\left(R_{j k}=R_{j k r}^{r}\right)$ and $S=\left(g^{r s} R_{r s}\right)$ we denote the Ricci curvature tensor and the scalar curvature, respectively.

Nomizu and OzEiki [5] proved the following Proposition.
Proposmion (Nomizu and Ozeki [5]). - If a Riemannian manifold (M, g) is complete and irreducible, and if an arbitrary tensor T has the vanishing k-th covariant derivative, i.e., $\nabla^{k} T=0$ for some integer $k \geqslant 1$, then $\nabla T=0$.

We replace "completeness» by curvature tensor conditions.
Theorem 1. - Let (M, g) be a Riemannian manifold. Assume one of the following conditions:
(i) At some point x of M, R_{1} is non-singular,
(ii) at some point x of M and for some tangent vectors X, Y at $x, R(X, Y)$ is non-singular,
(ii') at some point x of M, the index of nullity is zero.
Then, for an arbitrary tensor $T, \nabla^{k} T=0$ for some $k \geqslant 1$ implies $\nabla T=0$.
In the case $T=R$, Nomizu and OzEmi [5] and later Nomizu (without assuming completeness) proved the following Proposition.
(*) Entrato in Redazione il 16 Maggio 1972.

Proposition (Nomizu and Ozeki [5], Nomizu). - In a Riemannian manifold (M, g), if $\nabla^{k} R=0$ for some $k \geqslant 1$, then $\nabla R=0$.

This is a generalization of a result of Licmenowicz [2], [3] for the case $T=R$. Analogously we have

Theorem 2. - Let (M, g) be a Riemannian manifold. By C and P we denote the Weyl's conformal curvature tensor and projective curvature tensor.
(1) If $\nabla^{k} R_{1}=0$ for some $k \geqslant 1$, then $\nabla R_{1}=0$.
(2) If $\nabla^{k} S=0$ for some $k \geqslant 1$, then $S=$ constant.
(3) If $\nabla^{k} C=0$ for some $k \geqslant 1$, then $\nabla C=0$.
(4) If $\nabla^{k} P=0$ for some $k \geqslant 1$, then $\nabla P=0$ and $\nabla R=0$.

The author is grateful to Professor K. Nomzu who gave him a letter containing a proof of the above Proposition. Proof of Theorem 2 is basically the same as one for the Proposition.

Generally, if T is a (homogeneous) tensor constructed by $\left[\nabla^{v} R, \nabla^{s} R_{1}, \nabla^{i} C, \nabla^{u} P\right.$; $r, s, t, u=0,1, \ldots$ finite] and satisfies $\nabla^{k} T=0$ for some $k \geqslant 1$, then $\nabla T=0$, where $\nabla^{0} R=R$, etc.

Theorem 3. - Let (M, g) be an irreducible Riemannian manifold. If
(iii) at some point x of $M,\left(\nabla^{j} S\right)_{x}=0$ for some $j \geqslant 1$ and $S_{x} \neq 0$, then, for a tensor $T, \nabla^{k} T=0$ for some $l \geqslant 1$ implies $\nabla T=0$.

Next we consider pseudo-Riemannian manifolds.
Theorem 4. - Let (M, g) be a pseudo-Riemannian manifold of signature (p, q). Assume that
(a) the restricted homogeneous holonomy group is irreducible,
(b) $[\operatorname{dim} M=m=$ odd or $m=2]$ or $[m=$ even $\geqslant 4$ and $p \neq q]$,
(c) (M,g) satisfies one of the conditions: (i), (ii), (ii') in Theorem 1, (iii) for $j=1$ in Theorem 3.

Then, for a tensor $T, \nabla^{2} T=0$ implies that ∇T is null and the inner product (T, T) is constant.

Theorem 5. - Let (M, g) be a pseudo-Riemannian manifold of signature (p, q). Assume that (a) and (b) in Theorem 4. Then we have
(1) $\nabla^{2} R=0$ implies that ∇R is null and (R, R) is constant.
(2) $\nabla^{2} R_{1}=0$ implies that ∇R_{1} is null and $\left(R_{1}, R_{1}\right)$ is constant.
(3) $\nabla^{2} S=0$ implies that $S=$ constant.
(4) $\nabla^{2} C=0$ implies that ∇C is null and (C, C) is constant.
(5) $\nabla^{2} P=0$ implies that ∇P is null and (P, P) is constant.

