NASA Contractor Report 166034

Patricia L. Smith

OLD DOMINION UNIVERSITY RESEARCH FOUNDATION Norfolk, Virginia 23508

Grant NAG1-223
November 1982

National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23665

1

號

117

This report demonstrates the successful application of statistical variable selection techniques to fit splines. Major emphas is is given to knot selection, but order determination is also discussed. Two FORTRAN backward elimination programs using the B-spline basis were developed, and the one for knot elimination is compared in detail with two other splinefitting methods and several statistical software packages. An example is also given for the two-variable case using a tensor product basis, with a theoretical discussion of the difficulties of their use.

1. INTRODUCTION

Polynomial splines have often been employed in modeling or data fitting when the functional form of the relationship between the dependent and independent variables is unknown. The major problem has been how to avoid under- or overfitting the data. A strictly mathematical approach is to add knots one at a time and move them around until the L_{2} (or some other) norm of the errors is less than a preselected tolerance level (ref, 1). A major problem with this approach is that a good fit depends entirely on the subjective selection of the tolerance level. A fitting method which attempts to avoid this problem is the smoothing technique introduced by Reinsch (ref. 2), but it requires the experimenter to have good a priori information about the data or the process which generated ic. Both of these methods are currently feasible only for functions of a single variable.

A statistical approach to the curve-fitting problem using the method of cross-validation was introduced by Wahba and Wold (ref. 3). The major
advantage of this procedure is its automation: no a priori information is needed. There are several disadvantages, however. Every data point is a knot so that the resulting functional form is difficult to use and interpret. In addition, if there are clearly identifiable trends in certain portions of the data such as linearity or sharp bends, this information is lost analytically even though it shows up when the spline is plotted. The practical use of this technique is also currently restricted to functions of one or two variables. The two variable case is considered in Wahba (ref. 4), with higher dimensions discussed in Wahba and Wendelberger (ref. 5).

Other statistical approaches to the variable knot spline problem have considered the knots as parameters in the model. However, this presents problems in finding the least squares solution and in subsequent statistical estimation and testing procedures because the model is nonlinear. Traditional (ref. 6) as well as Bayestian (ref. 7) approaches have been investigated, but both are limited in scope and application. Further, in most cases, though the knot locations have been variable, their number has been fixed a priori by the analyst. Some exceptions are the works of Ertel and Fowlkes (ref. 8), Smith and Smith (ref. 9), and Agarwal and Studden (ref. 10), but, as with most other approaches mentioned above, they have not been developed to fit splines in several variables.

The technique investigated in this research is the use of variable selection procedures to fit splines. If a pool of knots is fixed in advance, then statistical linear models theory can be applied in a variable selection framework. There are four major advantages of the variable selection approach to fitting splines. First, variable selection procedures are essentially user independent (automatic) in their use of the fest as a stopping criterion. Second, they are widely available in statistical software. Third, final fits may have straightforward intepretations because of their simplicity or theoretical foundation. Fourth, regression diagnostics, such as outlier detection, may be performed. These advantages and other desirable properties are discussed in Section 4, along with a comparison of several methods and software.

The theory applies not only to splines in a single variable, but also to splines in several variables using a tensor product basis. However, as
the careful and detailed development of this technique in the onevariable case is considered a crucial step to its use in several variables, discus sion of the multivariate case is restricted to Section 7, and includes an example of its successful application to aerodynamic modeling.

The major emphasis of this report is the application of variable selection procedures for choosing the number and location of the knots for splines in a single variable of fixed order (= degree +1). A detailed dis cussion of this "knot selection" approach is given in Section 2 with examples, comparison of methods and software, and applications in Sections 3-5. Choosing the spline order with the number and location of the knots fixed is of less interest and considered in Section 6 only. FORTRAN programs which apply backward elimination in these two contexts were written as part of this research and discussed in Sections 2 and 6. Their documentation, flowcharts, and listings are given in the Appendix.

