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CURVATURE TENSORS ON ALMOST HERMrTIAN MANIFOLDS
BY

FRANCO TRICERRI1 AND LIEVEN VANHECKE

Abstract. A complete decomposition of the space of curvature tensors over a
Hermitian vector space into irreducible factors under the action of the unitary
group is given. The dimensions of the factors, the projections, their norms and the
quadratic invariants of a curvature tensor are determined. Several applications for
almost Hermitian manifolds are given. Conformal invariants are considered and a
general Bochner curvature tensor is introduced and shown to be a conformal
invariant. Finally curvature tensors on four-dimensional manifolds are studied in
detail.

1. Introduction. Let (V, g) be an n-dimensional real vector space with positive
definite inner product g and denote by 61 (V) the subspace of V* <8> V* <8> V* <8>
V* consisting of all tensors having the same symmetries as the curvature tensor of a
Riemannian manifold, including the first Bianchi identity. In a well-known paper
[21] Singer and Thorpe considered 61(F) (in particular for n = 4) and gave a
geometrical useful description of the splitting of 61(F) under the action of &(n)
into three components. This was also studied by Nomizu [18] for generalized
curvature tensor fields.

A similar decomposition was given in [16], [17] and [22] when V is a 2«-dimen-
sional real vector space endowed with a complex structure J compatible with a
positive definite inner product g and for the subspace %(V) of 61(F) consisting of
tensors satisfying the Kahler identity. In this case the splitting of %(V) is treated
for the action of 6ll(n).

Of course all these decompositions are, in principle, consequences of general
theorems on group representations (see [34]). (For other decompositions see [11],
[13].) On the other hand these decompositions do provide insight in some problems
of differential geometry. For example, in the splitting of 61(F), one of the
projection operators gives the Weyl conformal tensor and in the splitting of %( V)
one obtains in the same way the Bochner tensor. Also the decomposition provides
some inequalities for the quadratic invariants and in other cases for some cubic
invariants of the curvature tensor. As is well known, these inequalities are very
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useful for characterizing some particular manifolds as, for example, Einstein
spaces, spaces of constant (holomorphic) sectional curvature, etc.

In this paper we will give the complete decomposition of 61(F) under the action
of all(n). We start in §2 with some useful definitions and treat in §3 a first partial
decomposition by introducing some fundamental linear operators. The operators
are involved in some identities for the curvature operator, proved to be useful in
studying almost Hermitian manifolds [10], [12]. Then, in §4, we determine all
invariant curvature tensors and in §5 we give the complete decomposition.

One of the main results of §6 gives the irreducibility of the decomposition. The
proof is based on a detailed treatment of the quadratic invariants of the curvature
operator. The study of these invariants is also interesting because they are used in
several theories on differential geometry such as the theory of the volumes of
geodesic spheres and tubes, spectrum theory and some topological and algebraic
studies (e.g. the determination of the Euler-Poincare characteristic, arithmetic
genus, Hirzebruch signature, etc.).

In §7 we determine explicitly the dimensions of all the factors in the decomposi-
tion and in §8 we write down the projections of a curvature tensor on these factors.
This enables us to determine the norms of the projections and so this again
provides a method to characterize some particular curvature tensors by using new
inequalities. Some applications are given in §§10 and 12 where we consider the
Riemannian curvature tensor on a general almost Hermitian manifold. There we
consider special classes of manifolds based on several curvature identities and
inequalities for the quadratic invariants. Those are introduced in a natural way and
are a key to understanding the geometry of almost Hermitian manifolds.

In §9 we introduce the notion of a Bochner tensor associated with a curvature
tensor and study it in detail in §10. Our method to define this tensor is a natural
generalization of the Kahler case. Moreover we consider conformal changes of the
metric on a Riemanian manifold and the main result is that, just as in the case of
the Weyl tensor, the Bochner tensor associated with the Riemann curvature tensor
is a conformal invariant tensor. At the same time we discover also other conformal
invariant tensors.

In §13 we illustrate the decomposition by considering the Calabi-Eckmann
manifolds and a Hopf manifold. It would be interesting to illustrate the decomposi-
tion with a lot of other examples by constructing manifolds such that the Riemann
curvature tensor has one or more vanishing projections on the factors of the
decomposition. We refer to [7], [11] and other papers where many examples of
almost Hermitian manifolds are given but we mention that there are still some
open problems.

Additional motivation for the study of our generalized Bochner tensor is given in
§§14 and 15. There we treat in detail the decomposition for the case of a
four-dimensional vector space. Four-dimensional geometry has a special feature
because of the *-operator and is intensively studied at present in relation to
Yang-Mills theory [1], [8]. In particular we study the self-dual and anti-self-dual
part of the Weyl conformal tensor and we show, for example, that on a Hermitian
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CURVATURE TENSORS 367

manifold the Bochner tensor is just the anti-self-dual part of it. Further we
compute the Euler-Poincare characteristic, the Hirzebruch signature and the arith-
metic genus for compact orientable Einstein spaces and derive several useful
inequalities between them.

Finally in §15 we consider submanifolds of almost Hermitian manifolds and give
a theorem concerning the relation between the Bochner tensor of the ambient
space and the Weyl tensor of a totally real submanifold. This again illustrates how
both tensors have an important place in conformal geometry.

The authors wish to thank A. Gray for his interest in our work and for several
useful discussions.

2. Preliminaries. Let F be an H-dimensional real vector space with positive
definite inner product g. A tensor R of type (1,3) over F is a bilinear mapping

R: V X V^Hom(V,V):(x,y)r^R(x,y).
R is called a curvature tensor over F if it has the following properties for all
x, y, z, w E V:

(i)R(x,y) = -R(y,x);
(ii) R(x, y) is a skew-symmetric endomorphism of F, i.e.

R(x,y, z, w) + R(x,y, w, z) = 0   where R(x,y, z, w) = g(R(x,y)z, w);

(iii) @R(x, y)z = 0 where @ denotes the cyclic sum over x, y and z. This is the
first Bianchi identity.

The Ricci tensor p(R) of type (0, 2) associated with R is a symmetric bilinear
function on F X F defined by

p(R)(x,y) = trace(z E Fh> R(x, z)y E V).

Then, the Ricci tensor Q = Q(R) of type (1, 1) is given by p(R)(x,y) = g(Qx,y)
and the trace of Q is called the scalar curvature r = t(R) of R.

Next, let V be a 2n-dimensional real vector space with a complex structure J and
a Hermitian product g, i.e.

J2 = -I,       g(Jx,Jy) = g(x,y)

for all x, y E V, and where / denotes the identity transformation of V.
p is a %(«)-concomitant [3]. Further we define a second %(n)-concomitant p*

which, together with p and J, suffices to write down all %(n)-concomitants of
61(F) in A2(F) following the methods of [15].

The Ricci *-tensor p*(R) of type (0, 2), resp. Q* = Q*(R) of type (1, 1),
associated with a curvature tensor R is defined by

p*(R)(x,y) = g(Q*x,y) = trace(z E V h-» R(Jz, x)Jy £ V)
In

= 2 R(x, <?„ Jy, Jej)
i=i

where (e,, / = 1, . . . ,2n) is an arbitrary orthonormal basis of F. Then, the trace
of Q* is called the *-scalar curvature t* = t*(R) of R. In general p*(R) is neither
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symmetric nor antisymmetric but we always have

(2.1) p*(R)(x,y) = p*(R)(Jy,Jx)

for all x, y E V.
We note that for some classes of almost Hermitian manifolds it is possible to

express the first Chern class with the help of p(R) and p*(R). This is done in [9] for
the class of nearly Kahler manifolds although the p*(R) is slightly different from
the one just defined.

Let 61 (F) denote the vector space of all curvature tensors over F. This space has
a natural inner product induced from that on V:

2n

(R,R>=    2    g{R(ei,ej)ek,R(ei,eJ)ek)
i,j,k=\

where R, R E 61 (F) and {ej) is an arbitrary orthonormal basis of F. Further, let a
be the standard representation of the unitary group <$L(n) in F. Then there is a
natural induced representation a of %(«) in 6t( F) given by

a(a)(R)(x,y, z, w) = R(a(a~x)x, a(a~x)y, a(a~x)z, a(a~x)w)

for all x,y,z,w E V, R E 6l( F) and a E %(«)■
We have

{a(a)R,a(a)R) = {R, R),       a E %(n),    R, R E61(F).

This implies that the orthogonal complement of an invariant subspace of 6l( F) is
also invariant. Further it follows from this that the standard representation of
%(«) in 61(F) is completely reducible.

Finally we note that dim 61(F) = 1 when n = 1. In that case 61(F) is irreduc-
ible. Hence, from now on we only consider the case n > 2.

3. Partial decomposition. Our aim is to give a complete decomposition of 61(F)
into orthogonal irreducible factors. Before doing this we introduce three particular
subspaces 61,. (F), i - 1, 2, 3, of 61(F), following [10].

Definition 3.1.

%(V) = {R E <?H(V)\R(x,y, z, w) = R(x,y, Jz, Jw)};

%(V) = {R E <3l(V)\R(x,y,z, w) = R(Jx, Jy, z, w)
+ R(Jx,y, Jz, w) + R(Jx,y, z, Jw));

%(V) = {R E 6l(F)|/?(x,y, z, w) = R(Jx,Jy,Jz,Jw)).

These subspaces are invariant under the action of %(«). Further we have (see,
for example, [10], [12]): %(V) c %(V) c %(V).

Next we put:
6lj-(F) = orthogonal complement of 61,(F) in 612(F);
e${£(V) = orthogonal complement of %(V) in %(V);
61^-(F) = orthogonal complement of %(V) in 61(F).

Hence we have already the following decomposition of 61(F) into orthogonal
invariant subspaces.
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Theorem 3.2. We have

(3.1) 61(F) = %(V)® <&t(V) 0 <&t{V) 8 613-L(F).

In order to describe and to study these subspaces more in detail we put
6l4(F) = 61(F) and introduce three linear operators L„ / = 1, 2, 3. As mentioned
in the Introduction, these operators are closely related to some identities for the
curvature operator, proven to be useful in the study of almost Hermitian manifolds
[10], [12].