Theorems 4 and 5 are generalised, if a pseudo-Riemannian manifold (M, g) is non-degenerately reducible in the sense of $W \mathrm{Wu}[9]$ and if respective part satisfies the required conditions.

Next, generalizing a result of Glodmk [1], we get
Theorem 6. - Let (M, g) be a pseudo-Riemannian manifold, $m \geqslant 4$. If the Weyl's conformal curvature tensor O is parallel, i.e. $\nabla C=0$, then $O=0$ or $S=$ constant.

As an application of Theorem 1 we have

Corollary. - Let (M, g, J) be an almost Hermitian manifold with almost complex structure tensor J and almost Hermitian metric tensor g. If the Ricoi curvature tensor R_{1} is non-singular at some point, and if $\nabla^{k} J=0$ for some $k \geqslant 1$, then (M, g, J) is Kählerian.

Finally, we have
Theorem 7. - Let (M, g, J) be a Kählenian manifold, $m \geqslant 4$. If $\nabla^{k} C=0$ for some $k \geqslant 1$, then $\nabla R=0$, i.e., (M, g, J) is locally symmetric.

In the proof of Theorem 7, we have also
Theorem 8. - Let (M, g, J) be a Kählerian manifold. Then $\nabla_{i} R_{i k}-\nabla_{i} R_{i k}=0$, if and only if $\nabla_{i} R_{j k}=0$.

2. - Proof of Theorems 1, 2 and 3.

Let (M, g) be a Riemannian manifold. Let T be a tensor and let $T^{a \ldots b}{ }_{c \ldots d}$ be its components in a local coordinate neighborhood U. Assume that $\nabla^{k} T=0$ for some $k \geqslant 2$. We put $\nabla^{0} T=T$. We define a scalar f by

$$
\begin{align*}
& f=\left(\nabla^{k-2} T, \nabla^{k-2} T\right) \tag{2.1}\\
& =\nabla_{r} \ldots \nabla_{s} T_{c \ldots, ., d}^{\alpha \ldots b} \nabla^{r} \ldots \nabla^{s} \mathcal{T}^{\varepsilon e \ldots f}{ }_{u \ldots v} g_{a \epsilon} \ldots g^{d v}
\end{align*}
$$

where $\nabla^{r}=g^{r i} \nabla_{i}$ and $u, v, a, b, r, s, \ldots=1,2, \ldots, m=\operatorname{dim} M . \quad \nabla^{k} T=0$ implies

$$
\begin{equation*}
\nabla_{w} \nabla_{v} \nabla_{u} f=0 . \tag{2.2}
\end{equation*}
$$

Assuming that U is sufficiently small, let $U=U_{0} \times U_{1} \times \ldots \times U_{N}$ be local decomposition of U corresponding to the restricted homogeneous holonomy group. Then the metric tensor g is decomposed into

$$
g=\left(\begin{array}{cccc}
g_{0} & & & 0 \tag{2.3}\\
& g_{1} & & \\
& & \ddots & \\
0 & & & g_{N}
\end{array}\right)
$$

where g_{0} is the flat part and $\left(U_{1}, g_{1}\right), \ldots,\left(U_{N}, g_{N}\right)$ are irreducible. The parallel symmetric tensor $\nabla^{2} f=\left(\nabla_{v} \nabla_{u} f\right)$ is written as (cfr. EIsenhart [11])

$$
\nabla^{2} f=\left(\begin{array}{cccc}
\nabla^{2} f \mid U_{0} & & & 0 \tag{2.4}\\
& c_{1} g_{1} & & \\
0 & & \ddots & \\
0 & & & c_{N} g_{N}
\end{array}\right)
$$

where c_{1}, \ldots, c_{N} are constant.
Now, we define a subspace N_{x} of the tangent space M_{x} at x by

$$
N_{x}=\left\{X \in M_{x}: R(X, Y)=0 \text { for all } Y \in M_{x}\right\}
$$

Then the $\operatorname{dim} N_{x}$ is called the index of nullity at x.
Proof of Theorem 1. - If R_{1} is non-singular at some point x, we consider U containing 0 . Then U has no flat part, i.e., $U=U_{1} \times \ldots \times U_{N}$. This is the same for (ii) and (ii'). If we denote product coordinates (x^{*}) by

$$
\left(x^{u}\right)=\left[x^{\alpha} \text { in } U_{1}, x^{\lambda} \text { in } U_{2}, \ldots, x^{\omega} \text { in } U_{N}\right]
$$