LIST OF SYMBOLS

a
angle of attack
${ }^{a}{ }_{i}$
$A_{o i}, A_{1 i}, A_{\ell}$
b
b_{j}
$B_{o j},{ }^{B}{ }_{\ell}$

C_{0}, C_{1}
c^{-1}
$c^{0}, c^{1}, c^{k-2}, c^{k-3}$
C_{n}
regression coefficients
breakpoint for angle of attack regression coefficients
sideslip angle breakpoint for sideslip angle regression coefficients class of discontinuous functions functions with continuity class $0,1, k-2, k-3$ yawing moment coefficient

$c_{n_{p}}, c_{n_{r}}, c_{n_{\delta}}, c_{n_{\dot{u}_{r}}}$
C_{2}
$C_{z_{a}}, C_{z_{\delta}}, C_{z_{q}}$
$\mathrm{D}_{\mathrm{ij}},{ }^{\text {, }}$ l
$f, f^{(1)}, \ldots, f^{(k)}$
i
j
k
$\ell_{1}, \ell_{1}, \ell_{2}$
N
n
P^{\prime}
q^{\prime}
Q
r^{\prime}
t_{i}
u
$\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}$
x
$x_{0}, \ldots, x_{3}, x_{i}$

```
    partial derivative of C C with respect to
    P, T, \delta }\mp@subsup{a}{a}{,}\mp@subsup{\delta}{\tau}{
    vertical force coefficient
    partial derivatives of C C with respect to
    a, \delta
    regression coefficients
    function and its first k derivatives
    index
    index
    spline order (degree + 1)
    nunber of breakpoints
    nomal distribution
    sample size
    nondimensional rolling velocity
    nondimensional pitch rate
    quantile function
    nondimensional yawing velocity
breakpoint
independent variable
number of breakpoints
independent variable
breakpoints for x
```



```
dependent variable
breakpoints ror y
significance level
regression coefficients
aileron, elevator, and rudder deflection
random error
mean
standard deviation
gridpoint ( }\mp@subsup{\textrm{X}}{\textrm{i}}{\prime},\mp@subsup{\textrm{y}}{\textrm{j}}{}
```


Abbreviations:

KS
MSE
SS
SSE
Wh
knot selection
mean squared error
Smith-Smith
error sum of squares
Wahba-Wold

2. THE KNOT SELECTION (KS) PROCEDURE

Statistical variable selection procedures can be used as a KS procedure to choose the number and location of knots in fitting splines. The "+" function basis is suitable for this, at least theoretically, because it is easily interpreted. Knots and knot multiplicities correspond to individual terms so that selection or deletion of terms is equivalent to selection or deletion of knots. The knots are thus selected indirectly. For example, a continuous linear spline with knots t_{2}, \cdots, t_{ℓ} may be written as $\beta_{0}+\beta_{1} x+\sum_{2}^{\ell} \beta_{i}\left(x-t_{i}\right)_{+}$, where $u_{+}=u$ for $u>0$ and zero other-
wise. Selection of the "spiline term" $\left(x-t_{j}\right)+$ is actually selection of the knot t_{j}. Because we don't know where the breakpoints should be, we provide as candidate variables a liberal number of spline terms, i.e., a pool of knots, more than we expect or want to eventually use, and blanket the domain. Thus, the actual number and location of the knots used in the final model is unknown at the beginning in the sense that we are selecting from a larger set.

While "+" functions are easily defined in current statistical software packages and fit into the statistical hypothesis testing framework without modification (ref. li), computational problems such as carry-over in roundoff error and multicollinearity greatly restrict their use. As will be seen in Section 4, the backward el imination (stepdown) procedures are especially troublesome because all terms must be fit initially. An alternative is the use of the computationally advantageous $\mathrm{B}-\mathrm{spl}$ ine basis (ref. 1). Unfortunately, it does not fit easily into the hypothesis testing framework and cannot be used in existing statistical software packages. There was thus a need for the development of $a \operatorname{ks}$ procedure using B-splines. Construction of hypotheses which are useful in B-spline regression, including testing the importance of knots, has been detailed in Smith (ref. 12). As part of this research, these results have been implemented in two FORTRAN computer prograus, one of which accommodates the backward elimination of knots using the $\mathrm{B}-\mathrm{spl}$ ine basis. Examples in Section 3 give the results of using this FORTRAN program, and comparisons with several statistical software packages, as well as with other statistical spline-fitting methods, are detailed in Section 4.

