
Curvature  Tensors  and  Covar iaut  Der ivat ives .  

SIIff~IcnI T A ~ ' o  (Sendal) (*) 

Summary. - The problems considered here are of two types. (i) What are implications o/ 
van/ishing k.th covariant derivatives o/ curvature tensors? (ii) Under what conditions on 
curvature tensors, does the k-th covariant derivative V~T = 0 for a tensor T mean VT = O? 

1. - Introduction. 

Le t  (M, g) be a Riemannian  manifold  wi th  (positive definite) Riemannian  metr ic  
tensor  g or a pseudo-l~iemannian n~n i fo ld  with (definite or indefinite) l~iemannian 
metr ic  tensor  g. B y  R ~ ( R ~ )  we denote  the  Riemunnian  curva ture  tensor:  

R ( X ,  Y ) Z  = V [ x . r ] Z - - [ V x ,  V r ] Z  , 

where X ,  Y,  Z are vector  fields on M and  V denotes the  Riemannian  connection 
defined by  g. B y  R I (/~e ~ R~kr) and S = g ,~ we denote  the  Ricci curvatm'e 
tensor  and  the  scalar curva ture ,  respectively.  

No~:Izu and  OZEKI [5] p roved  the  following Proposi t ion.  

PROPOSITION (No~IIzu and  OZE~I [5]). - I f  a Rieraannian mani/old (M, g) is com- 

plete and irreducible, and i f  an arbitrary tensor T has the vanishing k-th covariant deri- 
vative, i.e., V k T  ~ 0 /or some integer k ~  l ,  then V T  ~ O. 

We replace ~ completeness )) b y  curva ture  ~ n s o r  conditions. 

THEOBEYl 1. -- Let (M,  g) be a Riemannian  mani/old. Assume  one o] the following 
conditions: 

(i) A t  some point x o] M,  R~ is non-singular~ 

(ii) at some point x o] M a n d / o r  some tangent vectors X ,  Y at x, R ( X ,  ~)  is 
non-singular, 

(ii') at some point x o] M,  the index o] nullity is zero. 

T h e n , / o r  an arbitrary tensor T, V~T -~ 0 /or some k ~  l implies V T  ~ O. 

I n  the  case T ~  R, ~ o ~ z u  and  O z ~  [5] and  la ter  ~o~gz~  (without  assuming 
completeness) proved the  following Proposi t ion.  

(*) Entrato in Redazione il 16 Maggio 1972. 
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PROP0SITIOZ~ (~NO~IZU and  OZEKI [5], ~O)'~ZU). -- I n  a Riemannian raani]old ( M, g), 
i] V~R = 0 for some k>~l, then V R  = O. 

This  is a genera l iza t ion  of a res~tt  of L~CHZCE~ow~cz [2], [3] for the  case T = R. 
AnMogously we have  

T~EO~E~ 2. - Let (M, g) be a Riemannian mani]old. By  C and P we denote the 
Weyl's conformal curvature tensor and projective curvature tensor. 

(1) I f  V k R 1 - - 0  /or some k > l ,  then VR~ = O. 

(2) I f  VkS = 0 /or some k > l ,  then S = constant .  

(3) I /  VkC = 0 /or some k>~l, then VC -~0. 

(4) I] VkP ---0 ]or some k>l~  then V P  =: 0 and VR  ~ O. 

The anchor  is gra tefu l  to Professor  K. N o ~ z u  who gave  h im a le t ter  containing 
a proof  of the  above  Proposi t ion.  Proof  of Theo rem 2 is bas ical ly  the  s~me as one 

for the  Proposi t ion.  
GenerMly~ if  T is a (homogeneons) tensor  cons~r~acted b y  [V~R~ V~t~, V~C, V~P; 

r, s, t, u ~- O, 1, ... finite] and  satisfies VkT = 0 for some k > l ~  then  VT ~ 0, where 

V°R = R, etc.  

Tn:EOI~:E~ 3. - Let (M, g) be an irreducible Riemannian manifold. I f  

(iii) at some point x o] M, (VJS)~ -~ 0 /or some ~ >1 and S~ V: O~ 

then, for a tensor T, VkT ~ 0 /or some k> l implies VT---- O. 

~Nex~ we consider p seudo-Riemann ian  manifolds.  