Then, (2.4) implies

$$
\begin{equation*}
\nabla_{\alpha} \nabla_{\lambda} f=0 \tag{2.5}
\end{equation*}
$$

Since the Clistoffel's symbol $T_{\alpha \lambda}^{t}=0,(2.5)$ implies

$$
\partial^{2} f / \partial x_{\alpha} \partial x_{\lambda}=0
$$

Therefore, we can conclude that

$$
\begin{equation*}
f=f_{1}\left(x^{\alpha}\right)+f_{2}\left(x^{\lambda}\right)+\ldots+f_{N}\left(x^{\omega}\right) \tag{2.6}
\end{equation*}
$$

Hence, we have $\nabla^{2} f \mid U_{\theta}=c_{\theta} g_{\theta}=\nabla^{2} f_{\theta}$, where ∇ denotes also the Riemannian connection on $\left(U_{\theta}, g_{\theta}\right), \theta=1, \ldots, N$. That is, we get

$$
\nabla_{\mu} \nabla_{\nu} f_{\theta}+\nabla_{\nu} \nabla_{\mu} f_{\theta}=2 c_{\theta}\left(g_{\theta}\right)_{\mu \nu}
$$

Indices μ, ν, ξ, η run from $\operatorname{dim}\left(U_{1} \times \ldots \times U_{\theta-1}\right)+1$ to $\operatorname{dim}\left(U_{1} \times \ldots \times U_{\theta}\right)$. If we put $Z^{\mu}=\left(g_{\theta}\right)^{\mu \nu} \nabla_{p} f_{\theta}$, then Z is an infinitesimal homothety on $\left(U_{\theta}, g_{\theta}\right)$. Consequently, denoting by L_{Z} the Lie derivation by Z, we get

$$
\begin{equation*}
L_{Z}\left(\Gamma_{\theta}\right)_{\mu \nu}^{\xi}=\nabla_{\mu} \nabla_{\nu} Z^{\xi}+\left(R_{(\theta)}\right)_{v \mu \eta}^{\xi} Z^{\eta}=0 . \tag{2.7}
\end{equation*}
$$

Since $\nabla^{3} f=0$ implies $\nabla^{3} f_{\theta}=0$, we have $\nabla_{\mu} \nabla_{v} Z^{s}=0$. Hence,

$$
\left(R_{(\theta)}\right)_{\nu \mu \eta}^{\frac{\varepsilon}{s}} Z^{\eta}=0 \quad \text { and } \quad\left(R_{1(\theta)}\right)_{v \eta \eta} Z^{\eta}=0
$$

Since $R=R_{(1)}+R_{(2)}+\ldots+R_{(N)}$ and $R_{1}=R_{1(1)}+R_{1(2)}+\ldots+R_{1(N)}$, ((i), (ii) or (ii')) implies $Z=0$. That is, f_{θ} is constant. Hence, f is constant on U. This means $\nabla_{v} \nabla_{u} f=0$. Since $g^{v u} \nabla_{v} \nabla_{u} f=\left(\nabla^{k-1} T, \nabla^{k-1} T\right)$, we get $\nabla^{k-1} T=0$ on U. Because $\nabla^{k-1} T$ is paralle, $\nabla^{k-1} T=0$ holds on M. Continuing these steps, we get $\nabla T=0$.

Proof of Theorem 3. - In the proof of Theorem 1, we can put $N=1$. Define f as before. Then we have an infinitesimal homothety $Z: L_{Z} g=2 \mathrm{cg}$, and

$$
\begin{equation*}
L_{Z} S=L_{Z}\left(g^{r s} R_{\mathrm{rs}}\right)=-2 c \mathrm{~S} \tag{2.8}
\end{equation*}
$$

Since L_{z} and the covariant differentiation are commutative, we get

$$
\begin{equation*}
L_{Z}\left(\nabla^{j-1} S\right)=-2 c \nabla^{j-1} S \tag{2.9}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
L_{Z}\left(\nabla^{i-1} S\right)_{r s, \ldots}=Z^{u} \nabla_{t} \nabla_{r} \nabla_{s} \ldots \nabla_{t} S+(j-1) c \nabla_{r} \nabla_{s} \ldots \nabla_{t} S \tag{2.10}
\end{equation*}
$$

By assumption $\nabla^{j} S=0$ at a point x of $M,(2.9)$ and (2.10) imp?ies that $(j+1)$. $\cdot c\left(\nabla^{i-1} S\right)=0$ holds at x. Hence, we get $c=0$ or $\nabla^{j-1} S=0$ at x. Continuing these steps, finally we have $c=0$ or $\nabla S=0$ at x. If $\nabla S=0$ at $x, L_{Z} S=Z^{u} \nabla_{u} S=0$ holds at x. Since $S \neq 0$ at x, by (2.8) we have $c=0$. Therefore in any case we have $c=0$ and $\nabla_{v} \nabla_{u} f=0$. Consequently $\left(\nabla^{k-1} T, \nabla^{k-1} T\right)=0$ and $\nabla^{k-1} T=0$. Finally $\nabla T=0$.

