
Curve-Based Representation of Moving Object Trajectories

Byunggu Yu

Department of

Computer Science

University of

Wyoming

yu@uwyo.edu

Seon Ho Kim

Department of

Computer Science

University of

Denver

seonkim@cs.du.edu

Thomas Bailey

Department of

Computer Science

University of

Wyoming

tbailey@uwyo.edu

Ruben Gamboa

Department of

Computer Science

University of

Wyoming

ruben@uwyo.edu

Abstract

 In recent years, many emerging database applications

deal with continuously moving data objects – each data

object moves continuously and frequently reports its

current location, moving direction, and speed to the

database server. A database server for these applications

keeps track of the trajectories of individual moving

objects and processes queries referring to the past or

future trajectories. Related techniques view a moving

object trajectory as a sequence of connected line

segments. However, most natural moving objects, such as

airplanes, vessels, and vehicles, draw a smooth trajectory

with no angles. This paper presents our curve-based

trajectory representation models. The presented results

show that the curve-based models provide much more

accurate trajectories than the line-based models when we

have the same amount of data (same number of reported

points). In other words, the curve-based models require a

smaller amount of data while providing the same

accuracy in trajectory representation.

1. Introduction

In recent years, many emerging database applications

deal with continuously moving data objects. These

applications, which are known as Moving-objects

database (MOD) applications, include mobile

communication systems, location-based services (LBS),

digital battlefields, transportations, and air- or ground-

traffic control systems, to name a few. In MOD

applications, each data object moves continuously and

frequently reports its current spatiotemporal attribute

values (spatiotemporal records) representing its current

location, moving direction, and speed to the database

server. Moving objects may even change their reporting

time intervals. The database server must constantly

commit a large number of incoming spatiotemporal

records to the database. This aspect of MOD applications

poses a major challenge for developing a specialized

database server that supports real-time processing.

To support large-scale MOD applications, one requires

an on-line database server that can store, update, and

retrieve large sets of moving objects. Each moving object

has both spatiotemporal properties representing the

trajectory and non-spatiotemporal properties such as

identification, phone number, and address. Conventional

database technology can efficiently manage the non-

spatiotemporal properties of moving objects and

efficiently process queries referring to only non-

spatiotemporal properties of moving objects. Therefore,

the most important and interesting research issues in

designing and implementing a MOD server are storing

trajectories of moving objects, updating trajectories of

moving objects, and processing queries referring to these

trajectories.

A MOD server must be able to keep track of the

trajectories of individual moving objects and process

queries referring to the past or future trajectories. Most

existing techniques view a trajectory as a sequence of

connected line segments (line-based trajectory

representation) in a 3-dimensional or 4-dimensional

space-time [1, 4, 5, 6, 8, 9, 10, 11, 12, 13]. However, most

natural moving objects, such as airplanes, vessels,

vehicles, humans, trains, and animals, draw a smooth

trajectory with no angles. This is because they

continuously move with momentum. Therefore,

representing the trajectory of a moving object as a

sequence of connected curve segments (curve-based

trajectory representation) is more intuitive.

This paper presents our study of trajectory

representation models, specifically curve-based trajectory

representation of moving objects. Representing the

trajectory of a moving object more accurately with a

fewer number of reported points is a crucial issue in

designing MOD servers because the frequency of

trajectory updates is a critical factor in determining the

performance of a real-time MOD server. Conventional

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’04)

1098-8068/04 $20.00 © 2004 IEEE

line-based models using a linear function create

trajectories that have angles at reported (factual)

locations. Thus it does not represent well the smooth

trajectories of moving objects. Our proposed trajectory

representation models harness a higher degree polynomial

to draw more accurate trajectories in which not only

locations but also some important derivatives (e.g.,

velocity) change smoothly. Our experimental results

demonstrate the superiority of the proposed curve-based

models over the conventional line-based ones in 1)

tracking the actual trajectories, 2) reducing the number of

reporting points (trajectory updates).

In recent years, we are witnessing that MOD

applications are approaching to the mainstream as GPS

(Global Positioning System) devices proliferate [8].

Consequently, a high-performance, scalable MOD server

is an important requirement. Our research presented in

this paper is well-positioned to address this requirement.