Definition 3.3. For all x,y, z,w E V we put
(a)

(LxR)(x,y, z, w) =\{R(Jx, Jy, z, w) + R(y,Jz,Jx, w) + R(Jz, x,Jy, w)}

for all/? E %(V);
(b)

(L2R)(x,y, z, w) ={-{R(x,y, z, w) + R(Jx,Jy,z, w)

+ R(Jx,y, Jz, w) + R(Jx,y, z, Jw)}
for all/? E %(V);

(c)

(L3R)(x, y, z, w) = R(Jx, Jy, Jz, Jw)    for all R E &( F).

It follows from this that

(3.2) (LxR)(x,y, z, w) - (LxR)(x,y, Jz, Jw) = -R(x,y, z, w) + R(x,y, Jz, Jw)
and hence we have

Lemma 3.4. LXR = R if and only if R E %(V).

Further we obtain

Lemma 3.5. The restriction of L,, i = 1, 2, 3, to 6l,+1 is an involutive isometry.
Moreover, L, commutes with the action of ^L(n), i.e. L, is a ^(nyconcomitant [3].

This lemma implies that L, has two eigenvalues, +1 and -1, and that the
corresponding eigenspaces are orthogonal invariant subspaces of 6l, + ,(F).

Since ^(R + LtR), respectively \(R — LtR), is an eigenvector of L, for R E
6l,+1(F), corresponding to the eigenvalue + 1, respectively -1, each R E 6l,+1(F)
can be decomposed uniquely and orthogonally as follows:

(3.3) /?=i(/? + L,/?)+i (R-LtR).
The components of the decomposition (3.1) are now characterized as follows:

Theorem 3.6. We have for i = 1, 2, 3: 6l,(F) = (+ l)-eigenspace of L,; Rt\V) =
(-l)-eigenspace of L(.

Proof. This follows easily from Definition 3.3, Lemma 3.4 and the remarks
above.

Using Lemma 3.4 and formula (3.3) it is not difficult to write down the
projections of a curvature tensor R on the components of the decomposition (3.1).
We will treat this in detail in §9.
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Further we note that (3.1) is not irreducible. Indeed the following theorem is well
known.

Theorem 3.7 [16], [17], [22]. We have %(V) = <¥, © <¥2 © <¥3, where:
<5Jlf, = {R E 61,(F) with constant holomorphic sectional curvature);

% = {R E %(V)\p(R) = 0};
% = orthogonal complement of <¥, © %.

Note that %©% = {/? E 61, wOA t(/?) = 0}.

Finally, we give some lemmas which we need in what follows.

Lemma 3.8. R E 6l2L( V) if and only if for all x, y, z, w E F:
R(Jx,y, z, w) = R(x, Jy, z, w) = R(x,y, Jz, w) = /?(x,y, z, 7vv).

Proof. We always have
(L2R)(Jx,y, z, w) — (L2R)(x,y, z, Jw) = R(Jx,y, z, w) — R(x,y, z, Jw).

Since R E 61^ (F) we have L2R = -/? and, hence, R(Jx,y, z, w) = R(x,y, z, Jw).
The other equalities follow by using the properties of the curvature tensor.

The converse follows at once from the definition.
By explicit calculations we obtain the following series of lemmas.

Lemma 3.9. We have, for all R E 6l( F) and all x,y E V:
(i)p(L3RXx,y) = p(R)(Jx,Jy);
(ii) p*(L3R)(x,y) = p*(R)(Jx, Jy).

Lemma 3.10. For all R E %(V) we have:
(i) p(L2R) = p(R);
(ii) p*(L2R) = p*(R).

Lemma 3.11. We have for all R E 612(F):
(i)2p(LxR) = 3p*(R)-p(R);
(ii) 2p*(LxR) = P(R) + P*(R).
Using these lemmas and (2.1) we obtain

Lemma 3.12. For R E 613(F), p(R) and p*(R) are symmetric and

p(R)(Jx, Jy) = p(R)(x,y),       p*(R)(Jx, Jy) = p*(R)(x,y)

for all x, y E V.

Lemma 3.13. For R E 6l3J"(F), p(R) is symmetric and p*(R) is antisymmetric.
Further

p(R)(Jx,Jy) = -p(R)(x,y),        p*(R)(Jx,Jy) = -p*(R)(x,y)

for all x, y E V.

Lemma 3.14. p(R) = p*(R) = 0 for R E 6t2±(F).

Lemma 3.15. p(R) = p*(R) for R E %(V) and p(R) + 3p*(R) = 0 for R E
61," (F).
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4. Invariant curvature tensors. A curvature tensor R is invariant under the action
of %(/i) if and only if a(a)(R) = R for all a E 6ll(n). Such a curvature tensor
determines a 1-dimensional invariant and irreducible subspace of 61(F). We now
determine these tensors.

Theorem 4.1. The set of invariant curvature tensors of 61(F) forms a 2-dimen-
sional subspace of 6l( V) generated by the tensors itx and tr2 defined as follows:

trx(x,y)z = g(x, z)y - g(y, z)x,

ir2(x,y)z = 2g(Jx,y)Jz + g(Jx, z)Jy - g(Jy, z)Jx

for all x,y, z E V.

Proof. A result of Iwahori [15] implies that the invariant tensors of type (0, 4)
form a 12-dimensional vector space with basis (F°a ) for n > 2 where

(4-0 Ejji<X2(xx, X2, Xy, X4) = fla|(*a(l), •*0(2))^a2(Xo(3)> -fy-t)).

o being the identity or one of the following permutations: (1, 2, 3, 4) -» (1, 3, 2, 4),
(1, 2, 3, 4) -h> (1, 4, 3, 2). Further, a„ a2 = 0, 1 and Sl0(x,y) = g(x,y), £2,(x, v) =
g(x, Jy). The required result now follows by direct computation and by using the
symmetries of the curvature tensor.

For these invariant curvature tensors we now give some useful properties.

Lemma 4.2. (i) L37r, = trx, L3tt2 = 7r2;
(ii) L2wx = 7T„ L2it2 = it2;
(iii) 2L,7r, = tt2 — trx.

(i) and (ii) imply that w, and 7r2 are elements of <3l2( V) and since L, is involutive,
(iii) gives

Lxw2 = 2w, + Lxitx.
Hence:

Lemma 4.3. We have
irx + m2E 6l,(F)    and    3mx - m2 E 6l,x(F).

It is known that a tensor R E 61, (F) has constant holomorphic sectional
curvature 4a if and only if R = X(trx + irj). Hence we obtain

Theorem 4.4. 6DSX = £(w, + tr-j), where t(irx + irj) denotes the vector space
spanned by mx + 7r2.

Further, it is easy to show

Lemma 4.5. (i) </?, -nj) = 2t(R); (ii) </?, tt2> = 6r*(R)for all R E 61(F).

Definition 4.6. ^4 = £(3tt, — ir2) is the vector space generated by the curva-
ture tensor 3w, — 7r2.

Then we obtain from Lemma 4.5

Theorem 4.7. The orthogonal complement of 6VSX © %A in 61(F) consists of
curvature tensors R E 61(F) such that t(R) = t*(R) = 0.
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5. The complete decomposition. Before giving the fundamental theorem we shall
define all the components of the decomposition.

Definition 5.1. We put
% = £(*, + vj),

% = (/? E %(V)\p(R) = 0),
% = orthogonal complement of % © % in %(V),
W4 = £(3,7, -vjc 61^(V),
%6 = {R E6liL(F)|p(/?) = 0},
% = orthogonal complement of % © <¥6 in 6lx(F),
% = <&£(v),
%0 = (/? E 6V(F)|p(/?) = p*(R) = 0),
% © <¥9 = orthogonal complement of <¥,0 in 6tjX(F),
<¥g = {R E % © %|p*(J?) = 0},
%, = orthogonal complement of %8 in ^g © %,.

We now obtain at once

Theorem 5.2.
(5.1) 61(F) = % © ■ • • ©%<,
where the 6uS',. are orthogonal invariant subspaces.

Next we recall that an invariant subspace is irreducible when it does not contain
a nontrivial invariant subspace. Now we state the fundamental theorem of this
paper.

Theorem 5.3. (i) 77ie decomposition (5.1) is irreducible for n > 4.
(ii) For n = 3, elS6 = {0} and the other factors in (5.1) are irreducible.
(iii) For n = 2, <¥5 = ^ = %„ = {0} ant/ f/te other factors in (5.1) are irreduc-

ible.

We postpone the proof to §6. We shall need algebraic characterizations of ^£2,
<%, %s and %, and so we do this first.

Definition 5.4. Let F* denote the dual space of F and let S E ®2 F* = V* ®
V*. Define <p(5) and xP(S) by

<p(S')(x,y) z, w) = g(x, z)S(y, w) + g(y, w)S(x, z)

(5-2) -g(x, w)s(y, z) - g(y, z)S(x, w);
xP(S)(x,y, z, w) = 2g(x, Jy)S(z, Jw) + 2g(z, Jw)S(x, Jy)

(5.3) +g(x, Jz)S(y, Jw) + g(y, Jw)S(x, Jz)
-g(x, Jw)S(y, Jz) - g(y, Jz)S(x, Jw).

tp and xp are %(n)-concomitants of <S>2 F* in ®4 F* since they commute with the
action of %(n). In general the values do not belong to 61(F) but we have the
following result.

Theorem 5.5. (i) <p(S) E 61(F) if and only if S is symmetric.
(ii) xP(S) E 61(F) // and only if S(x, Jy) + S(y, Jx) = 0/or all x,y E F.

Proof. Let S be symmetric. Then we see at once that <p(S) E 61(F). To prove
the converse we choose orthogonal unit vectors x, y, w. This is possible because
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dim V > 4. Since <p(S) E 61(F) we have <p(S)(x,y, x, w) = <p(S)(x, w, x,y) and
this implies that S is symmetric.

Next we suppose xp(S) E 61(F). Hence xp(S)(x,y, z, w) = -xp(S)(y> x, z, w) and
this is equivalent to g(z, Jw){S(x, Jy) + S(y, Jx)} = 0 for all x,y, z, w E F. So
the second factor must be zero. The converse is obtained by a simple verification.