Tn:EORE~[ 4. -- Let (M~ g) be a pseudo-Riemannian mani/old o] signature {p, q). 

Assume that 

(a) the restricted homogeneous holonomy group is irreducible, 

(b) [ d i m M - - - - m :  odd or m-----2] or [ m - - e v e n ~ > 4  and p~:q] ,  

(c) (M~ g) satisfies one o/ the conditions: (i), (ii), (ii') in Theorem l~ (iii) ]or 
j -~  1 in Theorem 3. 

Then, /or a tensor T, V ~ T =  0 implies that V T  is null and the inner product 
(T, T) is constant. 

T ~ E o t ¢ ~  5. - Let (M, g) be a pseudo-Riemannian mani/old o/ signature (p, q). 
Assume that (a) a n d  (b) in Theorem 4. Then we have 

(1) V~R ~ 0 implies that V R  is null and (R~ 1~) is constant. 

(2) V~R1 = 0 implies that VR1 is null and (RI~ R1) is constant. 
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(3) V~-S : :  0 implies that S -  constant. 

(4) V2C = O implies that VC is null and (C, C) is constant. 

(5) V2P = 0 implies that VP is null and (P, P) is constant. 

Theorems 4 und 5 ure generalised, if ~ pseudo-Riemannian  munifo]d (M, g) is 

non-degenerately redncible in the sense of W u  [9] und if respective p~r% s~tisfies 

the  required conditions. 
Next,  generalizing a result  of GLODEK [1], we get  

Tm~oan~ 6. - Let (M, g) be a pseudo-Riemannian manifold, m>~¢. I / t h e  Weyl's 
con/ormal curvature tensor C is parallel, i.e. VC = O, then C = 0 or ~ = constant. 

As an ~pplica%ion of Theorem 1 we have 

COROLLARY. - -  Let (M, g, J) be an almost Hermitian manifold with almost complex 
structure tensor J and almost Hermitian metric tensor g. I /  the Ricci curvature tensor 
R~ is non-singular at some point, and if V ~ J =  0 for some k> l ,  then (M, g, J) is 
K~hlerian. 

Final ly ,  we have 

T~_EOIC:E)~ 7. -- Let (M, g, J) be a Kdhlerian manifold, m>4.  
some k> l ,  then V R =  0, i.e., (M, g, J) is locally symmetric. 

I n  the proof of Theorem 7, we have also 

I] V k C = O  /or 

Tn-E01C~WI 8. - Let (M, g, J) be a Kiihlerian manifold. Then ViR¢~-- VjR~k = O, 
if  and only i~ V~Rj~ : O. 

2.  - P r o o f  o f  T h e o r e m s  1,  2 a n d  3.  

Let  (M, g) be ~ l~iemsnni~n manifold.  Le t  T be ~ tensor  a.nd let T~'"~c,..a be its 

components  in a focal coordinate neighborhood U. Assume tha t  VkT = 0 for some 
k > 2 .  We pa t  V ° T = T .  We define ~ scalar / by  

(2.1) / = (Vk-~-T, W,-2T) 

V, ... V~T~'"~c...dW ... VsT*'"f,,..vg~, ... ge, 

where V r = grtV, and u, v, a~ b, r, .% . . . .  1, 2, ..., m = d i m  M .  

(2.2) V~,V~VJ- 0 .  

VkT------ 0 implies 



236 S]~KICHI TA~-~O: Curvature tensors and covariant derivatives 

Assuming tha t  U is sufficiently small~ let U =  U 0 × U~ × ... × U~ be local decomposi- 
t ion of U corresponding to the  restr icted homogeneous holonomy group. Then the 
metr ic  tensor g is decomposed into 

(2.3) g = (Y° 

\o 
gl 0 i 

where go is the fiat par t  and (U1, g~), ..., (U~-, g~) are irreducible. The parallel sym- 
metr ic  tensor V ~] - ( V ,  V J )  is wri t ten  as (err. EIS]~NH~T [11]) 

(2.4) V z / =  

where c~, ..., c~ are constant.  

clgl 

C2V gN 

l~ow, we define a subspace ~¥~ of the  t angent  space M~ at  x by  

N~ = {X  ~ )/I x: R(X~ Y)  = 0 for all I z c M~}. 

Then the  dim N x is called the index of nul l i ty  at  x. 