Other related applications include national security (e.g.,

monitoring numerous moving objects near the border

lines), transportation security and safety (e.g., per-airport

early warning system for airplane-terrain collision), and

collision avoidance for orbital space objects.

The rest of this paper is organized as follows. Section 2

presents a classification of existing spatiotemporal update

policies, describes conventional line-based trajectory

models, and proposes our curve-based trajectory

representation models. In Section 3, we quantify our

discussion by comparing real trajectory gathered from a

GPS device with analytical results from our trajectory

models and from conventional line-based models.

Conclusions and future research directions are discussed

in Section 4.

2. Trajectory representation

While data objects continuously move, their

trajectories in the database cannot be continuously

updated due to the limited network bandwidth and the

server’s database update performance. In a conventional

database system, if too many transactions updating the

database are constantly given (e.g., 1000 transactions

every second), data values accumulate in the buffer

because the database system cannot commit all the

incoming data to the database on the disk (i.e., disk I/O

bottleneck). This results in a buffer overflow, after which

the system begins losing (or rejecting) the incoming data

and is no longer able to process transactions. Thus, each

moving object discretely reports the spatiotemporal

attribute values (spatiotemporal records) representing its

location, direction, and speed. This discrete update can

make the trajectory of a moving object stored in a

database (database trajectory) different from the actual

trajectory of the object. A database trajectory is

represented by a sequence of connected segments, each of

which joins two consecutive reported locations using

interpolation (estimation). Each segment is associated

with a certain degree of uncertainty representing the

deviations (e.g., Euclidian distance) between the points of

the segment and the corresponding points of the real

trajectory.

2.1. Update policies

Existing discrete update policies can be classified as

follows [12]:

 (1) Fixed time-interval (FTI) update policy: A

reporting interval is defined as the time interval between

a pair of consecutive updates. Each moving object has a

fixed reporting interval x selected in an ad hoc fashion,

and sends a spatiotemporal record to the server every x

time units. Except for the first spatiotemporal record, each

spatiotemporal record contains a valid uncertainty value:

each moving object estimates its current location using

the same technique (the same mathematical equations) as

the database server and measures the deviation (Euclidian

distance) between the real location and the estimated

location every time unit. The maximum deviation found is

written in the next spatiotemporal record as the

uncertainty and cleared. Thus, the uncertainty value

associated with a reported location P
i

represents the

maximum deviation of the curve segment joining P
i-1

and

P
i
.

(2) Plain dead-reckoning (PDR) update policy: Each

moving object has the last reported spatiotemporal record

and a fixed threshold th that is selected in an ad hoc

fashion. Each moving object estimates its current database

location as the database server does and measures the

deviation between the real location and the database

location every time unit. When the actual deviation th’

between the current location and the corresponding

database location exceeds th, a spatiotemporal record with

the uncertainty value th’ is sent to the database server.

Thus, the uncertainty value associated with a reported

location P
i
represents the maximum deviation of the curve

segment joining P
i-1

and P
i
.

(3) Adoptive dead-reckoning (ADR) update policy:

Basically, this is the same as PDR update policy except

that moving objects can change their update thresholds.

Each moving object has the last reported spatiotemporal

record and th. When a moving object reports a new

spatiotemporal record, it can change the threshold value

for future updates (the details of this can be found in

[12]).

Although in [12, 13], these update policies are used in

a database server that keeps track of only the current

locations, speeds, and directions of moving objects, the

update policies can also be used to keep track of the

trajectories of moving objects and to associate a proper

uncertainty with each past trajectory segment. Then,

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’04)

1098-8068/04 $20.00 © 2004 IEEE

processing techniques for queries referring to the past

trajectories can produce a result set in which each result

item is associated with its likelihood (i.e., the probability

that the result item satisfies the given query predicate).

2.2. Linear interpolation and extrapolation

A database trajectory is represented by a sequence of

connected segments each of which joins two consecutive

reported points. To produce these segments, interpolation

schemes can be used. Conventionally, linear interpolation

between reported (factual) location-times has been widely

used in estimating past trajectories of a moving object.

Similarly, future locations are extrapolated by linearly

extending the most recently reported velocity. These line-

based models create trajectories with angles at joints (i.e.,

factual location-times), which is unusual in real

trajectories of continuously moving objects.