Definition 5.6. For all x, y E V we put
% = [S E <g>2 V*\S(x,y) = S(y, x), S(Jx, Jy) = S(x,y), trace S = 0},
% = {S E ®2 F*|S(x,y) = S(y, x), S(Jx, Jy) = -S(x,y)},
% = {S E ®2 F*|S(x,y) = -S(y, x), S(/x, /y) = -S(x,y)}.

Then we have
Theorem 5.7. (i) % = (<p + M%);
(ii) % = (3«p - xpx%);
(iii) <¥8 = ?(%);
(iv) % = #%).

For the proof of this theorem we shall need a series of lemmas which may be
checked easily.

Lemma 5.8. For all symmetric S E <g>2 F* we have
(i) p(q>(S)) = 2(n - l)S + trSg;
(ii) p*(<p(S)) = S + S' where S'(x, y) = S(Jx, Jy)for all x,y E V;
(iii)<JR,<p(5)>=4<p(/?),S>.

Lemma 5.9. Suppose S E <g)2 V* satisfies S(x, Jy) + S(y, Jx) = 0 for all x,y E
V. Then we have

(i) p(xp(S)) = 3(S + S);
(ii) p*(xp(S)) = 2(n + l)S + trSg;
(iii) </?, xp(S)} - 8<p*(/?), Sy + 4<p*(/?), S>

vv/iere S is defined by S(x,y) = S(y, x) for all x,y E V.

Lemma 5.10. Let S E %. Then
(i) L3q>(S) = <P(S), L3xp(S) = xp(S);
(ii) L2<p(S) = <P(S), L2xp(S) = ^(5);
(iii) 2L,<p(5') = xP(S) - <p(S) and Lxxp(S) = 2<p(S) + Lx<p(S).

Lemma 5.11. Let S E %. Then L3<p(S) = -<p(S).

Lemma 5.12. Let S E %. Then L3xp(S) = -xP(S).

Proof of Theorem 5.7. It follows from Theorem 3.6 and Lemma 5.10 that

(<P + xp)(%) c 6l,(F) = %x © <¥2 © %.
Moreover, Lemmas 5.8 and 5.9 imply t(R) = t*(/?) = 0 for all R E (<p + i/'X'Y,).
Hence, using Theorem 4.7, we have (<p + xp)(Yx) c ^2 ® ^3- Further, note that
when /?£%©% we have p(/?) = p*(R) (Lemma 3.15) and p(R) E %
(Lemma 3.12 and Theorem 4.7). Hence, using Lemmas 5.8 and 5.9 we obtain for
R E %2 © % and S E F,

</?, (tp + xP)(S)} = 0   if and only if R E %.
So, we may conclude that (tp + xp)(Yx) = ^^
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GiS5 = (3(f) — xp)(Yx) can be proved in a similar way.
Finally we prove (iii) and (iv). First we note that <?(%) C 6I31 ( F) and xp(Y3) E

6t3L(F) follow from Lemmas 5.11, 5.12 and Theorem 3.6. Next, Lemmas 5.8 and
5.9 imply that q>(%) and xp(%) are orthogonal. Also for R E ^(V) and S E
<p(%) © xp(%) we have

p(R) = p*(R) = 0   if and only if </?, S) =0

since p(R) E % and p*(R) E % (Lemma 3.13). Finally p*(S) = 0 if and only if
S E <p(%). This proves the required result.

Theorem 5.7 and Lemma 5.9 also imply

Theorem 5.13. % = {/ief,® %\p(.R) = 0}.

We conclude this section with some remarks.
(A) It is immediately seen that 27r, = <p(g) and 27r2 = xp(g) and so Lemmas 4.2

and 4.3 are special cases of Lemmas 5.8-5.10. In addition we obtain from Lemmas
5.8 and 5.9

Theorem 5.14. We have
(i) p(trx) = (2/i - \)g, p(772) = 3g;
(ii) p*(wx) = g, p*(ff2) = (2/i + l)g;
(iii) t(ttx) = 2/i(2« - 1), r(irj) = 6/1;
(iv) T*(trj) = 2«, r*(-nj) = 2n(2n + 1).

(B) Using the same lemmas it is easily shown that the restrictions of <p and xp to
T, are linearly independent when n > 2. For /j = 2 we have ||3<p(S) - uV(5)|| = 0
for all S E % So 3tp(5) = i/<S) or % = (0).

(C) It is clear that the decomposition (5.1) is not unique.
(D) The results written down in Table I follow from the results above or are

easily derived.

I        t(R)        I       t*(R)~ o(R)            p*(R)    TT3(R) I L2(R) I LJ(kJ
% 4n(n + 1)A 4n(n + 1)X 2(/i + l)g 2(/i + \)g        R           R           R
%             0 0 2(/i + 2)5 2(/i + 2)5        R          R          R
%             0 0 0                  0/?          /?          /?

~% \2n(n - \)X -4n(n - 1)X 6(/i - l)g -2(n - l)g       ^~~   ~R         -/?

%             0 0 ~ 6(/i - 2)5 -2(/i - 2)5       R~   ~R         -/?
%             0 0 0                  0               /?          /?         -R
%             0 0 0                  OP-/?
%             0 0 ~ 2(« - 1)5           0              -/?
%             0 0 0 2(/i + 1)5       -R

%„ _        0 0 0                  0              -P-1-1-1-1-1-

Table I
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6. Quadratic invariants and the irreducibility of the decomposition. To prove the
irreducibility of the decomposition (5.1) we will use the following characterization:
An invariant subspace of ®r F* is irreducible for the action of %(/») (or more
generally, for the action of a subgroup § of (9 (2n)) if and only if the space of its
quadratic invariants is 1-dimensional (see for example [2], [11]).

We note (see [2]) that all the quadratic invariants of a subspace of <g)r V* are
restrictions of quadratic invariants of <g>r F*. These last ones may be written as
follows:

(6.1) P(T) - 2 7te„, . . . , e^P(e,v . . . , e,>(e„, . . ., eir, e,., . . ., e,.)

where T E (53)r V* and/7 E <g)2r V* is invariant, i.e.

a(a)(p)(xx, . . .,x2r) = p(a(a~x)xx, . . . , a(a~x)x2r) = p(xx, . . . , x2r)

for all xt E V and a E %(n).
Hence the problem of determining the quadratic invariants is equivalent with the

problem of determining the invariant tensors of (5J)2r V*. We will again use the
results of [15].

First we have

Lemma 6.1. The three subspaces %, i = 1, 2, 3, of <5J)2 V* are irreducible.

Proof. Following (6.1), all the quadratic invariants of ®2 V* are given by

P(S) = 2 S(e„ ej)S(eh, ek)p(et, e}, eh, ek)

where S E (5J)2 V* andp is an invariant of ®4 F*. Those are linear combinations
of the F^ in (4.1). It is easy to see that the restrictions of P(S) to %, %, % are
scalar multiples of \\S\\2. Moreover we have

(6.2) dim T, = n2 - 1,   dim % = n(n + 1),   dim % = n(n - 1).
Since n > 2, these dimensions are never zero. Hence the required result follows.

Next we note that when £ is a % -concomitant between two spaces, § acting on
these spaces, then the image for £ of an invariant subspace is also invariant.
Further, the image is irreducible when the first space is irreducible. In this case the
restriction of £ is an isomorphism. (See, for example, [3].)

This remark, Remark (A) of §5, Theorem 5.7 and Lemma 6.1 imply

Theorem 6.2. (i) <¥2, Wg and <¥9 are irreducible.
(ii) ^5 = (0} for n = 2 and irreducible for n > 2.

Before proving the irreducibility of the other factors in (5.1), we determine the
quadratic invariants.

Theorem 6.3. 77ze vector space of all quadratic invariants of R E 61(F) is
spanned by the following 12 invariants:

ox(R) = \\R\\2,    o2(R) = \\p(R)\\2,   o3(R) = (r(/?))2,
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"1W =   2    R{et, e}, eh, ek)R{et, ej3 Jeh, Jek),
i,j,h,k

u2{R) =   2    R(e„ ej, e„, ek)R(et, Jej, eh, Jek),
ij,h,k

u3(R ) = </?, L3R > =   S    R{e(, ej, eh, ek)R(Jet, Jej, Jeh, Jek),
i,j,h,k

u4(R) = \\p*(R)\\2,    u5(R) = (p(R), p*(R)),    u6(R) = (p(R), p(L3R)),

u7(R) = (p*(R), p*(L3R)\   u&(R) = t(/?)t*(/?),    u9(R) = (t*(/?))2,

where {e,} is an arbitrary orthonormal basis of V.

Proof. The quadratic invariants are of the following type:

P(R) = 2 R(eh, ..., ei)R(eji, ..., eJt)p(eh, ..., e,v e„.ej

where p is an invariant of <S>8 V*. Following the results of [15], p is a linear
combination of the F°  „ „ , defined as follows:

Ea,aTaia4(Xl' ' ' ' ' Xi) = ^a,(X<j(l)' X°(2))®a2(Xo(3)> *o(4))

' ^a3(-Xo(5)> Xo(6))^a4(-,Ca(7). *o(8))>

where a is a permutation of (1, . . ., 8), a, = 0, 1 and fl^ is as in §4.
Because of the symmetries of the curvature tensor /?, the restrictions of the

quadratic invariants to 61(F) are linear combinations of ox(R), . . . , u9(R).
Using the definitions and properties of 6D!>3, SW6, ̂  and ^^ we obtain further

that the restrictions of the quadratic invariants to these spaces are scalar multiples
of o,(/?). Hence

Theorem 6.4. The spaces %3, ^g, %1 and %xo are irreducible.

Using Theorem 4.4 and Definition 4.6 we obtain with Theorems 6.2 and 6.4 a
complete proof of Theorem 5.3(i). The other properties mentioned in Theorem 5.3
will follow at once from Table II in the next section where the dimensions of the
subspaces are determined.

We finish this section by determining the linear invariants of 61(F). (See also [5],
[6].) These invariants are the restrictions of linear invariants of ®4 V*, i.e.

