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Abstract

 In recent years, many emerging database applications 

deal with continuously moving data objects – each data 

object moves continuously and frequently reports its 

current location, moving direction, and speed to the 

database server. A database server for these applications 

keeps track of the trajectories of individual moving 

objects and processes queries referring to the past or 

future trajectories. Related techniques view a moving 

object trajectory as a sequence of connected line 

segments. However, most natural moving objects, such as 

airplanes, vessels, and vehicles, draw a smooth trajectory 

with no angles. This paper presents our curve-based 

trajectory representation models. The presented results 

show that the curve-based models provide much more 

accurate trajectories than the line-based models when we 

have the same amount of data (same number of reported 

points). In other words, the curve-based models require a 

smaller amount of data while providing the same 

accuracy in trajectory representation. 

1. Introduction 

In recent years, many emerging database applications 

deal with continuously moving data objects. These 

applications, which are known as Moving-objects 

database (MOD) applications, include mobile 

communication systems, location-based services (LBS), 

digital battlefields, transportations, and air- or ground-

traffic control systems, to name a few. In MOD 

applications, each data object moves continuously and 

frequently reports its current spatiotemporal attribute 

values (spatiotemporal records) representing its current 

location, moving direction, and speed to the database 

server. Moving objects may even change their reporting 

time intervals. The database server must constantly 

commit a large number of incoming spatiotemporal 

records to the database. This aspect of MOD applications 

poses a major challenge for developing a specialized 

database server that supports real-time processing. 

To support large-scale MOD applications, one requires 

an on-line database server that can store, update, and 

retrieve large sets of moving objects. Each moving object 

has both spatiotemporal properties representing the 

trajectory and non-spatiotemporal properties such as 

identification, phone number, and address. Conventional 

database technology can efficiently manage the non-

spatiotemporal properties of moving objects and 

efficiently process queries referring to only non-

spatiotemporal properties of moving objects. Therefore, 

the most important and interesting research issues in 

designing and implementing a MOD server are storing 

trajectories of moving objects, updating trajectories of 

moving objects, and processing queries referring to these 

trajectories.

A MOD server must be able to keep track of the 

trajectories of individual moving objects and process 

queries referring to the past or future trajectories. Most 

existing techniques view a trajectory as a sequence of 

connected line segments (line-based trajectory 

representation) in a 3-dimensional or 4-dimensional 

space-time [1, 4, 5, 6, 8, 9, 10, 11, 12, 13]. However, most 

natural moving objects, such as airplanes, vessels, 

vehicles, humans, trains, and animals, draw a smooth 

trajectory with no angles. This is because they 

continuously move with momentum. Therefore, 

representing the trajectory of a moving object as a 

sequence of connected curve segments (curve-based

trajectory representation) is more intuitive. 

This paper presents our study of trajectory 

representation models, specifically curve-based trajectory 

representation of moving objects. Representing the 

trajectory of a moving object more accurately with a 

fewer number of reported points is a crucial issue in 

designing MOD servers because the frequency of 

trajectory updates is a critical factor in determining the 

performance of a real-time MOD server. Conventional 
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line-based models using a linear function create 

trajectories that have angles at reported (factual) 

locations. Thus it does not represent well the smooth 

trajectories of moving objects. Our proposed trajectory 

representation models harness a higher degree polynomial 

to draw more accurate trajectories in which not only 

locations but also some important derivatives (e.g., 

velocity) change smoothly. Our experimental results 

demonstrate the superiority of the proposed curve-based 

models over the conventional line-based ones in 1) 

tracking the actual trajectories, 2) reducing the number of 

reporting points (trajectory updates). 

In recent years, we are witnessing that MOD 

applications are approaching to the mainstream as GPS 

(Global Positioning System) devices proliferate [8]. 

Consequently, a high-performance, scalable MOD server 

is an important requirement. Our research presented in 

this paper is well-positioned to address this requirement. 

Other related applications include national security (e.g., 

monitoring numerous moving objects near the border 

lines), transportation security and safety (e.g., per-airport 

early warning system for airplane-terrain collision), and 

collision avoidance for orbital space objects.   