P ~ o o r  OF THEO~E~ 1. - I f  R 1 is non-singular at  some point x, we consider U 
containing x. Then U has no flat part,, i.e., U----U1 × ... × U~: This is the  same 
for (ii) and  (ii'). I f  we denote product  coordinates (x u) by  

(x ~ ) - - [x  ~ in Ul, x ~ in  U2, ..., x ~ in U~]. 

Then, (2.4) implies 

(2.5) V~V~.¢ = 0.  

Since the  Clistoffel's symbol /~:~ = 0, (2.5) implies 

~2 ]/~x~ ~x~ = 0 .  

Therefore, we can conclude t h a t  

(2.6) ] -- f l (x  ~) ~- f2(x x) ~ ... -~= ]~-(x ~) • 

Hence, we have V~fIUo = cog o ---V:fo,  where V denotes also the Riemannian  con- 
nection on (U0, go), 0 = 1, ..., N. Tha t  is, we get 

V,V~f  o ~- V~Vgfo = 2eo(go)~. 
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Indices  /~, v, ~, U run from dim (U~ x ... × Uo_I) + t to dim (U~ x ... x U0). I f  we put  
Z t ' =  ( g J ' W ~ / o ,  then  Z is an  infinitesimal h o m o t h e t y  on (Uo, go). Consequently,  

denot ing by  L z the  Lie der ivat ion b y  Z ,  we get 

(2.7) L~(r0) i  =: v,~v~z~ + (R(0)>i . j '  - 0 .  

Since V3/----0 implies Va/0 = 0, we have V~V~Z~ = 0. Hence,  

(R(o)/~, ,Z" ~- 0 and (Rl(o)),.,Z" == 0 . 

Since R = R(n + R(~)+ ... + R(;~ and R 1 --~ R m ) +  R1(2) + ... ~- RltN) , ((i), (ii) or (ii')) 
implies Z = 0. Tha t  is, / ,  is constant .  Henc% / is constant  on U. This means 
V~V, /=0 .  Since g ~ V ~ V , / = ( V ~ - I T ,  Vk-IT),  we get  V k - I T : 0  on  U. Because V~-IT 

is parallel, Vk-~T ...... 0 holds on M. Continuing these steps, we get VT== O. 

PROOF OF TKEOR]~Iv[ 3. - ~n the proof o~ Theorem 1, we can pu~ N == 1. Define / 

as before. Then we have an  infinitesimal h o m o t h e t y  Z:  L z g =  2cg, and  

(2.s) L z S  = Lz(g~l?~)  =: - -  2cS  . 

Since L z and the covar iant  differentiation are commuta t ive ,  we get  

(2.9) Lz(Vi-~S) - _ 2 c V J - ~ S .  

On the other hand, we have 

(2.10) Lz(Vi-IS),...t -- ZUVuVrVs  ... V t S  -~ () - -  1) c~7~V 8 ... VtS . 

B y  assumpt ion V J S =  0 a t  a point  x of M, (2.9) and (2.10) imp!ies t ha t  (] 4-1) .  

• c(V~-IS) = 0 holds at  x. Hence, we get v =  0 or V ~ - I S =  0 at  x. Continuing these 

steps, finally we have c ~- 0 or V S  = 0 a t  x.  I f  V S  - -  0 a t  x ,  L z S  = Z ~ V u S  = 0 holds 

at  x. Since S ¢ 0 a t  x, b y  (2.8) we have c-~ 0. Therefore in a n y  case we have  

c -~ 0 and  V , V J  ----- 0. Consequently (V~-~T, V~-iT) ~ 0 and V~-IT  = 0. Final ly 
VT = O. 

PROOF OF Tm~ORE~[ 2. - Since tensors we consider here are all curvature  tensors, 

in a local decomposit ion corresponding to  the r e s t r i e~d  homogeneous holonomy 

group, if suffices to prove Theorem 2 in each par t .  So we assume ( M ,  g) is irre- 

ducible. I n  stead of the Ricci curvatm'e  tensor  R~, the  WeyFs conformal curvature  
tensor C, projective curvature  tensor P,  we write T. P u t  /------ (V~-2T, Vk-UT). Then 

Z" ---- g ~ V J  is an  infinitesimal h o m o t h e t y :  Lzg-- - -2cg .  Hence L z T - - - - 0 .  Since L z 
and  V are commuta t ive ,  

(2.11) L z ( V ~ - ~ T )  = Vk-ILzT = 0 . 