Proof of Theorem 2. - Since tensors we consider here are all curvature tensors, in a local decomposition corresponding to the restricted homogeneous holonomy group, if suffices to prove Theorem 2 in each part. So we assume (M, g) is irreducible. In stead of the Ricci curvature tensor R_{1}, the Weyl's conformal curvature tensor C, projective curvature tensor P, we write T. Put $f=\left(\nabla^{k-2} T, \nabla^{k-2} T\right)$. Then $Z^{u}=g^{2 n b} \nabla_{v} f$ is an infinitesimal homothety: $L_{Z} g=2 c g$. Hence $L_{Z} T=0$. Since L_{Z} and ∇ are commutative,

$$
\begin{equation*}
L_{Z}\left(\nabla^{k-1} T\right)=\nabla^{k-1} L_{Z} T=0 \tag{2.11}
\end{equation*}
$$

On the other hand, using $\nabla^{k} T=0$ and $\nabla_{v} Z^{u}=c \delta_{v}^{u}$, we have

$$
\begin{equation*}
L_{X}\left(\nabla^{k-1} T\right)=(k+1) e \nabla^{k-1} T \tag{2.12}
\end{equation*}
$$

By (2.11) and (2.12), we have $c=0$ or $\nabla^{k-1} T=0 . \quad c=0$ implies $\nabla^{k-1} T=0$. Continuing these steps we have $\nabla T=0$. This proves (1), (3) and (4) for [$\nabla P=0$].

Next, we show (2). Put $f=\left(\nabla^{k-2} S, \nabla^{k-2} S\right)$. By (2.8), we have $L_{2} \nabla^{k-1} S=$ $=-2 c \nabla^{k-1} S$. On the other hand, we have

$$
L_{Z}\left(\nabla^{k-1} S_{r z . . l}\right)=(k-1) c\left(\nabla^{k-1} S_{r s, \ldots}\right)
$$

by $\nabla^{k} S=0$. Hence, $(k+1) c \nabla^{k-1} S=0$ follows. $c=0$ implies $\nabla^{k-1} S=0$ on M. Therefore, we have $\nabla^{k-1} S=0$ on M, and $\nabla S=0$ on M. To complete our proof for (4), we need the following

Proposimion (Matsumoto [4]). - In a pseudo-Riemannian manifold (M, g), $\nabla P=0$ implies $\nabla R=0$.

REMARK. - $R_{\text {TI }}^{*}$-spaces defined by Roter [6] are locally symmetric, in the positive definite case, by the second Proposition in the Introduction.

3. - Proof of Theorems 4 and 5.

In a study of pseudo-Riemannian manifolds of signature (p, q), the following lemma is sometimes useful.

Lemma, (TanNo [7]). - Assume that $[\operatorname{dim} M=m=$ odd or $m=2]$ or $[m=$ even $\geqslant 4$ and $p \neq q]$. If the restricted homogeneous holonomy group is irreducible and if a symmetric $(0,2)$-tensor g^{*} is invariant by the group, then $g^{*}=\sigma g$ for some scalar σ.

Further, if g^{*} is parallel, then σ is constant.
Proof of Theorem 4. - Put $f=(T, T)$. Then $\nabla_{v} \nabla_{u} f$ is parallel. Hence, $\nabla_{v} \nabla_{u} f=$ $=c g_{v u}$ for some constant c. $g^{u v} \nabla_{v} f=Z^{u}$ is an infinitesimal homothety. Hence, (i), (ii), (ii') of Theorem 1 imply that $c=0$ (of. (2.7), ete.). Consequently, ($\nabla T, \nabla T)=$ $=0$. That is, ∇T is a null tensor. Next, $\nabla_{v} \nabla_{u} f=0$ implies that $\nabla_{u} f$ is parallel. Since (M, g) is irreducible, we have $\nabla_{u} f=0$. This means (T, T) is constant.