The rest of this paper is organized as follows. Section 2 

presents a classification of existing spatiotemporal update 

policies, describes conventional line-based trajectory 

models, and proposes our curve-based trajectory 

representation models. In Section 3, we quantify our 

discussion by comparing real trajectory gathered from a 

GPS device with analytical results from our trajectory 

models and from conventional line-based models. 

Conclusions and future research directions are discussed 

in Section 4. 

2. Trajectory representation 

While data objects continuously move, their 

trajectories in the database cannot be continuously 

updated due to the limited network bandwidth and the 

server’s database update performance. In a conventional 

database system, if too many transactions updating the 

database are constantly given (e.g., 1000 transactions 

every second), data values accumulate in the buffer 

because the database system cannot commit all the 

incoming data to the database on the disk (i.e., disk I/O 

bottleneck). This results in a buffer overflow, after which 

the system begins losing (or rejecting) the incoming data 

and is no longer able to process transactions. Thus, each 

moving object discretely reports the spatiotemporal 

attribute values (spatiotemporal records) representing its 

location, direction, and speed. This discrete update can 

make the trajectory of a moving object stored in a 

database (database trajectory) different from the actual 

trajectory of the object. A database trajectory is 

represented by a sequence of connected segments, each of 

which joins two consecutive reported locations using 

interpolation (estimation). Each segment is associated 

with a certain degree of uncertainty representing the 

deviations (e.g., Euclidian distance) between the points of 

the segment and the corresponding points of the real 

trajectory.

2.1. Update policies 

Existing discrete update policies can be classified as 

follows [12]: 

 (1) Fixed time-interval (FTI) update policy: A 

reporting interval is defined as the time interval between 

a pair of consecutive updates. Each moving object has a 

fixed reporting interval x selected in an ad hoc fashion, 

and sends a spatiotemporal record to the server every x

time units. Except for the first spatiotemporal record, each 

spatiotemporal record contains a valid uncertainty value:

each moving object estimates its current location using 

the same technique (the same mathematical equations) as 

the database server and measures the deviation (Euclidian 

distance) between the real location and the estimated 

location every time unit. The maximum deviation found is 

written in the next spatiotemporal record as the 

uncertainty and cleared. Thus, the uncertainty value 

associated with a reported location P
i

represents the 

maximum deviation of the curve segment joining P
i-1

and 

P
i
.

(2) Plain dead-reckoning (PDR) update policy: Each 

moving object has the last reported spatiotemporal record 

and a fixed threshold th that is selected in an ad hoc 

fashion. Each moving object estimates its current database 

location as the database server does and measures the 

deviation between the real location and the database 

location every time unit. When the actual deviation th’

between the current location and the corresponding 

database location exceeds th, a spatiotemporal record with 

the uncertainty value th’ is sent to the database server. 

Thus, the uncertainty value associated with a reported 

location P
i
represents the maximum deviation of the curve 

segment joining P
i-1

and P
i
.

(3) Adoptive dead-reckoning (ADR) update policy:

Basically, this is the same as PDR update policy except 

that moving objects can change their update thresholds. 

Each moving object has the last reported spatiotemporal 

record and th. When a moving object reports a new 

spatiotemporal record, it can change the threshold value 

for future updates (the details of this can be found in 

[12]).  

Although in [12, 13], these update policies are used in 

a database server that keeps track of only the current 

locations, speeds, and directions of moving objects, the 

update policies can also be used to keep track of the 

trajectories of moving objects and to associate a proper 

uncertainty with each past trajectory segment. Then, 
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processing techniques for queries referring to the past 

trajectories can produce a result set in which each result 

item is associated with its likelihood (i.e., the probability 

that the result item satisfies the given query predicate). 

2.2. Linear interpolation and extrapolation 

A database trajectory is represented by a sequence of 

connected segments each of which joins two consecutive 

reported points. To produce these segments, interpolation 

schemes can be used. Conventionally, linear interpolation 

between reported (factual) location-times has been widely 

used in estimating past trajectories of a moving object. 