P(R)^^lR(eii,...,ei)p(eii,...,ei4)

wherep is an invariant of & V*. Sop is a linear combination of the Fjja we have
already used. Taking in account the symmetries of R E 61(F) we obtain

Theorem 6.5. 77ie space of linear invariants of R E 6l( V) is spanned by t(R) and
r*(R).
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7. Dimensions of the factors. The purpose of this section is to prove

Theorem 7.1. The dimensions of the factors %t, i = 1, . . . , 10, are given in Table
II.

dim F 4 6 2/i > 8

% I I I
% 3 8 n2 - 1

% 5 27 \n2(n - l)(n + 3)

^ i i i
% 0 8 n2 - 1

<¥6 0 0 \n\n + l)(n - 3)

% 2 12 i«2(/j2 - 1)

^s 6 12 n(n + 1)
% 2 6 /i(n - 1)

%0 0 30 \n\n2-4)

Table II

We shall need two lemmas which we give first. Let Fc = C ®R F. We denote
the extension of J to Fc also by J, and F+, resp. F~, are the eigenspaces
corresponding to +i, resp. -/. Hence Fc = F+ © F_. Now let /? E 61(F) and
denote by Rc the extension of R to Fc. Then Rc is a C-multilinear map with the
same symmetry properties as a curvature operator. Moreover, R c is real, i.e.

/?c(J,y, z, iv) = Rc(x,y, z, w).

Then we have

Lemma 7.2. 77ie real vector space 6t3J"(F) is isomorphic with the space of C-multi-
linear maps L: V+ X V+ X V+ X V~ -> Csatisfying

L(x,y, z, w) = -L(y, x, z, w),

L(x,y, z, w) + L(y, z, x, w) + L(z, x,y, w) = 0
for all x, y, z,w E Fc.

Proof. /? E ^(F) if and only if R(x,y, z, w) = -R(Jx,Jy, Jz, Jw). The same
property is valid for the extension Rc. Hence Rc(x,y, z, w) = 0 when x,y, z,w E
F+ (resp. F") or when two of them belong to F+ and the two others to V~. So,
the only nonvanishing terms are of type Rc(x,y, z, w) where x,y, z, w E V+ or
are obtained from those by conjugation or the symmetry properties, including the
Bianchi identity. Hence, when we denote by <p(R) the restriction of Rc to
F+© F+© F+ffi F", we obtain the required isomorphism <£.
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Lemma 7.3. The real space 6IS1 = <3l2L(V) is isomorphic with the space of C-multi-
linear maps L: V+ X V+ X V+ X F+^C which satisfies all the symmetry prop-
erties of the curvature operators.

Proof. For R E 6t2±(F), Lemma 3.8 implies Rc(x,y, z, w) = 0 when at least
one of the vectors belongs to V+ and at least one to F". Hence the only
nonvanishing terms are of type Rc(x,y, z, w), x,y,z,w E F + , or Rc(x,y, z, w).
As in Lemma 7.2 we again take the restriction of/?ctoF+ X F+ x F+ X F+to
obtain the required isomorphism.

Proof of Theorem 7.1. Theorem 4.4 and Definition 4.6 imply that dim %x =
dim GliS4 = 1.

Next using Theorem 5.7, the remark above Theorem 6.2, Theorem 6.2 and (6.2),
we get

dim % = n2 - 1,    dim % = {°, ^ " = %
[ n1 - 1     for n > 3,

dim <¥8 = n(n + 1),    dim <¥9 = n(n - 1).

Further, in [22] it is proved that

dim% =X(/t- l)(« + 3).
Hence we still need to compute the dimensions of %6, ^ and Gl£xo. Therefore we
only need to know dim(% = 6l2X(F)) and dim <3Lf (V) (= dim % © % ©
^,0) since it is well known that

(7.1) dim 61(F) = (dim F)2{(dim F2) - l}/12 = {-n2(4n2 - 1).

But Lemma 7.2 implies

dim6^-L(F)=|/j2(/j2- 1)

because the space of the C-multilinear maps satisfying only the first condition is
/^©-dimensional. The second condition gives nQ) linear independent conditions.

In a similar way one obtains

dim6^L(F)=|/i2(/i2- 1).

So we have the results of Table III:

dim F 4 6 2/j > 8

dim 61,(F) 9 36 \n2(n + l)2

dim %(V) 10 45 \n\n2 + 1)

dim6l3(F) 12 57 \n\2n2 + 1)

dim 61(F) 20 105 ^«2(4«2 - 1)

Table III
This gives the required result.
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8. Projections and norms. In this section we write down the explicit formulas for
the projections of an element R E 61(F) on the irreducible factors %j and
compute the norms of the projections.

Theorem 8.1. Let R E 61(F), dim F = 2/j > 8, and denote by pf, i = 1, . . . , 10,
the projection operators of 6l( V) on 62tf,. Then we have:

/^      t(R) + 3t*(R),
PxW=   \L(n+l)    <" + ">;
P2(R)=Mn + 2)"'(9 + *){p(* + L3R) + 3p*(/? + L3/?)

-n-x(r(R) + 3r*(R))g};

p3(R) = !(/ + Lj)(I + L2)(I + L3)R - px(R) - p2(R);

,„.      t(P)-t*(/?)^ .
*<*>-    16^-1)   (3-—2);

/>5(/?) =±(n - 2)-*(3tp - t^){p(P + L3R) - p*(R + L3R)

-n-x(r(R)-r*(R))g};

p6(R) = |(/ " LX)(I + L2)(I + L3)R - p4(R) - p5(R);

p7(R) = i(/ - L2)(/ + L3)R;   Ps(R) = \(n - iy\(p(R - L3R));

p9(R)=\{n + 1)~V(P*(^ - £3));   Pxo(R) = \(I - L3)R ~p8(R) -p9(R),
where I denotes the identity transformation of V.

Proof. We will compute, for example, p4(R), Ps(R) and p6(R). The other
projections can be obtained by a similar procedure.

Let R E <¥4 © <¥5 © <¥6. Using (3.3), Theorem 3.6 and Definition 5.1, we get

p4(R) + p5(R) + p6(R) =\(I- Lj)(I + L2)(I + L3)R.
But

p4(R) = X(3trx - m2)    and    r(p5(R)) = r(p6(R)) = 0.

Hence
Xt(3t7, - 772) = |t((/ - LX)(I + L2)(I + L3)R).

Using Lemmas 3.9-3.11 we get
A = (t(R) - r*(R))/16n(n - 1).

Further, we also have
p5(R) = (3<p - xp)(S),       S E %,   and   p(p6(R)) = 0.

So, using Lemmas 3.10, 3.11, 3.15, 5.8 and 5.9 we obtain

6(« - \)\g + 6(n - 2)5 = ip((/ - Lj)(I + Lj)(I + L3)R)
= ±p((I + L2)(I + L3)R)-±p*((I + L2)(I + L3)R)

= l{p(R + L3R) - p*(R + L3R)},
which gives the required expression for S.
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The square of the length of p,(/?) is a quadratic invariant. Hence it must be a
linear combination of the 12 invariants determined in §6. We have explicitly

Theorem 8.2. Let R E 61(F). Then for n > 2 the ||p,(P)||2, / = 1, . . . , 10, are
given by

l"'W»2 = SnJn^TT) «*> + 3T*W>2 = SnTn^T) <* + 6"° + 9"»><**

iip2(*)ii2 = 4(n + 2){°2 + "6 + 9"4 + 9"7 + 12"5 ~ ""1(°3 + 6"8 + 9"9)}(^);

IIpjWII2 = {j^(3°i + 10"i - 4"2 + 3«3)

- 4(w + 2) (02 + "6 + 9«4 + 9w7 + 12«5)

+ 8(n + »(n + 2)(* + 6* + 9^}(*);

"^^ - M7=l) (tW - T*(/?)}2 " M^l) (°3 " 2"8 + "9)W;

ll/,5(/?)l'2 = 4(n-2)^2 + "6 + «4 + «7 - 4«5 - n~x(o3 - 2«8 + «„)}(/?);

||p6(/?)||2= {-^(o, -2«, + 4M2+u3)

3
- -77-^r(o2 + "6 + "4 + "7 - 4"s)4(/t - 2)

+ 8(M - i)(» _ 2) («3 - 2«^ + «•)}(*);

llPyWil2 =1(01 - 2k, - 4u2 + u3)(R);

\\P%(R)\\2 = (n- iyx(o2 - u6)(R);

\\p9(R)\\2 = (n+\yl(u4-u7)(R);

\\Pio(R)\\2 = {5O1 - uj) - (n - \)~\o2 - u6) -(n+ iyx(u4 - u7)}(R).

Proof. ||p,(/?)||2, / = 1, 2, 4, 5, 8 and 9, follows after some calculations using
Lemmas 5.8, 5.9 and Theorem 5.14.

Next, since the decomposition is orthogonal we have

10 2      10

2/>,(*)   = 2IIp,-WII2 = 4-P-V*ll2
1=8 1=8

= {-{\\R\\2 - (R, L3R)} =\(ox - u3)(R).

Hence one can compute ||/»i0(^)l|2-
Further, we have

P1(R)^14(I-L2)(I + L3)R,
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and so

\\Pl(R)\\2 = !{||/? + L3R\\2 - <(/ + L3)R, L2(I + L3)R}}.

Now put R = R + L3R. Then R E %(V) and so 2{R, L2R) = ox(R) + ux(R)
+ 2u2(R). Direct computation gives

ox(R) = ox(R + L3R) = 2ox(R) + 2u3(R),

ux(R) = ux(R + L3R)= 4ux(R),       u2(R) = 4u2(R).

This gives the required result for ||/?7(/?)||2.
Now it is possible to compute 2^,||p,(/?)||2. To obtain all the norms we still

have to compute the norm of

2 P,(R) =1(1 + Lj)(I + L2)(I + L3)R.
i=> 1

We omit the long calculation.

Theorem 8.3. The formulas of Theorems 8.1 and 8.2 are still valid for n = 3 and
n = 2. Moreover, for n = 3 we have p6(R) = 0, and, for n = 2, p5(R) = p^(R) =
PxoiR) = o.