In recent years, several MOD access methods have

been designed to support database queries referring to the

trajectories of continuously moving data objects. These

access methods can be classified into Past Trajectory

Access Methods (PTAMs) and Future Trajectory Access

Methods (FTAMs): while FTAMs [1, 5, 10, 11] are

designed for spatiotemporal MOD queries referring to the

current or future trajectories of moving objects, PTAMs,

such as [4, 8, 9], index the past trajectories of moving

objects. All these methods are based on the linear

interpolation or extrapolation method, and the uncertainty

issue is not considered well.

2.3. Curve-based interpolation and extrapolation

This section presents our first curve-based

interpolation and extrapolation approaches that can

improve query performance by reducing the number of

trajectory update points as well as the number of

trajectory segments that are indexed without

compromising the accuracy of database trajectory. A

trajectory is represented by a sequence of curve segments,

rather than line segments, each of which connects two

consecutive reported location-times. A location-time of a

2-dimensional moving object is a point <X, Y, TIME> in a

3-dimensional space-time; a location-time of a 3-

dimensional moving object is a point <X, Y, Z, TIME> in

a 4-dimensional space-time.

We view a trajectory as a spline composed of a

sequence of low degree curves (e.g., parametric cubic

curves)
1

. There are several families of splines. B-splines

[7] are used often in computational geometry and

1

 A single high-degree curve is not desirable because of the following

reasons: (1) the polynomial may take very large values between the

points, and the size of these excursions can grow exponentially with the

degree N of the polynomial; (2) the polynomial can be very sensitive to

small changes in the points [3].

computer graphics. However, B-splines do not go through

a given set of control points. Since we use reported

location-times as control points, trajectory splines must

pass through all control points. The Catmull-Rom spline

[2, 7] has the following desirable characteristics: (1) the

spline passes through all the control points; (2) the spline

is continuous: the curve segments are joined with C
1

continuity (i.e., the first derivatives of two adjacent curves

are equal at the joint). However, the Catmull-Rom spline

does not reach the first and the last control points. Given a

sequence of control points P
0
, P

1
, …, P

n
, since the slope

of the tangent at each control point P
i
 is the slope of the

linear line connecting P
i-1

and P
i+1

, the slopes of the

tangents at P
0
 and P

n
 cannot be derived.

In our applications, each spatiotemporal record

contains not only a location-time (joint) P but also a

velocity P’ (a vector whose direction represents the

moving direction and whose magnitude represents the

speed). Because each reported location-time is used as the

joint of two adjacent curve segments, each pair of

adjacent curve segments has the same velocity (i.e., the

first derivative) at the joint. We propose to use a

parametric cubic function P(t) = a
0
+a

1
t+a

2
t
2

+a
3
t
3

 to obtain

a spline that passes through any given sequence of joint-

velocity pairs <<P
0

P
0
’> <P

1
P
1
’> <P

2
P
2
’> … <P

n
P
n
’>>

where P
i
 is a location-time in a 3-dimensional or 4-

dimensional space-time and P
i
’ is the velocity at P

i
, for all

ni ,1= .

Given a pair of two consecutive joint-velocities <P
i

P
i
’> and <P

j
P
j
’>, one can derive the coefficients of P(t) =

a
0
+a

1
t+a

2
t
2

+a
3
t
3

 by solving the following constraints for

a
0
, a

1
, a

2
, and a

3
: P(t=0) = P

i
; P(t=P

j
.TIME-P

i
.TIME) = P

j
;

P’(t=0) = P
i
’; P’(t=P

j
.TIME-P

i
.TIME) = P

j
’. Substituting

these coefficients into the polynomial equation, we have

the following function:

,

'

'

/1/1/2/2

/1/2/3/3

0100

0001

]1[)(

2233

22

32

−

−−−

=

j

i

j

i

xxxx

xxxx

P

P

P

P

tttt

tttt

ttttP

where P’ = <X’ = ∆X/∆t, Y’ = ∆Y/∆t, Z’ = ∆Z/∆t, TIME’ =

∆TIME/∆t = 1>, t
x

= P
j
.TIME-P

i
.TIME, and 0 ≤ t ≤ t

x
. (1)

Alternatively, this can be written as follows:

,

'

'