Similarly, future locations are extrapolated by linearly 

extending the most recently reported velocity. These line-

based models create trajectories with angles at joints (i.e., 

factual location-times), which is unusual in real 

trajectories of continuously moving objects. 

In recent years, several MOD access methods have 

been designed to support database queries referring to the 

trajectories of continuously moving data objects. These 

access methods can be classified into Past Trajectory 

Access Methods (PTAMs) and Future Trajectory Access 

Methods (FTAMs): while FTAMs [1, 5, 10, 11] are 

designed for spatiotemporal MOD queries referring to the 

current or future trajectories of moving objects, PTAMs, 

such as [4, 8, 9], index the past trajectories of moving 

objects. All these methods are based on the linear 

interpolation or extrapolation method, and the uncertainty 

issue is not considered well.  

2.3. Curve-based interpolation and extrapolation 

This section presents our first curve-based 

interpolation and extrapolation approaches that can 

improve query performance by reducing the number of 

trajectory update points as well as the number of 

trajectory segments that are indexed without 

compromising the accuracy of database trajectory. A 

trajectory is represented by a sequence of curve segments, 

rather than line segments, each of which connects two 

consecutive reported location-times. A location-time of a 

2-dimensional moving object is a point <X, Y, TIME> in a 

3-dimensional space-time; a location-time of a 3-

dimensional moving object is a point <X, Y, Z, TIME> in 

a 4-dimensional space-time.  

We view a trajectory as a spline composed of a 

sequence of low degree curves (e.g., parametric cubic 

curves)
1

. There are several families of splines.  B-splines

[7] are used often in computational geometry and 

1

 A single high-degree curve is not desirable because of the following 

reasons: (1) the polynomial may take very large values between the 

points, and the size of these excursions can grow exponentially with the 

degree N of the polynomial; (2) the polynomial can be very sensitive to 

small changes in the points [3]. 

computer graphics. However, B-splines do not go through 

a given set of control points. Since we use reported 

location-times as control points, trajectory splines must 

pass through all control points. The Catmull-Rom spline

[2, 7] has the following desirable characteristics: (1) the 

spline passes through all the control points; (2) the spline 

is continuous: the curve segments are joined with C
1

continuity (i.e., the first derivatives of two adjacent curves 

are equal at the joint). However, the Catmull-Rom spline 

does not reach the first and the last control points. Given a 

sequence of control points P
0
, P

1
, …, P

n
, since the slope 

of the tangent at each control point P
i
 is the slope of the 

linear line connecting P
i-1

and P
i+1

, the slopes of the 

tangents at P
0
 and P

n
 cannot be derived.  

In our applications, each spatiotemporal record 

contains not only a location-time (joint) P but also a 

velocity P’ (a vector whose direction represents the 

moving direction and whose magnitude represents the 

speed). Because each reported location-time is used as the 

joint of two adjacent curve segments, each pair of 

adjacent curve segments has the same velocity (i.e., the 

first derivative) at the joint. We propose to use a 

parametric cubic function P(t) = a
0
+a

1
t+a

2
t
2

+a
3
t
3

 to obtain 

a spline that passes through any given sequence of joint-

velocity pairs <<P
0

P
0
’> <P

1
P
1
’> <P

2
P
2
’> … <P

n
P
n
’>>

where P
i
 is a location-time in a 3-dimensional or 4-

dimensional space-time and P
i
’ is the velocity at P

i
, for all 

ni ,1= .