9. Weyl and Bochner tensors. Let V be an arbitrary real vector space with
dim V = m. We recall that the Weyl component <3txv of 61(F) is formed by the
curvature tensors /? with vanishing Ricci tensor [21], [18]. Tensors belonging to
6l^(F) are called Weyl tensors. The Weyl tensor C(R) associated with R is the
projection of R on 6l^( F). We have

C(R)(x,y)z = R(x,y)z
(9.1) - (m - 2Yx{g(x, z)Qy - g(y, z)Qx + g(Qx, z)y - g(Qy, z)x)

+ (t(/?)/ (m - l)(m - 2)}{g(x, z)y - g(y, z)x).

Note that C(R) = 0 for m = 3.
It is worthwhile to note that the orthogonal complement of 6l^.(F) in 61(F) is

the subspace spanned by the curvature tensors of type <p(S) where S is symmetric.
Now we return again to a Hermitian vector space F of real dimension 2/i and

determine the Weyl component. Using Theorem 5.3 and Lemmas 5.8-5.9 we get

Theorem 9.1. 77ie decomposition of the Weyl component <Sllv(V) of 61(F) into
orthogonal irreducible factors for the action of 6li(n) is given by:

(i)    6V(F) = £(3*. - (2n - 1)t,2) © (3«p - (n - l)xp)(%)
®% © ^ © % © % © %0,   for n>4;

(ii)    %w( V) = £(ir, - <nj) © % © % © %,   for n = 2;
(iii)    %y(V) = £(37r, - 5tt2) © (3<p - 2xp)(%) © % © <¥7 © <¥9 © %0,

for n = 3.

Since any symmetric tensor S E (5J)2 V* may be written as S = Kg + S, + S2
where Sx E T, and S2 E %, we have

Theorem 9.2. 6l^(F) = £(tt,) © tp(%) © <p(%).
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The theory for the Bochner tensor B(R) associated with a curvature tensor
R E 61, (F) is now well known [16], [17], [22]. We now generalize this notion for
arbitrary curvature tensors /? E 6l( F). This generalization is quite natural since it
is based on the vanishing of the two basic %(n)-concomitants p and p*. (For
R E 61,, p and p* coincide.) Further, it will turn out that B(R) is a conformal
invariant tensor which has a lot of properties in common with the Bochner tensor
for curvature tensors belonging to 61, (F) (see, for example, §15). Finally, in §14 we
will show that for n = 2 there is a nice relation with the anti-self-dual part of the
Weyl conformal tensor.

Definition 9.3. The Bochner component 6lB(F) of 61(F) is the subspace of
6liy( V) formed by the curvature tensors R E 61 (V) such that p*(R) = 0.

A tensor belonging to 6lB(F) is called a Bochner tensor and the projection B(R)
of R E 61 (F) on 61b (F) is called the Bochner conformal tensor associated with /?.

We will justify the notion "conformal" in §11.
We have, using Theorem 8.1

Theorem 9.4. Let R E 61(F). Then the Bochner component is given by
6lfl(F) = <W3 © %6 © % © <¥,„

and the Bochner conformal tensor associated with R by
B(R) = R - (16(/j + 2)}"'(<p + xp)(p + 3p*)(R + L3R)

- (16(« - 2)}-1(3<p - xp)(p - p*)(R + L3R)

- {{4(n + l))-x(xp o p*) + {4(n - l)}"1^ o p))(R - L3R)

+ {16(n + l)(/i + 2)}_1(t + 3t*)(R)(ttx + tt2)

+ {16(n - \)(n - 2)}-'(t - r*)(R)(3wx - -rr2)
for n > 3, and by

B(R) = R -\<p(p(R) -\r(R)g) -±xp(p*(R - L3R))

-£(' + 3T*)(/?)07,  + Vj) - i(T - T*)(R)(3TTX  - Ttj)

for n = 2.

We note that for R E %(V) we get

BW = R ~ 2jn^Y)^ + ^P{R)) + 4(n+!)(n + 2)<R^x + ^
which is the usual Bochner tensor.

Using this theorem and Theorem 8.2 we obtain

Theorem 9.5. Let B(R) be the Bochner conformal tensor associated with R E
61(F). Then we have

\\B(R)\\2  = {ox -(n + l)(n2 - 4)~x(o2 + u6) - (n - l)~x(o2 - u6)

-3(n- l)(«2-4)-1("4+"7)

- (n + l)~x(u4 - uj) + (8(n + l)(n + 2)}~x

■ (o3 + 6«8 + 9u9) + 3(8(n - l)(n - 2)}"'(o3 - 6us + u9)}(R)
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for n > 3, and

\\B(R)\\2
= {ox - 2o2 + 8(w4 - uj) -^(oy + 6u8 + 9u9) -^(o3 - 2w8 + u9)}(R)

for n = 2.

10. Almost Hermitian manifolds. First applications. Let (M,g,J) be an almost
Hermitian manifold with real dimension 2/j, Riemannian connection V and curva-
ture tensor R given by

R(X,Y)=V[XyY]-[Vx, Vy]

where A', y E 9C(M), the algebra of C°° vector fields on M.
Let 7^ A/, m E M, be the tangent space at m with complex structure Jm and

inner product gm. We denote by 6t(Af) the vector bundle with fibre 6t(rmM). The
decomposition (5.1) for 6l(PmM) gives rise to a decomposition of 6t(M) in
subbundles, orthogonal with respect to the fibre metric of 61 (M) induced by g. We
still denote the components of the decomposition by %,, / = 1.10.

The Riemann curvature tensor on M is a section of 6l(Af) and, in general, we do
not have a particular identity which is fulfilled by /?. The two following theorems
are derived from Theorem 5.3 and give curvature identities on 4- and 6-dimen-
sional almost Hermitian manifolds.

Theorem 10.1. Let M be an almost Hermitian manifold with real dimension 4 and
curvature tensor R. Then we have the following identities:

(i) (/ - L,)(/ + L2)(/ + L3)R = ±(t(/?) - t*(R))(3ttx - n2);

(ii) R - L3R = \<p(p(R - L3R)) + \xp(p*(R - L3R));

(iii) p(R + L3R) - p*(R + L3R) = i(r(R) - r*(R))g.

Theorem 10.2. Let M be an almost Hermitian manifold with real dimension 6 and
curvature tensor R. Then we have the following identity:

(I - LX)(I + L2)(I + L3)R = ^(3<p - xP){p(R + L3R) - p*(R + L3R)}

-Kt(/?)-t*(P))(37t1-W2).

These identities are still valid on an arbitrary-dimensional Kahler manifold since
then L,R = R,i= 1, 2, 3; p(/?) = p*(R) and t(/?) = t*(/?).

Since curvature identities are a key to understanding the geometry of an almost
Hermitian manifold, it is interesting to study classes of almost Hermitian manifolds
with Riemann curvature tensor belonging to a particular subclass of 6l( F).

Definition 10.3 [10], [12].

&%j = (almost Hermitian manifolds M with Riemann

curvature tensor R E 6l,(rmAf) for all m E A/},       i = 1, 2, 3.
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We are at this stage able to characterize these classes using the quadratic
invariants. Indeed, we obtain from Theorem 8.2:

Theorem 10.4. Let M be an almost Hermitian manifold with Riemann curvature
tensor R. Then,

(i) ox(R) > u3(R) with equality sign if and only ifM E &%}■,
(ii) 5ox(R) > (2ux + 4u2 + 3u3)(R) with equality sign if and only if M E (JDCj;
(iii) 13ox(R) > (10w, - 4m2 + 3u3)(R) with equality sign if and only if M E

&%x.

11. Conformal invariants. On an arbitrary almost Hermitian manifold (A/, /, g)
we now consider the following conformal change of metric: g = e"g where a is a
C00 function on M. Let R denote the Riemann tensor associated with g. Then we
have the following well-known relation between R and R:

e-"R(X, Y, Z, W) = R(X, Y, Z, W)

(1U) ~\{L{X, Z)g(Y, W) + L(Y, W)g(X, Z)
-L(X, W)g(Y, Z) - L(Y, Z)g(X, W)}

~ (||to||2/4){g(*, Z)g(Y, W) - g(Y, Z)g(X, W)}
where

w = do,        L(X, Y) = (Vxo>)(Y) - iW(A-)co(y)

and X, Y, Z, W E %(M). Note that L is symmetric.
We put

(11.2) Ta = -^(L)-(\\u\\2/4)trx.

By doing this, (11.1) becomes

(11.3) e-"R = R + Ta.
The curvature tensor T„ is orthogonal to the Weyl component 6l^(F) and,

hence, C(7;) = 0.
Next we consider 6l^(A/) and define the following subbundles (see Theorem

9.1):

ex(M) = e(3», - (2« - \)w2), e,(M) = o - (« - i)xp)(%), e,(A/) = %,
e4(M) = w6, e5(M) = %, e6(A/) = %, e7(M) = %0.

Further, let Ct(R) denote the projection of R on C,(A/). Then we have

7
C(R) = 2 C,(R),    B(R) = C3(R) + C4(R) + C5(R) + C7(/?).

i=i
Since C(Ta) = 0, we obtain from (11.3)

Theorem 11.1. Q(R), / = 1, . . . , 7, and hence C(R) and B(R) are conformally
invariant.
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The explicit expressions for Ct(R), i = 3, . . . ,1, and their norms are given in
Theorems 8.1 and 8.2. Further, we easily find

Theorem 11.2.

CX(R) = {Sn(n2 - l)(2n - 1)}"'{t - (2/i - 1)t*}(/?){3i7, - (2n - l)v2],

C2(R) = (n- l)-1{3tp - (n - 1)*}(S2 - Sx)
where

16(n + 2)5, = (p + 3p*)(R + L3R) - /._1(t + 3r*)(/?)g,

16(n - 2)S2 = (p - p*)(R + L3R) - n~\r - r*)(R)g
for n > 3 and C2(R) = 0 for n =2. Moreover,

||C,(/?)||2 = {3/4n(n2 - l)(2/i - 1)}(t(P) - (2/i - 1)t*(P)}2

= {3/4n(n2 - 1)(2« - 1)}{o3 - 2(2n - l)«g + (2/i - 1)2«9}(/?)

a/to"

l|C2(/?)||2={3/(n2-4)(n-l)}

• {o2 + (n- l)2u4 - 4(n - l)u5 + u6 + (n - l)2u7

-n~x(o3 - 2(n - 1)«8 + (n - 1)2«9)}(P)

for n > 3.