238 SHUK~CH~ T ~ o :  Curvature tensors and covariant derivatives 

On the other  hand,  using V~T = 0 and V~.Z~'= cb~, we have 

(2.~2) Lz(V~-~ T) = ( k  + 1) cV~-~T. 

B y  (2.11) and (2.12), we have c = 0  or V~¢-~T:=-0. e = 0  implies V ~ - ~ T = 0 .  Con- 
t inn ing  these steps we have  VT : 0. This proves (1), (3) a~nd (4) for [VP = 0]. 

Nex%, we show (2). P u t  ] =  (V~-~S, V~-~S). B y  (2.8), we have  LzV~-~S-~  
=--2cV~-~S .  On the  other  hand,  we have 

by  V~N=O. genee ,  ( k + l ) c V ~ - X S - - O  follows, c = O  implies V ~ - I S = O  on M. 
Therefore,  we have Vk-~S = 0 on 31, and VS = 0 on M. To complete our proof 

for (4), we need the  following 

P~oPosITIO~ ( ~ T S ~ O T O  [4]). - In  a pseudo-Riemannian  manifold (M, g), 

VP = 0 implies VR = 0. 

Rv .~X~.  - R~-spaces defined b y  ROTE~ [6] are locally symmetr ic ,  in the  posi- 

t ive definite case, by  the  second Proposi t ion in the  In t roduct ion .  

3. - Proof  o f  Theorems  4 and 5. 

In  a s tudy  of pseudo-l~iemannian manifolds oi signature (p, q), the  following 

lemm~ is somet imes useful. 

LE]u:~I~ (T)~No [7]). - Assume that [dim M =  m = odd or m = 2] or [ m =  e v e n >  
and p V: q]. I] the restrieted homogeneous holonomy group is irreducible and i] a sym- 
metric (0~ 2)-tensor g* is invariant by the group, then g*= ag ]or some scalar a. 

Further, i] g* is parallel~ then a is eonstant. 

P~ooF OF T ~ E O ~  4. - P u t  ] = (T, T). Then  V s V j  is parallel. Hence,  V~Vu/-- 
== eg~ for some cons tant  e. g~vV~f = Z ~ is an  infini tesimal homothe ty .  Hence,  
(i), (ii), (if') of Theorem 1 imply  ~ha~ c -  0 (cf. (2.7), etc.).  Consequently,  (VT, VT) = 

0. Tha t  is, VT is a null  tensor.  Next ,  V~VJ = 0 implies tha t  V J  is parallel. 
Since (M, g) is i rreducible,  we have V J  = 0. This means  (T, T) is constant .  

N e ~ ,  assume t h a t  (iii) for j = 1 in  Theorem 3. Then  L z S  = -  2eS gives e = 0. 

Thus,  V T  is nnll  and  (T, T) is constant .  

P~ooF OF THEO~E~'~ 5. -- Le t  T be one of /~ ,  R1, S, C, P.  P u t  ] = (T, T). Then 
Z ~ ---- g"~VJ satisfies Lzg = 2eg. I f  T is one of R, RI, C~ P,  we have L z V T  = O. As 
in definite case, we have e = 0. Further~ VT is null and (T, T) is constant .  
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As for T =  S, we have  LzV~S = - - 2 c V ,  S a n d  

LzV~S .... Z~V,V~S + cV~S = eVeS. 

I t enee ,  c = 0 or V~S = 0 follows. V,S  = 0 m e a n s  ~ha~ S = cons t an t ,  c = 0 m e a n s  

~ha~ V J  is paral lel ,  a n d  Vf l  =: O. Consequen t ly ,  (S, S), a n d  hence,  S is constan$.  

4.  - P r o o f  o f  T h e o r e m  6.  

GLODE~: p r o v e d  t he  fo] lowing Propos i t ion .  

PROPOSITION (GLOD]~K [ 1 ] ) .  -- Every con]orraally symmetric (i.e., V C =  O) pseudo- 
Riemannian manifold (M, g) is conforraally fiat (i.e., C--  O) or VrS is null. 