1122

1233

0100

0001

]1[)(
32

−

−−−

=

j

i

j

i

P

P

P

P

uuuuP

where P’ = <X’ = ∆X/∆u, Y’ = ∆Y/∆u, Z ’= ∆Z/∆u, TIME’ =

∆TIME/∆u = P
j
.TIME-P

i
.TIME>, and 0 ≤ u ≤ 1. (2)

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’04)

1098-8068/04 $20.00 © 2004 IEEE

X

Y

Time

Figure 2. Interpolating four given spatiotemporal records:

Record# X Y Time ∆X/∆t ∆Y/∆t ∆Time/∆t

1 10 10 10 5 50 1

2 20 50 11 100/3 100 1

3 60 50 12 100/3 -100 1

4 70 10 14 50/502 -500/502 1

Given records

Figure 1 shows the difference between this parametric

cubic function and the conventional linear interpolation.

Figure 1. Interpolating four given spatiotemporal

records

To predict the future trajectory of a moving object,

conventional linear extrapolation schemes [1, 5, 10, 11]

extend the last known velocity or line segment to estimate

the future trajectory. This represents a linear movement

with a fixed velocity. In our curve-based approach, given

a future (or current) point in time T
f
, we can extrapolate

the location of a moving object by extending the object’s

trajectory segment connecting the last two reported

spatiotemporal records P
n-1

and P
n
 to T

f
 (i.e., P(t=T

f
)).

However, this extrapolation must be appropriately

modified because curves can quickly deviate from the real

trajectory. For example, if the 3
rd

 degree polynomial

Equation (1) is used, acceleration changes linearly. This

implies that moving objects will keep increasing or

decreasing their accelerations at the same rate as time

progresses, which is very unlikely for most moving

objects.

 Without any correction in acceleration, an

extrapolation for future trajectory using the 3
rd

 degree

polynomial may be much worse than that of the linear

extrapolation. Nevertheless, extrapolating the last curve

segment is still helpful in estimating the future trajectory

of a moving object, since the recent trajectory of the

object may represent the momentum that the object has

gained. In Physics, a well known, simplest form of

momentum (i.e., linear momentum) is m×v, where m and

v are mass and velocity, respectively. In addition, the

effect of momentum is indirectly proportional to time

(i.e., the current momentum gradually disappears as time

progresses). As a simple model, we tested the following

formula to maintain future trajectories in control by

weighting both linear and non-linear factors. The weight

W given to P(t) decreases as time progresses and the

function L(t) represents the linear extrapolation. Note that,

the following function is not yet mature. We designed this

simple preliminary formula in order to show that our

curve-based trajectory representation model can be used

not only for past trajectory interpolation but also for

future trajectory extrapolation.

F(t=T
f
) = W*P(t=T

f
) + (1-W)*L(t=T

f
), where W = C/(T

f
-P

n-1
.T)

and L(T
f
)= (P

n
+(T

f
-P

n
.T)*P

n
’) (3)

3. Experimental results

3.1. Background

To verify the effectiveness of our proposed curve-

based trajectory approach, we have conducted the

following experiment. Using a portable GPS device

(Trimgle Navigation’s ProXRS Receiver with GPS

logger), which can record a joint-velocity pair every

second, we collected real GPS data. We placed the GPS

device in a car and drove from a location near the north

boundary of Denver, Colorado, to Loveland, Colorado

along the interstate highway 25. Every second, we logged

a spatiotemporal data from the GPS device. We believe

this trajectory includes both relatively straight road and

some winding road, which is useful for a better

comparison. Then, we divided the recorded trajectory

points into two subsets as shown in Figure 2. Note that

Set1 represents driving on a straight road – its trajectory

has almost constant velocity. Unlike Set1, the trajectory

of Set2 has more noticeable changes in velocity (i.e.,

direction and speed).

For the comparison between the conventional line-

based (linear) model and our curve-based model, we

created trajectories based on a subset of logged update

points. For each of Set1 and Set2, we randomly selected

logged spatiotemporal records with various sampling

ratios. Both of the proposed cubic function and the

conventional line-based interpolation scheme were used

to connect the selected samples (4-dimensional

spatiotemporal trajectories were produced). Figure 3 gives

magnified views of the circled parts in Figure 2 (the

sampling ratio was about 5%; for illustration sake, we

projected the 4-dimensional spatiotemporal trajectories

onto the XY-plane). Finally, we quantified 1) the actual

deviations between the non-sampled real location-times

and the corresponding computed points in the curve-based

trajectory and 2) the actual deviations between the non-

sampled real location-times and the corresponding

computed points in the line-based trajectory for the

comparison.