Some of the Ct(R) vamsh on manifolds belonging to special classes of almost
Hermitian manifolds. We give some examples. First of all we have

Theorem 11.3. Let R be an arbitrary curvature tensor field on a general almost
Hermitian manifold of complex dimension n. Then:

(i) C2(R) = C4(R) = C7(R) = Oforn = 2;
(ii) C4(R) = Ofor n = 3.

Next we consider a Hermitian manifold M. A. Gray proved in [10] that the
Riemann curvature tensor R of M satisfies the following identity:

R(X, Y, Z, W) + R(JX, JY, JZ, JW)
= R(JX, JY, Z, W) + R(X, Y, JZ, JW) + R(JX, Y, JZ, W)

+ R(X, JY, Z, JW) + R(JX, y, Z, JW) + R(X, JY, JZ, W).

This is equivalent to the condition R + L3R = L2(R + L3R). Hence

Theorem 11.4. Let R be the Riemann curvature tensor of a Hermitian manifold M.
Then C5(R) = 0.

In [24] we gave an example of a 4-dimensional manifold such that C5(R) = 0,
but which is not Hermitian.

Corollary 11.5 [10]. %2 = % n &% = % = % n &% where % denotes the
class of Hermitian manifolds.
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Finally we consider the class of Hermitian manifolds with are locally conformal
to a Kahler manifold. (See [26], [27].) Since C4(R) = C5(R) = C6(R) = C7(/?) = 0
for Kahler manifolds, we have from this and Theorem 11.1:

Theorem 11.6. Let M be a locally conformal Kahler manifold. Then Ct(R) = Ofor
i = 4, 5, 6, 7.

These conditions are only necessary conditions. Indeed, consider the manifold
M = M2 X R4 where M2 is a minimal surface in R3. It is proved in [10] that Af is a
Hermitian manifold such that L3R = R. This implies C5(R) = C6(R) = C7(R) =
0 and, since dim M = 6, we also have C4(R) = 0. On the other hand M is not a
locally conformal Kahler manifold [11].

We finish this section with

Theorem 11.7. Let M be a locally conformal Kahler manifold with dim M = 2n >
6 and C2(R) = C3(R) = 0. Then M is locally conformal to CP"(ju), CD"(n) or C
When fi =£ 0, M is a globally conformal Kahler manifold.

Proof. By Theorem 11.1 M is locally conformal to a Kahler manifold M such
that C2(R) = C3(R) = 0. But, since dim M > 6 and

C2(R) = {-l/2(/i - l)(n + 2)}(3<p - (n - \)xp)(p(R) - (r(R)/2n)g),

C2(R) = 0 if and only if p(R) = (r(R)/2n)g. Hence, if C3(R) = 0, M has constant
holomorphic sectional curvature. The rest follows from a result in [27].

12. Generalized complex space forms. The decomposition of 61(F) is very useful
to derive inequalities for the quadratic invariants and to characterize some special
classes of manifolds Af. A well-known example is ||p(/?)||2 > (1/2/j)(t(/?))2, where
the equality occurs if and only if M is an Einstein manifold, i.e. p(/?) =
(r(R)/2n)g. Note that the subspace of 61(F) formed by the Einstein curvature
tensors is given by the subspace where <p(T,) = <p("i2) = 0 (see Theorem 9.2). We
note further that y(%) = %8 and <?(%) is the subspace of <¥2 © <¥5 which is
orthogonal to (3<p - (n - l)xp)(%).

We consider now a similar case.
Definition 12.1. A manifold (M, J, g) is said to be *-Einsteinian if and only if

p*(R) = (r*(P)/2«)g.
Using the Cauchy-Schwarz inequality or the decomposition (5.1) it is easy to

prove

Theorem 12.2. We have \\p*(R)\\2 > (1/2/j)(t*(/?))2, where equality occurs if and
only if M is *-Einsteinian.

A particular class of manifolds which are Einsteinian and *-Einsteinian has been
considered in [28]-[30]. There we considered the so-called generalized complex
space forms. They are defined as being manifolds M E & (%3 with constant holo-
morphic sectional curvature and constant type. This is equivalent to the following
definition.
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Definition 12.3. A generalized complex space form is an almost Hermitian
manifold with Riemann curvature tensor R of the following form:

_ t(R) + 3t*(R) t(R)-t*(R)
R ~     16n(n + l)    (*« + ^ +    16n(n-l)   (3*«     w*

First we have the following

Theorem 12.4. An almost Hermitian manifold is Einsteinian and *-Einsteinian if
and only if (p2 + p5 + ps)(R) = 0.

Then Theorem 9.4 implies the following characterization:

Theorem 12.5. An almost Hermitian manifold M is a generalized complex space
form if and only if M is Einsteinian, *-Einsteinian and Bochner flat (i.e. B(R) = 0).

Of course any Kahler manifold with constant holomorphic sectional curvature is
a generalized complex space form. This is also true for any almost Hermitian
manifold with constant sectional curvature, as for example S6. We do not know of
other examples. Now we will prove that these cases are the only possible ones when
2/i > 6.

First of all we need

Lemma 12.6. Let M be an almost Hermitian manifold with Riemannian connection
V. Then

(i)(VxJ)JY=-J(VxJ)Y,
(ii) g((VxJ)Y, Z) = -g(Y, (VXJ)Z),
(iii)g((VxJ)Y,Y) = 0,
(iv)g((VxJ)Y,JY) = 0,

for X, Y, Z E %(M).

Proof, (i) and (ii) are well known and (iii) and (iv) are easy consequences.
Now we prove the fundamental theorem.

Theorem 12.7. Let M be a connected almost Hermitian manifold with real
dimension 2n > 6 and Riemannian curvature tensor R of the following form:

(12.1) R = /tt, + h-n2

where f and h are C °° functions on M such that h is not identical zero. Then M is a
complex space form (i.e. a Kahler manifold with constant holomorphic sectional
curvature).

Proof. Using the expressions of ttx and tr2 in Theorem 4.1 we obtain at once
W, = 0 and

(Vwtt2)(X, Y, Z) = 2g((V^)*, Y)JZ + g((V^)*, Z)JY - g^V^Y, Z)JX
+ 2g(JX, Y)(VWJ)Z + g(JX, Z)(VWJ)Y- g(JY, Z)(V^)Z.

Hence we get from (12.1)

V„J? = W(f)<rrx + W(h)m2 + hVwm2
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and, using the second Bianchi identity, we must have

(12.2) ®xy{ W(f)wx(X, Y)Z + W(h)*2(X, Y)Z + h(Vwtrj)(X, Y, Zj) = 0.

Since dim M > 4 it is possible to choose two unit vectors X and W which define
orthogonal holomorphic planes {X, JX] and {W, JW). Putting then Z = X and
y = JW in (12.2) we derive

2h(VxJ)X = - {(JW)(f) + hg((VxJ)X, W)} W
(12.3) + { W(f) - hg((VxJ)X, JW)}JW

- {2X(h) + 3hg((VWJ)W, JX) + 3hg((VJWJ)JW,JX)}jX.
So we obtain

(12.4) 3hg((VxJ)X, W) + (JW)(f) = 0
and

(12.5) 2X(h) + 3h{g((VwJ)W, JX) + g((VJWJ)JW, JX)} = 0.
Thus X(h + /) = 0 which implies that/ + h is constant on M.

Further, using this conclusion, we easily obtain from (12.4) and (12.5) for such
pair of vectors:

3h(VxJ)X = W(f)JW- (JW)(f)W.
Next we put Z = X and Y = JX in (12.2). Then we obtain with Lemma 12.6 and

(12.4):
3h(VwJ)X - h(VxJ)W

(12.6) ^
= (JX)(f) W - X(f)JW - \(JW)(f)X + i W(f)JX.

The vectors X = (X + W)/V2 , W = (X - W)/V2 also determine two orthogo-
nal holomorphic planes. Using these vectors for (12.5) we get

(12 7)    3hi^xJ)^+^wJ)X}
= -X(f)JW - W(f)JX + (JX)(f)W+ (JW)(f)X

and so, (12.6) and (12.7) imply

(12.8) 3h(VxJ) W = (JW)(f)X - W(f)JX.
Finally (12.1) implies that M is Einsteinian. We have explicitly

p(R) = {(2n - l)f + 3h} g
and this implies that (2/i — 1)/ + 3h is constant. Hence, when n > 2, we have that
/and h are both constant. Since h =£ 0, (12.5) and (12.8) imply

(VxJ)X = 0,       Vx(J)W=0
for all unit vector fields which span two orthogonal holomorphic planes. We
conclude from this that V7 = 0, i.e. Af is a Kahler manifold. So R E 61,(Af) and
hence/ = h, which proves the required result.

Remarks. (A) When n = 2, we still have/ + h = const. So Theorem 12.6 is still
valid if this implies that/and h are both constant functions.

(B) Theorem 12.7 implies that there do not exist almost Hermitian manifolds
with /? = h(3trx - w2), h s* 0.
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(C) The hypothesis h & 0 is essential. Indeed, there exist non-Kahler almost
Hermitian manifolds which are flat [23], [24]. Moreover, there exist almost Hermi-
tian manifolds with constant sectional curvature which are not Kahler manifolds.
S6 is a simple example.

(D) S. Sawaki and K. Sekigawa [19] proved by different methods the following
special case of Theorem 12.7: Let Af be an almost Hermitian manifold with
R E 61, (A/) and with constant holomorphic sectional curvature u =fc 0. Then Af is
a Kahler manifold.

Manifolds with R E 61, (M) are there called P'-spaces.
(E) We state the following problem: Do there exist 4-dimensional almost

Hermitian manifolds M with /? = firx + hm2 where h is a nonconstant C °° func-
tion? Of course our proof shows that Af must have constant scalar curvature
r(R) = 12(h + f) and M must be Hermitian on U = {m E M\h(m) ¥= 0} since
(12.5) and (12.8) imply (VXJ)W - VJX(J)JW = 0 for all X, W E %(M).