Next, assume that (iii) for $j=1$ in Theorem 3. Then $L_{Z} S=-2 c S$ gives $c=0$. Thus, ∇T is null and (T, T) is constant.

Proof of Theoren 5. - Let T be one of R, R_{1}, S, C, P. Put $f=(T, T)$. Then $Z^{u}=g^{u v} \nabla_{v} f$ satisfies $L_{Z} g=2 c g$. If T is one of R, R_{1}, C, P, we have $L_{Z} \nabla T=0$. As in definite case, we have $c=0$. Further, ∇T is null and (T, T) is constant.

As for $T=S$, we have $L_{Z} \nabla_{r} S=-2 c \nabla_{r} S$ and

$$
L_{Z} \nabla_{r} S=Z^{n} \nabla_{u} \nabla_{r} S+c \nabla_{r} S=c \nabla_{r} S
$$

Hence, $c=0$ or $\nabla_{r} S=0$ follows. $\nabla_{r} S=0$ means that $S=$ constant. $c=0$ means that $\nabla_{u} f$ is parallel, and $\nabla_{u} f=0$. Consequently, (S, S), and hence, S is constant.

4. - Proof of Theorem 6.

GloDek proved the following Proposition.
Proposition (Glodek [1]). - Every conformally symmetric (i.e., $\nabla C=0$) pseudoRiemannian manifold (M, g) is conformally flat (i.e., $O=0$) or $\nabla_{r} S$ is null.

Put $C_{i j k t}=g_{i r} C_{j k l}^{r}, a=1 /(m-2)$ and $b=1 /(m-1)(m-2)$. Then

$$
\begin{equation*}
C_{i j k l}=R_{i j k l}-a\left[R_{j k} g_{i l}-R_{j l} g_{i k}+g_{j k} R_{i i}-g_{i l} R_{i k}\right]+b S\left[g_{j k} g_{i l}-g_{i l} g_{i k}\right] \tag{4.1}
\end{equation*}
$$

To prove Theorem 6 , we show that if $\nabla_{r} S$ is not vanishing, $C=0$.
Proof of Theorem 6. - In [1] it is shown that

$$
\begin{equation*}
\nabla_{i} S C_{n t k l}-\nabla_{j} S C_{n i k i}+\nabla_{k} S C_{n l i j}-\nabla_{l} S C_{h k i j}=0 \tag{4.2}
\end{equation*}
$$

Assume that $\nabla_{i} S$ is not vanishing at some point x of M. Then we can take a suitable local coordinate system about x such that $\left(\nabla_{i} S\right)$ has components ($\nabla_{1} S, 0, \ldots, 0$), $\nabla_{1} S \neq 0$, at x.

In (4.2), if we put $(i=1)$ and $(j, k, l \neq 1)$, then we have $C_{h j k l}=0$ for every h. That is

$$
\begin{array}{ll}
C_{1 j k l}=0 & \text { for } j, h, l \neq 1 \\
C_{n k l}=0 & \text { for } h, j, k, l \neq 1 \tag{4.4}
\end{array}
$$

In (4.2), if we put ($h=i=k=1$) and $(j, l \neq 1)$, then we have

$$
\begin{equation*}
C_{1 j 1 l}+C_{1 l i j}=0 \tag{4.5}
\end{equation*}
$$

Since $C_{i j k l}=C_{k i i j}$, (4.5) gives

$$
\begin{equation*}
C_{1 n}=0 \quad \text { for } j, l \neq 1 \tag{4.6}
\end{equation*}
$$

Thus, (4.3), (4.4), and (4.6) show that $C=0$ at x. Since $\nabla C=0$, we have $C=0$ on M. This completes the proof of Theorem 6.

5. - Proof of Corollary and Theorem 7.

Let (M, g, J) be an almost Hermitian manifold with almost complex structure tensor J and an almost Hermitian metric tensor g (which is positive definite). J and g satisfy

$$
\begin{array}{ll}
J J X & =-X \\
g(J X, J Y) & =g(X, Y) . \tag{5.2}
\end{array}
$$

(M, g, J) is Kählerian, if and only if $\nabla J=0$. Then Corollary follows from Theorem 1.
Proof of Theorem 7. - By (3) of Theorem 2, it suffices to show that $\nabla C=0$ implies $\nabla R=0$. So, assume that a Kählerian manifold (M, g, J), $m \geqslant 4$, satisfies $\nabla C=0$. It is known that $\nabla_{r} C_{j b l}^{r}=0$ implies

$$
\begin{equation*}
\nabla_{l} R_{j k}-\nabla_{k} R_{j l}=[1 / 2(m-1)]\left(g_{j k} \nabla_{l} S-g_{i l} \nabla_{k} S\right) \tag{5.3}
\end{equation*}
$$

By Glodek's theorem or Theorem 6, we have either $C=0$ or $S=$ constant. If $C=0$ in a Kählerian manifold, we have (cf. Yavo and Mogi [10])
(A) for $m>6,(M, g, J)$ is locally flat,
(B) for $m=4, S=$ constant.