Given a pair of two consecutive joint-velocities <P
i

P
i
’> and <P

j
P
j
’>, one can derive the coefficients of P(t) = 

a
0
+a

1
t+a

2
t
2

+a
3
t
3

 by solving the following constraints for 

a
0
, a

1
, a

2
, and a

3
: P(t=0) = P

i
; P(t=P

j
.TIME-P

i
.TIME) = P

j
;

P’(t=0) = P
i
’; P’(t=P

j
.TIME-P

i
.TIME) = P

j
’. Substituting 

these coefficients into the polynomial equation, we have 

the following function:  

,
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where P’ = <X’ = ∆X/∆t, Y’ = ∆Y/∆t, Z’ = ∆Z/∆t, TIME’ = 

∆TIME/∆t = 1>, t
x

= P
j
.TIME-P

i
.TIME, and 0 ≤ t ≤ t

x
.      (1)   

Alternatively, this can be written as follows:   

,

'
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where P’ = <X’ = ∆X/∆u, Y’ = ∆Y/∆u, Z ’= ∆Z/∆u, TIME’ = 

∆TIME/∆u = P
j
.TIME-P

i
.TIME>, and 0 ≤ u ≤ 1.         (2) 
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X

Y

Time 

Figure 2. Interpolating four given spatiotemporal records:  

Record# X Y Time ∆X/∆t ∆Y/∆t ∆Time/∆t

1 10 10 10 5 50 1 

2 20 50 11 100/3 100 1 

3 60 50 12 100/3 -100 1 

4 70 10 14 50/502 -500/502 1 

Given records 

Figure 1 shows the difference between this parametric 

cubic function and the conventional linear interpolation. 

Figure 1. Interpolating four given spatiotemporal 

records 

To predict the future trajectory of a moving object, 

conventional linear extrapolation schemes [1, 5, 10, 11] 

extend the last known velocity or line segment to estimate 

the future trajectory. This represents a linear movement 

with a fixed velocity. In our curve-based approach, given 

a future (or current) point in time T
f
, we can extrapolate 

the location of a moving object by extending the object’s 

trajectory segment connecting the last two reported 

spatiotemporal records P
n-1

and P
n
 to T

f
 (i.e., P(t=T

f
)).  

However, this extrapolation must be appropriately 

modified because curves can quickly deviate from the real 

trajectory. For example, if the 3
rd

 degree polynomial 

Equation (1) is used, acceleration changes linearly. This 

implies that moving objects will keep increasing or 

decreasing their accelerations at the same rate as time 

progresses, which is very unlikely for most moving 

objects.  

 Without any correction in acceleration, an 

extrapolation for future trajectory using the 3
rd

 degree 

polynomial may be much worse than that of the linear 

extrapolation. Nevertheless, extrapolating the last curve 

segment is still helpful in estimating the future trajectory 

of a moving object, since the recent trajectory of the 

object may represent the momentum that the object has 

gained. In Physics, a well known, simplest form of 

momentum (i.e., linear momentum) is m×v, where m and 

v are mass and velocity, respectively. In addition, the 

effect of momentum is indirectly proportional to time 

(i.e., the current momentum gradually disappears as time 

progresses). As a simple model, we tested the following 

formula to maintain future trajectories in control by 

weighting both linear and non-linear factors. The weight 

W given to P(t) decreases as time progresses and the 

function L(t) represents the linear extrapolation. Note that, 

the following function is not yet mature. We designed this 

simple preliminary formula in order to show that our 

curve-based trajectory representation model can be used 

not only for past trajectory interpolation but also for 

future trajectory extrapolation.  

F(t=T
f
) = W*P(t=T

f
) + (1-W)*L(t=T

f
), where W = C/(T

f
-P

n-1
.T) 

and L(T
f
)= (P

n
+(T

f
-P

n
.T)*P

n
’)                   (3) 

3. Experimental results 

3.1. Background 

To verify the effectiveness of our proposed curve-

based trajectory approach, we have conducted the 

following experiment. Using a portable GPS device 

(Trimgle Navigation’s ProXRS Receiver with GPS 

logger), which can record a joint-velocity pair every 

second, we collected real GPS data. We placed the GPS 

device in a car and drove from a location near the north 

boundary of Denver, Colorado, to Loveland, Colorado 

along the interstate highway 25. Every second, we logged 

a spatiotemporal data from the GPS device. We believe 

this trajectory includes both relatively straight road and 

some winding road, which is useful for a better 

comparison. Then, we divided the recorded trajectory 

points into two subsets as shown in Figure 2. Note that 

Set1 represents driving on a straight road – its trajectory 

has almost constant velocity. Unlike Set1, the trajectory 

of Set2 has more noticeable changes in velocity (i.e., 

direction and speed). 