13. The curvature of the Calabi-Eckmann and Hopf manifolds. In this section we
will consider a particular class of almost Hermitian manifolds and discuss some
aspects of the decomposition in detail.

We review briefly some of the geometry of the Calabi-Eckmann and Hopf
manifolds.

Let S,2ki+X(rj), i = 1, 2, be a hypersphere of radius r, in C**+1 and denote by TV,.,
resp. /„ a unit normal field, resp. the standard complex structure of C*, + 1. An
arbitrary tangent field X of

A/= S,2*' +'(/-,) X S2^+1(/-2)

may be written as

X = Xx + a(X)JxNx + X2 + b(X)J2N2

where Xt is tangent to S2kl+X. We define an almost Hermitian structure on the
product M by

JX = JXXX - b(X)JxNx + J2X2 + a(X)J2N2

and the product metric g. It is easy to verify that this manifold (M, J, g) is a
Hermitian manifold (See also [11].)

For kx, k2> 1 we obtain the Calabi-Eckmann manifolds and for kx > 1, k2 = 0
we have a Hopf manifold.

Since we are interested in curvature properties we first compute the Riemann
curvature tensor. We denote by g, the metric on S2ki+X. We obtain

R(X, Y, Z, W) = r-2{gx(Xx, Zj)gx(Yx, Wx) - gx(Xx, Wj)gx(Yx, Zj)

+ a(X)a(Z)gx(Yx, Wx) + a(Y)a(W)gx(Xx, Zj)

(13.1) -a(X)a(W)gx(Yx, Z,) - a(Y)a(Z)gx(X„ Wj)}
+ r22{ g2{X2, Zj)g2(Y2, Wj) - g2(X2, W2)g2(Y2, Zj)

+ b(X)b(Z)g2(Y2, W2) + b(Y)b(W)g2(X2,Zj)

-b(X)b(W)g2(Y2, Zj) - b(Y)b(Z)g2(X2, Wj)}.
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From this we deduce

(13 2) P(R)(X' Y) = (2/ci/r')(g'^i' yi> + <X)a(Y))

+ (2k2/r2){g2(X2, Yj) + b(X)b(Y)},

(13.3) P*(R)(X, Y) = rx2gx(Xx, Yj) + r22g2(X2, Y2)
and, further,

(,3.4) T(S)-i^|±i),
, = 1 r2

2   2k(13.5) t*(/?)=2-^.
, = i   r2

First of all we note that M is flat if and only if kx = k2 = 0.
When A:, > 1, k2 = 0 one knows [26], [27] that Af is locally conformal to C^k' + X)

and hence M is conformally flat and locally conformal to a Kahler manifold.
(13.2) shows that M is Einsteinian if and only if kx/rx = k2/r\ while (13.3)

shows that p*(R) is always symmetric but Af is never *-Einsteinian in the nonflat
case.

Using (13.1)—(13.5) we may compute all the quadratic invariants explicitly. We
obtain

2   4fc,(2*, + 1) ,_.       '   4k2(2kt + 1)
o,(P)=Z -4-        o2(R)=2s -4-,

<-] rj , = i rj

,   ,      -^  4ki ,   , ,   ,      ■I* 4k,(2k, - 1)".(*)= 2 ^p      «3W = 2u2(R) = 2 —M—-,
, = i  r: ,-i r,

2    2k 2   4k2
u4(R) = u7(R)=Z^j,        u5(R)-?,-%-,

;=i   r,. , = i   /•,.

«6(/?) = 8{ *,//•? + A:23/r24 + kxk2/r2r2},

Now it is also possible to compute the square of the length of the tensors C,(/?),
/ = 1, . . . , 7, and the projections Pj(R), j = 1, . . ., 10. By doing this we arrive at
the following results.

Theorem 13.1. We have:
(i)C5(/?)= C6(R) = 0forallki;
(ii) M is conformally flat if and only if M is flat (kx = k2 = 0) or kx = 0, k2 > 1,

resp. kx > 1, k2 = 0;
(iii) C4(R) = 0 if and only if kx = k2 = 1 (dim M = 6, A:,- =^= 0) or M is conform-

ally flat;
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(iv) C,(/?) = 0, / = 1, 2, 3, 7, if and only if M is conformally flat;
(v)/>,(/?) = 0, i = 1, 2, 4, if and only if M is flat;
(vi)p5(R) = 0 if and only if dim Af = 4 or M is flat;
(vii) ps(R) = 0 // and only if M is Einsteinian.

14. The decomposition for 4-dimensional spaces. In this section we discuss in
more detail the decomposition in the case n = 2. The special feature of 4-dimen-
sional geometry arises from the particular role of the duality *-operator.

Let F be a 4-dimensional real vector space with positive definite inner product g
and A2(F) the space of skew-symmetric 2-tensors over F. Then 61(F) is a
subspace of the space of symmetric linear operators on A2( F). We denote by < , >
the induced inner product from g on A2( V). This is given by

/ v        ,   / g(x, z)     g(x, w) \
(x/\y,z/\w) = det '     S)       '

for all x, y, z,w E V. Choose an orientation of F and let w E A4( F) be the volume
element defined by g and the orientation of F. Then the Hodge *-operator is the
symmetric linear operator defined by <* £, tj> = <£ A*). «> for £, tj E A2(F).

First we recall the decomposition of 61(F) into irreducible factors for the action
of the orthogonal group 0 (4) (see [21]).

Theorem 14.1. We have

61(F) = £(77,) © «MF) © %(V)

where

6l„,(F) = {R E 6l(F)|P * = * /?} n t^mj),
%(V) = {RE 6l(F)|/? *=-*/?).

77ie action of 0(4) on 61(F) is irreducible on £(*■,), 6V(F) and %(V). Further,
dim %y(V) = 10 and dim %(V) = 9.

Note that £(7r,) = {1} where 1 is the identity transformation on A2(F).
For the action of S 0 (4) there is a further orthogonal splitting. We have [21]

Theorem 14.2. 61(F) = t(irj) © 6l^(F) © 6t^(F) © %( V) where

6l^(F) = {/? E 6V(F)|/? * = ±R}.
The action of S 0(4) is irreducible on each of the factors and dim 6i^(F) = 5.

Let R E 61(F). Then the projection of R on 6l£(F) is called the self-dual part
of C(R) and the projection on 6l^,(F) the anti-self-dual part of C(R) where C(R)
is the Weyl component of R. Curvature tensors for which one of these projections
vanishes are called half-conformally flat curvature tensors.

Finally we now consider the further decomposition of 61 ( F) under the action of
%(2). We give a description of the decomposition with the help of * and the
induced map J: A2(V)^A2(V) defined by J(x Ay) = Jx AJy, x,y E V, and
linearity. Note that on A2(F) we have J2 = 1. This complete decomposition is also
given in [8]. We write it down using our notation.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



392 FRANCO TRICERRI AND LIEVEN VANHECKE

Theorem 14.3. Let V be a 4-dimensional Hermitian vector space. Then we have
the following further splitting:

%f{V) = £(tt, - trj) © % © %9,

6l^( F) = %,       %(V) = % © <¥8
where

£(ir, - -nj) = (2* +3J - 1),
<¥2 = {/? E 6l(F)|P * =-*/?, P7 = /?},
% = {/?£ 6l(F)|P * = - * R,RJ = -JR),
% = {/? E 6l(F)|P* = -/?},
% = {«£ 6t(F)|/? * = /?} n £x(tt, - w2),

% = {/? E 6l(F)|P * = R,RJ = -JR}.

Further, we have

dim % = 5,   dim % = 2,   dim <¥9 = 2,   dim % = 3,   dim % = 6
and the action of 6h-(2) is irreducible on each of the factors.

Using Theorem 9.4 we obtain

Theorem 14.4. We have 6lB(F) = <¥3 © %7. Further, let R E 61(F); then the
Bochner tensor B(R) is the anti-self-dual part of the Weyl component C(R) if and
only ifp7(R) = 0.

Using Theorem 11.4 we derive from Theorem 14.4 and the decomposition:

Corollary 14.5. Let R E 61, (F) or let R be the Riemann curvature tensor on a
Hermitian manifold or a manifold M E &%2. Then the Bochner tensor associated
with R is the anti-self-dual part of the conformal tensor C(R).

Next we consider the quadratic invariants when dim F = 2. We have

Theorem 14.6. Let R E 61(F) and dim F = 4. Then there are 8 linear indepen-
dent quadratic invariants instead of 12. We have the following relations:

(a) o, — o3 — 2w, + 4w2 + u3 + 2us — u9 = 0;
(b) 3o, — 6o2 - 3u3 — 2u4 + 6u6 + 2u7 = 0;
(c) 2o2 — o3 — 4w5 + 2u6 + us = 0;
(d) 2u4 — 4u5 + 2u7 + m8 — u9 = 0.

Proof. Use Theorems 8.1 and 10.1. (a) expresses that p6(R) = 0 and (b)
expresses that^,0(P) = 0. Finally Theorem 10.1(iii), i.e.

p(R + L3R) - p*(R + L3R) = {-(t(R) - r*(R))g,

expresses that^5(P) = 0. Then (c) and (d) follow from this relation by taking the
inner product with p(P) and p*(R).

In the remaining part of this section we will treat some applications of this
decomposition for 4-dimensional compact orientable Einstein manifolds. In partic-
ular we will consider the Euler-Poincare characteristic, the Hirzebruch signature
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and the arithmetic genus. The main results are already contained in [8]. (See also
[14], [35].) However the author considers only Kahler manifolds.

On a general compact 4-dimensional manifold we have

(14.1) X(M) = £ (-iydim^(M) = -^ f {PU2 - 4||p(/?)||2 + r(/?)2} dV

where dV denotes the volume element of M and hp the real vector space of
harmonic forms of degree/;. When M is complex we also have x(^0 = Jm * ~t2 dV
where y2 is the second Chern form of Af. When M is an Einstein space (14.1)
becomes

x(M) = ̂ -A\\RfdV32?r jm
and, sincep2(R) = ps(R) = 0, we have

(14.2) X(M) - -i- f ( ^- + || W + (R)\\2 + || W-(R)\\2} dV
32m  jm\     o J

where W+(R), resp. W~(R), denotes the self-dual, resp. anti-self-dual, part of
C(R).