Therefore, in any case, we see that $S=$ constant. (5.3), then, gives

$$
\begin{equation*}
\nabla_{i} R_{j k}=\nabla_{k} R_{j k} \tag{5.4}
\end{equation*}
$$

It is known that (ef. Yano and Mogi [10])

$$
\begin{equation*}
R_{i k} J_{r}^{j} J_{s}^{k}=R_{r s} \tag{5.5}
\end{equation*}
$$

Since $\nabla S=0$, operating ∇_{i} to (5.5) we get

$$
\begin{equation*}
\nabla_{i} R_{i k} J_{\tau}^{\mathbf{j}} J_{s}^{k}=\nabla_{i} R_{r s} . \tag{5.6}
\end{equation*}
$$

Now we show that $\nabla_{i} R_{j k}=0$. In fact,

$$
\begin{aligned}
\nabla_{i} R_{j k} & =\nabla_{i} R_{r s} J_{i}^{q} J_{k}^{s} & & \text { by (5.6) } \\
& =\nabla_{\uparrow} R_{i s} J_{j}^{r} J_{k}^{s} & & \text { by (5.4) } \\
& =\left(\nabla_{r} R_{p q} J_{i}^{p} J_{s}^{q}\right) J_{j}^{v} J_{k}^{s} & & \text { by (5.6) }
\end{aligned}
$$

$$
\begin{array}{ll}
=\nabla_{q} R_{p r} J_{i}^{p} J_{s}^{q} J_{j}^{r} J_{l}^{s} & \\
=\nabla_{q} R_{a b} J_{p}^{a} J_{r}^{b} J_{i}^{p} J_{s}^{\alpha} J_{j}^{r} J_{k i}^{s} & \\
\text { by (5.4) } \\
=-\nabla_{k} R_{i j} & \\
\text { (5.6) } \\
\text { by (5.1) . }
\end{array}
$$

Hence, using (5.4), we have $\nabla_{i} R_{j k}=0 . \quad \nabla_{i} S=0, \nabla_{i} R_{j k}=0$, (4.1), and. $\nabla_{h} O_{i j k l}=0$ give $\nabla_{h} R_{i j k l}=0$. Therefore, we have $\nabla R=0$.

Proof of Theorem 8 is contained in the above Proof of Theorem 7.

REFERENCES

[1] E. Glodek, Some remarks on conformally symmetric Riemannian spaces, Colloq. Math., 23 (1971), pp. 121-123.
[2] A. Lichnerowicz, Courbure, nombres de Betti, et espaces symétriques, Proc. Int. Cong. Math., 2 (1952), pp. 216-223.
[3] A. Lichnerowicz, Géometrie des groupes de transformations, Paris, Dunod, 1958.
[4] M. Мatsumoto, On Riemannian spaces with recurrent projective curvature, Tensor, N.S., 19 (1968), pp. 11-18.
[5] K. Nomizu - H. Ozeki, A theorem on curvature tensor fields, Proc. Nat. Acad. Sci., 48 (1962), pp. 206-207.
[6] W. Roter, Some remarks on second order recurrent spaces, Bull. Polon. Sci. Ser. Sci. Math. Astr. Phys., 12 (1964), pp. 207-211.
[7] S. Tanno, Strongly curvature-preserving transformations of pseudo-Riemannian manifolds, Tôhoku Math. Journ., 19 (1967), pp. 245-250.
[8] S. Tanno, Transformations of pseudo-Riemannian manifolds, Journ. Math. Soc. Japan, 21 (1969), pp. 270-281.
[9] H. Wu, On the de Rham decomposition theorem, Illinois Journ. Math., 8 (1964), pp. 291-311.
[10] K. Yano - I. Mogi, On real representations of Kählerian manifolds, Ann. Math., 61 (1955), pp. 170-189.
[11] L. P. Eisenhart, Symmetrio tensors of the second order whose first covariant derives are zero, Trans. Amer. Math. Soc., 25 (1923), pp. 297-306.