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’04)

1098-8068/04 $20.00 © 2004 IEEE

40

40.05

40.1

40.15

40.2

40.25

40.3

40.35

40.4

40.45

40.5

-105.1 -105.05 -105 -104.95 -104.9

Longitude

L
a
t
i
t
u
d
e

Set1 Set2Ft. Collins,

Colorado

Greely,

Colorado

Denver

Loveland,

Colorado

U-turn

Figure 2. A real trajectory points collected: Set1

consists of 482 spatiotemporal records logged

every second; Set2 consists of 742

spatiotemporal records logged every second

4468000

4468200

4468400

4468600

4468800

4469000

4469200

4469400

4469600

4469800

4470000

-
1
0
1
3
1
3
5
0

-
1
0
1
3
1
3
3
0

-
1
0
1
3
1
3
1
0

-
1
0
1
3
1
2
9
0

-
1
0
1
3
1
2
7
0

-
1
0
1
3
1
2
5
0

-
1
0
1
3
1
2
3
0

-
1
0
1
3
1
2
1
0

-
1
0
1
3
1
1
9
0

-
1
0
1
3
1
1
7
0

-
1
0
1
3
1
1
5
0

Real Trajectory Cubic Function Linear

Sample Points

4474000

4474500

4475000

4475500

4476000

4476500

4477000

4477500

-
1
0
1
3
2
5
0
0

-
1
0
1
3
2
3
0
0

-
1
0
1
3
2
1
0
0

-
1
0
1
3
1
9
0
0

-
1
0
1
3
1
7
0
0

-
1
0
1
3
1
5
0
0

-
1
0
1
3
1
3
0
0

Real Trajectory Cubic Function Linear

Sample Points

Figure 3. Trajectories projected onto XY-plane:

the X-axis is longitude in meters; the Y-axis is

latitude in meters; the sampling ratio was 37/742

(≈ 5%)

3.2. Comparison

In all cases (i.e., Sets 1 and 2), the proposed cubic

function (i.e., Equations (1)) produced significantly

smaller average deviations (up to 3 times smaller, Figure

4) and standard error deviations (Figure 5) than those of

the line-based (linear) interpolation scheme. Figure 4

shows the average deviation between a real location and a

computed location for various subsets of update points.

For example, with 37 out of 742 points in Set2, the

average distance deviation of the curve-based trajectory

was 21 meters while that of the line-based trajectory was

62 meters, which is approximately 200% greater. The

maximum deviation in this section was 231 meters for the

curve-based trajectory and 683 meters for the line-based

trajectory (again, approximately 200% greater). As shown

in Figure 5, the standard deviation in this section was 41

meters for the curve-based trajectory and 134 meters for

the line-based trajectory (approximately 230% greater).

0

5

10

15

20

25

30

35

40

45

6/482 10/482 29/482 51/482 118/482 254/482

sampling ratio

a
v

e
r
a

g
e

d

e
v

i
a

t
i
o

n

Linear Cubic

(a)

0

20

40

60

80

100

120

140

8/742 12/742 37/742 70/742 179/742 376/742

sampling ratio

a
v

e
r
a

g
e

d

e
v

i
a

t
i
o

n

Linear Cubic

(b)

Figure 4. Average spatial deviations (in meters)

with various sampling ratios on (a) Set1 and (b)

Set2

Observe that the difference between the line-based

trajectory and the curve-based trajectory was smaller

when the road is straight, while it was widen where the

road is winding (see Figures 4 and 5): Figure 4(a) shows

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’04)

1098-8068/04 $20.00 © 2004 IEEE

that, given an average-deviation threshold of 2 meters, the

linear model requires about 118 updates, and the cubic

model requires about 51 updates (about 2.3 times smaller

number); Figure 4(b) shows that, given an average-

deviation threshold of 62 meters, the linear model

requires about 37 updates, and the cubic model requires

about 8 updates (a 4.6 times smaller number of updates).