Now let M be orientable and let h2(M) = h+(M) © h_(M), where h±(M) is the
eigenspace of * with eigenvalues ±1. Then the Hirzebruch signature t(M) is given
by

(14.3) t(M) = dim h+(M) - dim h_(M) = —!— f </?, /?*> dV.
48vr •>m

When M is complex we also have

r(M)=\f   *(y2-2y2)dV = \j   * px dV = --^ f (||/?||2 - 2||p||2} dVJ ^M $ JM 487T   JM

where px is the first Pontryagin form and y2 the square of the first Chern form.
Using the decomposition, (14.3) becomes

(14.4) T(M) = -±-f {||IF+(P)||2-||IF-(P)||2}a-F.
4877"' JM

From (14.2) and (14.4) we have

Theorem 14.7 [8]. Let M be a compact oriented 4-dimensional Einstein manifold.
Then:

(i) |t(A/)| < f x(A/) - (t(P)2/288tt2)vo1(M);

(ii)     t(M) = -fx(A/) + (t(/?)2/288tt2)vo1(A/)    if and only ifW~(R) = 0;

(iii)     T(M) = f x(A/) - (t(P)2/288tt2)vo1(A/)    if and only ifW+(R) = 0.

We refer to [8] for results concerning the possibilities of x(^0 and r(M) on Ricci
flat manifolds and for other useful inequalities.
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From now on we consider only 4-dimensional almost Hermitian Einstein mani-
folds with the orientation defined by the almost complex structure. Then we have

W + (R) = C,(/?) + p7(R) + p9(R),    W~(R)=p3(R),

and

\\W + (R)\\2 = «R) ~ 3r*(/?))2/24 + \\p7(R)\\2 + \\p9(R)\\2.
Note that a 4-dimensional almost Hermitian Einstein manifold belongs to the class
£E%2 if and only if p7(R) = p9(R) = 0. Hence we have

Theorem 14.8. Let M be a 4-dimensional almost Hermitian Einstein space. Then
W + (R) = 0 if and only if M E &% and r(R) = 3t*(R). If M E &% then
W+(R) = 0if and only if M is Ricci flat.

Further, we have, just as in the Kahlerian case,

Theorem 14.9. Let M E &%x. Then

X(M) + § r(M) = ^p- vol(M),    X(M) - 3r(M) - -jL f || W~(R)\\2 dV;
(Am1- 32-n  jm

- 2X(M) < 3t(M) < X(M).

When A/ E 6EDCi, rF~(P) = 0if and only if M has constant holomorphic
sectional curvature. Hence, in the nonflat case, CP2(u) is the standard example. It
would be interesting to know if there are other examples. When we take Einstein
manifolds of the class (JSQ, then W~(R) = 0 if and only if M is a generalized
complex space form. But for dimension 4 this is just the case that remained open in
§ 12. We do not know of any example which is compact and not Kahlerian.

Examples of compact manifolds with W+(R) = 0 are given by those which are
locally isometric to a /T3-surface. We do not know if there are examples which are
not Kahlerian.

In the noncompact case we gave in [31] an example of a Hermitian manifold of
the class (JSQ with W+(R)= W~(R) = 0 and which is Einsteinian.

We finish this section by considering the arithmetic genus a(M) for an oriented
compact 4-dimensional manifold. This is defined by

(14.5) a(M)=\(X(M) + T(M)).
When M is a complex manifold with the orientation defined by the complex
structure, then

a(M) = £(X(M) + c](MJ) = -1 j^ * (y2 + j2) dV

= ̂ 71 f (II*!!2 - 8IIp(*)H2 + 3tW2} dv
3847T jm
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where cx(M) denotes the square of the first Chern number. In that case a(M)
coincides with the usual definition of the arithmetic genus. Further, we have in that
case

2
a(M)=  2 ("iy dim hpfi

p=0

where hp'° is the space of harmonic forms of bidegree (p, 0). Using (14.2) and
(14.4) we obtain for an Einstein manifold:

(14.6)      a(M) = -±- f ( ^ + 5|| W+(R)\\2 + \\W-(R)\\2) dV,
384tT JM \        l )

and hence we obtain with (14.2) and (14.4)

Theorem 14.10. Let M be a compact 4-dimensional almost Hermitian Einstein
manifold. Then we have

tVx(M) + -^ vol(M) < «(Af) < |X(M) - -^ vol(Af),
1Z 11527T ^ 115277

-a(M) + ^ vol(M) < IT(Af) < \a(M) - ^1 vol(A/),
7687r ° -> 3840tt2

where the left equality sign is valid if and only if W+(R) = 0 and the right equality
sign if and only if W~(R) = 0.

Theorem 14.11. Let M be a compact 4-dimensional almost Hermitian Einstein
manifold of the class &%2. Then

»<«)+>)-^/>^«'>-r''»>
We refer also to [4] for interesting inequalities between x(^)> t(A/) and a(M) in

the Kahler case.

15. Submanifolds and the Bochner tensor. In this section we first prove a theorem
which relates the Bochner tensor of an almost Hermitian manifold with the Weyl
tensor of a special type of submanifold.

Let (A/, g, J) be an almost Hermitian manifold and N a submanifold of Af. N is
said to be a holomorphic submanifold of Af if JTm(N) = Tm(N) for all m E N and
N is a totally real submanifold if for all m E N we have JTm(N) c T^(N), where
T^-(N) denotes the normal space of TmN in TmAf. Further, denote by V the
induced Riemannian connection on A^. Then

VXY = VXY + o(X, Y)

for all X, Y E %(N). o is the so-called second fundamental form.
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N is called a totally quasi-umbilical submanifold if

(i5.i) g(o(x, y),ej) = \g(x, y) + m(xM y)

for each Et of an orthonormal basis {£,} of TjjN, the tj, being 1-forms. This means
that the second fundamental form in the direction of the normal vector Et has only
two eigenvalues: one with multiplicity dim N - 1 and one with multiplicity 1. A' is
totally geodesic when X, = u, = 0 and totally umbilical when u, = 0 for all i.

Finally the Gauss equation is given by

(15 2) R(X' y' Z' W) = *(X' y' Z' W)
+ g(o(X, Z), o(Y, W)) - g(o(X, W), o(Y, Zj)

where /? is the Riemann curvature tensor of N and X, Y,Z, WE %(N).
We will need the following:

Lemma 15.1 [20]. Let Nm be a Riemannian manifold with dim N = m > 3 and
Riemann curvature tensor R. Then Nm is conformally flat if and only if
R(X, Y, Z, W) = Ofor all quadruples of orthogonal X, Y, Z, W E %(Nm).

Then we have

Theorem 15.2. Let Af2" be an almost Hermitian manifold with real dimension
2/i > 8. //Af is Bochner flat, then each totally quasi-umbilical (in particular, totally
geodesic or totally umbilical) totally real submanifold N of dimension > 3 is conform-
ally flat.

Proof. Since N is totally quasi-umbilical we obtain from (15.1) and (15.2) that
R(X, Y, Z, W) = R(X, Y, Z, W) for any quadruple of orthogonal X, Y, Z, W E
%(N). Next, since B(R) = 0 we obtain from Theorem 9.4 that R(X, Y, Z, W) = 0.
This together with Lemma 15.1, gives the required result.

This theorem generalizes a result for manifolds of the class &%x [32].
Next we consider the case of a holomorphic submanifold N of M and put

V = TmM,V = TmN for all m E N. Then we may write (15.2) as follows:

(15.3) R9=R+H

where Rv denotes the restriction of R to V. Rv, R and H are curvature tensors
belonging to 61 (F). Now we prove

Theorem 15.3. Let M be an almost Hermitian manifold and N a holomorphic
submanifold of M. Further, let M be Bochner flat. Then N is Bochner flat if and only
if the Bochner tensor associated with the curvature tensor H vanishes.

Proof. The Riemann curvature tensor R of Af can be written as R = 2ji 1 Pt(R)
where

Px(R) = Mtt, + 772),   p2(R) = (tp + xp)(Sx),   p4(R) = m(3tt, - m2),

p5(R) = (3<p - xp)(S2),   Ps(R) = <p(S3),   p9(R) = xp(S4)
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for some 5, E %, S2 E %, S3 E % and S4E%. Further we denote by ~ the
corresponding notions on N and consider the restrictionspj(R)y of pt(R) to F. We
have

7?,  = WXy,     7?2 = 7T2,>,      xf(Sy) = <p(S)y,     Xp(Sy)  = Xp(S)y.

Also we have that Rv E %(V) when R E 61,.(V).
Hence we obtain at each point m £ N:

Rv = A(w)(t?, + t72) + (tp +xp)(SXy)+p3(R)v +ju(m)(377, - tt2)

+ (3<p -i)(S2y) +p6(R)y +p1(R)v +y(S3v) + t(S4y)+pxo(R)y,
and so it follows from the arguments made above that:

77, + t?2 E <¥,(F),    (tp +xp)(SXy) E %(V) © %(V),

p3(R)v E<¥,(F) © %(F) © %(F),    3tT, - t?2 E <¥4(F),

(3<p -xj)(S2y) E %4(V) © %(V),   p6(R)y E%(F) © %(F) © <¥6(F),

p7(P)? E<¥7(F),    tp^^E^F),   ^(54r.)E%(F),

pxo(R)y E^F) © %(F) © %0(F).
Since A/ is Bochner flat we have from Theorem 9.4:

Pt,(R)v = PeWv=PiiR)y = PioWk = 0.
Hence (15.3) and the results above imply that B(R) = 0 if and only if B(H) = 0,
which proves the required result.

Corollary 15.4. Let M be a Bochner flat almost Hermitian manifold and H a
holomorphic submanifold of M which satisfies one of the following conditions:

(i) N is totally geodesic;
(ii) A^ is totally umbilical;
(iii) N is totally quasi-umbilical.

Then N is Bochner flat.

Proof. Using (15.1) it is easy to check that B(H) = 0 when N is totally
quasi-umbilical. Further (i) and (ii) are special cases of (iii).

Note that for Kahler manifolds Af, cases (ii) and (iii) reduce to (i).
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