For the comparison between the conventional line-

based (linear) model and our curve-based model, we 

created trajectories based on a subset of logged update 

points. For each of Set1 and Set2, we randomly selected 

logged spatiotemporal records with various sampling 

ratios. Both of the proposed cubic function and the 

conventional line-based interpolation scheme were used 

to connect the selected samples (4-dimensional 

spatiotemporal trajectories were produced). Figure 3 gives 

magnified views of the circled parts in Figure 2 (the 

sampling ratio was about 5%; for illustration sake, we 

projected the 4-dimensional spatiotemporal trajectories 

onto the XY-plane).  Finally, we quantified 1) the actual 

deviations between the non-sampled real location-times 

and the corresponding computed points in the curve-based 

trajectory and 2) the actual deviations between the non-

sampled real location-times and the corresponding 

computed points in the line-based trajectory for the 

comparison. 
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Figure 2. A real trajectory points collected: Set1 

consists of 482 spatiotemporal records logged 

every second; Set2 consists of 742 

spatiotemporal records logged every second 
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Figure 3. Trajectories projected onto XY-plane: 

the X-axis is longitude in meters; the Y-axis is 

latitude in meters; the sampling ratio was 37/742 

(≈ 5%) 

3.2. Comparison 

In all cases (i.e., Sets 1 and 2), the proposed cubic 

function (i.e., Equations (1)) produced significantly 

smaller average deviations (up to 3 times smaller, Figure 

4) and standard error deviations (Figure 5) than those of 

the line-based (linear) interpolation scheme. Figure 4 

shows the average deviation between a real location and a 

computed location for various subsets of update points. 

For example, with 37 out of 742 points in Set2, the 

average distance deviation of the curve-based trajectory 

was 21 meters while that of the line-based trajectory was 

62 meters, which is approximately 200% greater. The 

maximum deviation in this section was 231 meters for the 

curve-based trajectory and 683 meters for the line-based 

trajectory (again, approximately 200% greater). As shown 

in Figure 5, the standard deviation in this section was 41 

meters for the curve-based trajectory and 134 meters for 

the line-based trajectory (approximately 230% greater).  
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Figure 4. Average spatial deviations (in meters) 

with various sampling ratios on (a) Set1 and (b) 

Set2

Observe that the difference between the line-based 

trajectory and the curve-based trajectory was smaller 

when the road is straight, while it was widen where the 

road is winding (see Figures 4 and 5): Figure 4(a) shows 

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’04) 

1098-8068/04 $20.00 © 2004 IEEE 



that, given an average-deviation threshold of 2 meters, the 

linear model requires about 118 updates, and the cubic 

model requires about 51 updates (about 2.3 times smaller 

number); Figure 4(b) shows that, given an average-

deviation threshold of 62 meters, the linear model 

requires about 37 updates, and the cubic model requires 

about 8 updates (a 4.6 times smaller number of updates).  

In all cases, the curve-based approach excelled the linear 

approach.
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Figure 5. Standard error deviations (in meters) 

In the next experiment, we used the 3
rd

 degree 

trajectory extrapolation formula (i.e., Equation (3)) and 

reused the data in Set2. The constant C was set to 0.5 and 

we assumed Plain Dead-Reckoning (PDR) update policy 

explained in Section 2.1. Given a fixed threshold th, our 

simulation program counted the updates required by the 

linear extrapolation scheme L(t)=(P
n
+(t-P

n
.T)*P

n
’) and 

the updates required by the function F(t) (i.e., Equation 

(3)). Recall that, in PDR update policy, an update is 

required whenever the estimated location deviates from 

the corresponding factual location in the GPS device’s log 

by more than th (meters). We ran the simulation program 

with various threshold values. The results summarized in 

Figure 6 show that the tested function F(t) requires 

noticeably smaller number of updates than the 

conventional linear extrapolation L(t). That is, given a 

maximum deviation allowed, the curve-based trajectory 

representation can significantly reduce the number of 

required spatiotemporal records (updates). In other words, 

the curve-based trajectory representation can more 

accurately extrapolate future trajectories. Considering that 

Equation (3) is still preliminary, this result shows the 

potential of curve-based model in future trajectory 

extrapolation.
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Figure 6. The impacts of the preliminary curve-