In all cases, the curve-based approach excelled the linear

approach.

0

5

10

15

20

25

30

35

40

6/482 10/482 29/482 51/482 118/482 254/482

sampling ratio

s
t
a

n
d

a
r
d

d

e
v

i
a

t
i
o

n

Linear Cubic

(a)

0

20

40

60

80

100

120

140

160

180

8/742 12/742 37/742 70/742 179/742 376/742

sampling ratio

s
t
a

n
d

a
r
d

d

e
v

i
a

t
i
o

n

Linear Cubic

(b)

Figure 5. Standard error deviations (in meters)

In the next experiment, we used the 3
rd

 degree

trajectory extrapolation formula (i.e., Equation (3)) and

reused the data in Set2. The constant C was set to 0.5 and

we assumed Plain Dead-Reckoning (PDR) update policy

explained in Section 2.1. Given a fixed threshold th, our

simulation program counted the updates required by the

linear extrapolation scheme L(t)=(P
n
+(t-P

n
.T)*P

n
’) and

the updates required by the function F(t) (i.e., Equation

(3)). Recall that, in PDR update policy, an update is

required whenever the estimated location deviates from

the corresponding factual location in the GPS device’s log

by more than th (meters). We ran the simulation program

with various threshold values. The results summarized in

Figure 6 show that the tested function F(t) requires

noticeably smaller number of updates than the

conventional linear extrapolation L(t). That is, given a

maximum deviation allowed, the curve-based trajectory

representation can significantly reduce the number of

required spatiotemporal records (updates). In other words,

the curve-based trajectory representation can more

accurately extrapolate future trajectories. Considering that

Equation (3) is still preliminary, this result shows the

potential of curve-based model in future trajectory

extrapolation.

0

50

100

150

200

250

300

3 5 10 25 50

update threshold in meters

u
p

d
a

t
e

s

L(t) F(t)

Figure 6. The impacts of the preliminary curve-

based approach on future trajectory estimation

4. Discussions and future directions

Given a maximum allowed deviation between a point

of a database trajectory and the corresponding point of the

real trajectory, our proposed curve-based trajectory

representation, which has no angles (i.e., C
1

 or higher

degree continuity at every joint), may require a smaller

number of spatiotemporal records than the line-based

trajectory representation. Thus, one can expect the

following positive effects: 1) a smaller number of

trajectory update transactions per time unit, 2) a reduced

amount of secondary storage space occupied by

trajectories, 3) a reduced size of trajectory index

structures, and 4) a smaller number of disk I/Os in

processing trajectory update transactions and trajectory

queries. These all result in enhancing the performance of

a MOD server. In another aspect, our approach can

present more accurate trajectories than the conventional

approach with the same given resources.

In the experiments presented in this paper, we

designed, implemented, and tested curve-based trajectory

models based on a 3
rd

 degree polynomial (a specialized

parametric cubic function). When each update gives

location and the first derivative (velocity) of the real

trajectory, our past trajectory model based on a 3
rd

 degree

polynomial can generate visually smooth curve segments

(i.e., the location changes smoothly). However, in each

segment, the acceleration changes linearly. If each update

gives both the first and the second derivatives (i.e.,

velocity and acceleration), a 5
th

 degree polynomial can be

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’04)

1098-8068/04 $20.00 © 2004 IEEE

used to generate a curve segment in which location,

velocity, and acceleration change smoothly. We can

generalize our model by considering higher degree

derivatives. We will continue to investigate this

generalized trajectory representation. We will consider

various types of moving objects (e.g., vehicles, airplanes,

vessels, humans, animals) and investigate optimization

solutions that, given a proper description of a set of

moving objects, can choose the most efficient equation

for the objects in the set. We reserve these as our future

work.