The use of variable selection is a sort of compromise between the techniques which use either fixed or variable knots. It most important advantage, and one which makes possible all others, is that because the maximum number and location of the knots is fixed in advance, the statistical theory of general linear models applies. Consequently, the least squares solution
is easily obtained at any given step, and hypothesis testing and interval estimation are straightforward. As mentioned earlier, details for using the B-spline basis are given in reference 12. The selection of knots c an thus be accomplished through t tests. This fits exactly into the variable selection framework for (1) spline models in a single variable, (2) models in several variables with spline terms in one or more variables, and (3) models in several variables with tensor products defining higher dimensional splines. Also, trends in the data in one or more variables may be easily detected through the selection of a few knots. Several examples of this will be given in the next section. Further, in some experimental situations, models may be easily interpreted because the coefficients are physically meaningful, as in some examples in Sections 5 and 7.

3. EXAMPLES OF THE KS PROCEDURE

Four data sets were examined using the FORTRAN knot elimination program. The maximum number of continuity constraints allowed for any given order were imposed. The first data set, the Indy data, is rather simplistic but has appeared in the statistical literature several times in connection with curve-fitting with splines. It is a record of the average winning speeds at the Indianapolis 500 from 1911-1971, except for 1917-1918 and 1942-1945, during the two World Wars when the race was not run. Poirier (ref. 13) fit the data with a cubic spline with 2 knots, one each at the midpoint of the non-racing years. The data were coded so that $x=y e a r-$ 1910 with knots 7.5 and 33.5. The output and graphs from the knot elimination routine are shown in Figures 3.1 to 3.4 , with circles around the
 KS procedure eliminates both knots so that a cubic polynomial is adequate to fit the data. If a linear rather than a cubic spline is fit, only the knot at $x=7,5$ can be eliminated (Figures 3.5 to 3.7).

The second example is noisy data generated from the function used in reference 3

$$
f(x)=4.26\left(e^{-x}-4 e^{-2 x}+3 e^{-3 x}\right)
$$

ORIGINAL PAGE OF POOR QUALITY

1911	\% 0
1912	76.720
1913	-5.931
1.	82.473
4915	83.840
1916	e. .000
1919	88.850
1950	88.620
1931	89.620
15E3	34. NE
1593	90.950
1924	39.230
1935	101.130
1925	95.904
1927	97.515
1928	99.482
1929	97.535
1930	100.423
1931	96.659
1932	104
1933	104.16
1934	104.86
1935	100.24
1936	189.869
193	113.580
1935	115.200
1939	115.035
40	1
1841	$115.1!$
19.4	114.aこ0
19.4	116.338
1935	119.3i
19.9	1E1. 3 C
1950	12-4.002
1951	こe.Exa
-	1 13. 9
195	129.740
1954	130.940
1	108.00
1950	125.4F0
1957	135.0.)
1958	133.
1959	:38.8
1	38. 7
¢05	139.13
195	110. 2
12	$1+3.1$
15	$1{ }^{1+}$
1065	1 15. 336
1736	114.31
1967	151.28
150	
69	156.85
1970	55
1971	15

BREAKPINT 33.500 IS ELIMIHTEE
PROCEDURE TERMINATES WITH L. 1 AND K. 4

Figure 3.1. Output for knot elimination. Indy data. Cubic spline.

Figure 3.2. First step of knot elimination. Indy data. Cubic Spline.

Figure 3.3. Second step of knot elimination. Indy data. Cubic spline.

ORIGINAL PAGE :S OF PCOR QUALITY

Figure 3.4. Third and final step of knot elimination. Indy data. Cubic spline.

Figure 3.5. Partial output for knot elimination. Indy data. Linear spline.

Figure 3.6. First step of knot elimination. Indy data. Linear spline.

Figure 3.7. Second and final step of knot elimination. Indy data. Linear spline.
for $x[0,3]$. For x starting at zero, we generated 100 data points at intervals of $1 / 32$ up to $99 / 32$ and added normal random noise, $N(u=0$, $\sigma=.2$), the value of σ the same as that used by Wahba and Wold (WW). A graph of the function and generated data is shown in Figure 3.8. Figures 3.9 to 3.27 show graphical results of the stepdown procedure for cubic splines starting with 19 equally spaced interior knots, and using an F-table value of 8.0. By examining this sequence of graphs, it becomes clear how the elimination of knots makes the spline smoother by making it less noise dependent.