based approach on future trajectory estimation 

4. Discussions and future directions 

Given a maximum allowed deviation between a point 

of a database trajectory and the corresponding point of the 

real trajectory, our proposed curve-based trajectory 

representation, which has no angles (i.e., C
1

 or higher 

degree continuity at every joint), may require a smaller 

number of spatiotemporal records than the line-based 

trajectory representation. Thus, one can expect the 

following positive effects: 1) a smaller number of 

trajectory update transactions per time unit, 2) a reduced 

amount of secondary storage space occupied by 

trajectories, 3) a reduced size of trajectory index 

structures, and 4) a smaller number of disk I/Os in 

processing trajectory update transactions and trajectory 

queries. These all result in enhancing the performance of 

a MOD server. In another aspect, our approach can 

present more accurate trajectories than the conventional 

approach with the same given resources. 

In the experiments presented in this paper, we 

designed, implemented, and tested curve-based trajectory 

models based on a 3
rd

 degree polynomial (a specialized 

parametric cubic function). When each update gives 

location and the first derivative (velocity) of the real 

trajectory, our past trajectory model based on a 3
rd

 degree 

polynomial can generate visually smooth curve segments 

(i.e., the location changes smoothly). However, in each 

segment, the acceleration changes linearly. If each update 

gives both the first and the second derivatives (i.e., 

velocity and acceleration), a 5
th

 degree polynomial can be 
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used to generate a curve segment in which location, 

velocity, and acceleration change smoothly. We can 

generalize our model by considering higher degree 

derivatives. We will continue to investigate this 

generalized trajectory representation. We will consider 

various types of moving objects (e.g., vehicles, airplanes, 

vessels, humans, animals) and investigate optimization 

solutions that, given a proper description of a set of 

moving objects, can choose the most efficient equation 

for the objects in the set. We reserve these as our future 

work. 

At this point, a question regarding the trade-offs 

between CPU overhead and I/O overhead may naturally 

arise. As we can see in Section 2, our solutions (i.e., 

Equations (1) and (3)) incur more computation overhead, 

which requires additional CPU time. According to our 

experiments (For the experiments, we used Dell Precision 

420 Linux workstation equipped with Intel Pentium III 

800MHz and 256MB main-memory space), it took the 

linear model 0.7 – 0.8 microsecond of CPU time to 

interpolate (compute) a point in-between two consecutive 

joints. For the same job, the cubic function required 4.3 – 

4.6 microseconds of CPU time. Considering large scale 

applications, incoming spatiotemporal records will form a 

long, seamless update pipeline, which requires the server 

to constantly perform disk I/O operations. The curve-

based model reduces the I/O overhead without 

compromising the accuracy of the trajectories. Our 

experimental results show that the tested cubic function 

can allow us to reduce the number required updates by a 

factor of up to 4 or 5. This has much more significant 

impacts on the system performance and scalability than 

the CPU overhead: Typically, a single disk access 

requires several milliseconds. For example, IBM Deskstar 

14GPX has an average disk access time of approximately 

10 milliseconds. Typically, a main-memory access takes 

less than 60 nanoseconds. More importantly, it is well-

known that CPU and memory performances have been 

improved at a much faster pace than that of secondary 

storage devices. Nevertheless, we believe that 

investigating the relevant issues in developing an adaptive 

system that can automatically balance the CPU-I/O trade-

offs using various trajectory models is very interesting 

and practically viable, especially for small-size moving 

object databases backed by large database buffer space 

and for peculiar MOD systems that have limited CPU 

power or relatively faster secondary storages. Our future 

work will cover this issue. 
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