At this point, a question regarding the trade-offs

between CPU overhead and I/O overhead may naturally

arise. As we can see in Section 2, our solutions (i.e.,

Equations (1) and (3)) incur more computation overhead,

which requires additional CPU time. According to our

experiments (For the experiments, we used Dell Precision

420 Linux workstation equipped with Intel Pentium III

800MHz and 256MB main-memory space), it took the

linear model 0.7 – 0.8 microsecond of CPU time to

interpolate (compute) a point in-between two consecutive

joints. For the same job, the cubic function required 4.3 –

4.6 microseconds of CPU time. Considering large scale

applications, incoming spatiotemporal records will form a

long, seamless update pipeline, which requires the server

to constantly perform disk I/O operations. The curve-

based model reduces the I/O overhead without

compromising the accuracy of the trajectories. Our

experimental results show that the tested cubic function

can allow us to reduce the number required updates by a

factor of up to 4 or 5. This has much more significant

impacts on the system performance and scalability than

the CPU overhead: Typically, a single disk access

requires several milliseconds. For example, IBM Deskstar

14GPX has an average disk access time of approximately

10 milliseconds. Typically, a main-memory access takes

less than 60 nanoseconds. More importantly, it is well-

known that CPU and memory performances have been

improved at a much faster pace than that of secondary

storage devices. Nevertheless, we believe that

investigating the relevant issues in developing an adaptive

system that can automatically balance the CPU-I/O trade-

offs using various trajectory models is very interesting

and practically viable, especially for small-size moving

object databases backed by large database buffer space

and for peculiar MOD systems that have limited CPU

power or relatively faster secondary storages. Our future

work will cover this issue.

References

[1] P. K. Agarwal, L. Arge, and J. Erickson. Indexing Moving

Points. ACM PODS SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, pp. 175-186, 2000.

[2] E. Catmull and R. Rom. A Class of Local Interpolation

Splines. R.E. Barnhill and R.F. Riesenfled, editors, Computer

Aided Geometric Design, Academic Press, New York, 1974.

[3] W. R. Franklin. Applications of Analytical Cartography.

Cartography and Geographic Information Systems, 2000:

www.ecse.rpi.edu/Homepages/wrf/research/gisapps/gisapps.pdf.

[4] B. Jun, B. Hong, and B. Yu. Dynamic Splitting Policies of

the Adaptive 3DR-tree for Indexing Continuously Moving

objects. Proc. DEXA International Conference on Database and

Expert Systems Applications, LNCS Lecture Notes in Computer

Science, Vol. 2736, pp. 308-317, Springer-Verlag, Berlin

Hidelberg, 2003.

[5] G. Kollios, D. Gunopulos, V. J. Tsotras. On Indexing

Mobile Objects. ACM PODS SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, pp. 261-272,

1999.

[6] D. Kwon, S. Lee, S. Lee. Indexing the Current Positions of

Moving objects Using the Lazy Update R-tree. Third

International Conference on Mobile Data Management,

January, Singapore, p. 113, 2002.

[7] On-Line Geomteric Modeling Notes. Computer Science

Department, University of California, Davis,

http://graphics.cs.ucdavis.edu/CAGDNotes/.

[8] D. Pfoser and C. S. Jensen. Querying the Trajectories of

On-Line Mobile Objects. Proc. ACM MobiDE International

Workshop on Data Engineering for Wireless and Mobile Access,

pp. 66-73, 2001.

[9] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel

Approaches to the Indexing of Moving object Trajectories. Proc.

VLDB Very Large Data Base Conference, pp. 395-406, 2000.

[10] S. Saltenis, C.S. Jensen, S.T. Leutenegger, and M.A. Lopez.

Indexing the Positions of Continuously Moving objects. ACM

SIGMOD International Conference on Management of Data, pp.

331-342, 2003.

[11] Y. Tao, D. Papadias, and J. Sun. The TPR*-Tree: An

Optimized Spatio-Temporal Access Method for Predictive

Queries. Proc. VLDB Very Large Data Base, pp. 790-801, 2003.

[12] O. Wolfson, L. Jiang, A. P. Sistla, S. Chamberlain, N.

Rishe, and M. Deng. Databases for Tracking Mobile Units in

Real Time. C. Beeri and P. Buneman, editors, ICDT

International Conference on Database Theory, LNCS Lecture

Notes in Computer Science, pp. 169-186, Springer-Verlag,

Berlin Hidelberg, 1998.

[13] O. Wolfson, P. Sistla, B. Xu, J. Zhou, and S. Chamberlain.

DOMINO: Databases fOr Moving objects traking. Proc. ACM

SIGMOD International Conference on Management of Data, pp.

547-549, 1999.

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’04)

1098-8068/04 $20.00 © 2004 IEEE