P u t  C~j~n=g~,.C~, a =  1 / ( m - - 2 )  ~nd  b = t / ( m - - 1 ) ( m - - 2 ) .  T h e n  

j.~ ) (4.1) C~;~ = R,~z--a[Rjt~g~--R~g~k -- g~k ,--gj~Ii,~] + bS[gz~g,--gj~g,:] 

To prove  T h e o r e m  6, we show Chat if VrS is no t  van i sh ing ,  C =  0. 

P ~ o o ~  of THEO~E~ 6. - I n  [1] i t  is shown t h a t  

V ' - - V  ' = . 

A s s u m e  t h a t  V~S is no~ v a n i s h i n g  a¢ some poin¢ x o~ M. Then  we can  t ake  a suit-  

able  local  coordinaCe sysCem a b o u t  x such  Chat (V~S) has  c o m p o n e n t s  (V~S, 0, ..., 0), 
V ~ S ¢ 0 ,  a~ x. 

I n  (4.2), if we pu¢ ( i = 1 )  a n d  (~, k, l=/= 1), Shen we have  C ~ =  0 for  eve ry  h. 
Tha~ is 

(4.3) CI~1~ = 0 for  j, k, 1 ¢ 1 , 

(4.4) C~,k~ ....... 0 for  h, j, k, l ~ 1 . 

I n  (4.2), if we p u t  (h = i = k = 1) a n d  (j, l : / :  1), ~hen we h a v e  

(4.5) 0 .1~  + C1~. = 0 . 

Since C~j~ = Ck~., (4.5) gives  

(4.6) Cm~ = 0 for  j, 1 =/= 1 . 

Thus ,  (4.3), (4.4), a n d  (4.6) show t h a t  C = 0  a'~ x. Since V C = 0 ,  we h a v e  C = 0  
on M. This  comple tes  t he  p roof  of T h e o r e m  6. 
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5. - Proof  of  Corollary and Theorem 7. 

Le t  (M, g, J )  be ~n a lmost  He rmi t i an  manifold  with almost  complex s t ructure  
tensor  J and an  almost  g e r m i t i a n  met r ic  tensor  g (which is positive defini~).  J and g 
sat isfy 

(5.1) J J X  - - - X . ,  

(5.2) g(JX, J Y )  = g(X, Y ) .  

(M, g, J)  is K~hler ian,  if and  only  if V J =  0. Then  Corollary follows from Theorem 1. 

PROOF OF THEOREm[ 7. -- ]By (3) Of Theorem 2~ i t  suffices to show tha t  VC = 0 
implies V R = 0 .  So, assume t h a t  a K~hler ian  manifold (M, g, J) ,  m > 4 ,  satisfies 

V V C = 0 .  I t  is known tha t  ~C j ~ =  0 implies 

(5.3) Vz/~k - -  V,: R~t = [1/2(m - -  1)](g~V~ ,~ - -  gnV,~S). 

B y  Glodek~s theorem or Theorem 6, we have e i ther  C = 0 or S ---- constant .  I f  C---- 0 
in a K~hler ian ma, nifoid, we have  (cf. Y~,No and iVfoai [10]) 

(A) for m > 6 ,  (M, g, J)  is locally flat, 

(B) for re=g, S = constant .  

Therefore,  in any  case, we see t h a t  S = constant .  

(5.4) V~Rj~ = V~R~ . 

I t  is known tha t  (ef. YA~O and ~oGI  [10]) 

k (5.5) R~k d~ J ,  -- Rrs. 

Since VS----0, opera t ing V~ to (5.5) we get  

j k (5.6) V~Rjk Jr J8 =: V.~/{'~,. 

l~ow we show tha t  V~R~ := O. In  fac~, 

q T $ = (V, Rvq J~ J,) J~ J~ 

(5.3), then,  gives 

by  (5.6) 

by  (5.4) 

by  (5.6) 
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_ ~ [~ .~a.Tb T ~ . T a j r j s  
- -  - - q  'ab'J ~ r ' J  i ~ s  j lc 

. . . .  VIcR~ 

by  (5A) 

by  (5.6) 

by  (5.1). 

t tenc% using (5.4), we huve V~Rjk =-O. V~S =-0, V~Rjk--~ O, (4.1), und V~C,~z =-0 

give V~/~kz = 0. Therefor% we h~ve VR =-0. 

PROOF OF TtIE01CE~ 8 is contained in the above Proof of Theorem 7. 
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