An F-table value of $4.0(\alpha=0.05)$ rather than 8.0 results in stepdown terminating with 5 knots remaining (Fig. 3.23, p. 20). The latter fit is more data dependent and clearly inferior in terms of recovering the desired function. Use of the larger F value thus seems appropriate and keeps the procedure from teminating "prematurely." Graphs of starting and ending fits to the data, beginning with 39 interior knots, are shown in figures 3.28 to 3.29 , and the results are roughly the same as when 19 knots are used initially (Figure 3.27, p. 22). A phenomenon which occurs throughout most of these fits is the downard hook in the upper range of the x 's due to a cluster of 3 data points. Figure 3.30 shows the conclusion of stepdown with those 3 points omitted and helps to illustrate the fact that different noise results in different fits.

The method used by Wahba and Wold to recover the function is a modification of the smoothing technique introduced by Reinsch (ref. 2). They use cross-validation to determine the smoothing parameter, and their resulting fit is shown in Figure 3.31. Referring again to Figure 3.27, p. 22, we see that the results of the two methods compare very favorably. A more detailed comparison of these methods and others is made in the next section.

Smith and Smith (SS) (ref. 9) examine a scaled version of the wW function, $f(x)=4.26\left(e^{-3.25 x}-4 e^{-6.5 x}+3 e^{-9.75 x}\right)$ for $x \in[0,1]$. A sample of size 600 equally spaced points was generated, and a variance of 0.039 (as in SS) was used for the nomally distributed zero mean noise. Results from

Figure 3.8. The Wahba-hold (Wh) function and data generated from it.

Figure 3.9. First step of knot elimination. WW data.

ORIGINAL PAGE IS. OF POOR QUALITY

Figure 3.10. Second step of knot elimination. Wh data.

Figure 3.11. Third step of knot elimination. Wh data.
oriennal race is OFPPOOR"QUALITY

Figure 3.12. Fourth step of knot elimination. WW data.

Figure 3.13. Fifth step of knot elimination. WW data.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 3.14. Sixth step of knot elimination. WW data.

Figure 3.15. Seventh step of knot elimination. WW data.

Figure 3.16. Eighth step of knot elimination. In data.

Figure 3.17. Ninth step of knot elimination. WW data.

Figure 3.18. Tenth step of knot elimination, WW data.

Figure 3.19. Eleventh step of knot elimination. Ww data.

ORIGIMAD PREE 踪 of poor quality

Figure 3.20. Twelfth step of knot elimination. WW data.

Figure 3.21. Thirteenth step of knot elimination, WW data.

Figure 3.22. Fourteenth step of knot elimination. WW data.

Figure 3.23. Fifteenth step of knot elfmination. Ww data.

Figure 3.24. Sixteenth step of knot elimination. WW data.

Figure 3.25. Seventeenth step of knot elimination. WW data.

Figure 3.26. Eighteenth step of knot elimination. WW data.

Figure 3.27. Nineteenth and final step of knot elimination. WW data.

ORIGIAEL PAGE

Figure 3.28. First step of knot elimination with 39 interior knots. WW data.

Figure 3.29. Final step of knot elimination from 39 knots. WW data.
original page is OF POOR QUALTTY.

Figure 3.30. Final step of knot elimination with 3 data points in upper x-range omitted. WW data.

Figure 3.31. Spline fit obtained by cross-validation by Wahba and Wold. WW data.
two stepdown runs fitting cubic splines are shown in Figures 3.32 to 3.33, beginning with 19 and 49 knots. Three knots remain in Figure 3.32 with a slightly wigglier fit than that in Figure 3.33 with one remaining knot. These results show that a larger knot selection pool allows reduction to possibly a fewer number of final knots and a smoother fit, which, for simplicity, is more desirable.

Smith and Smith use asymptotic results to determine a stopping rule for adding knots one at a time to the model. Figure 3.34 shows their results using cubic splines overlaid on the true function. The data were not plotted so that the distinctions between the two functions would not be lost. Applying stepdown using these 9 initial knots resulted in Figure 3.35, a fit which smooths the wiggles visible in Figure 3.34. As seen in the two previous figures, however, using a larger pool of knots results in a smoother and more satisfactory recovery of the function. The ss method is compared in more detail to both the WW and KS methods in the next section.

The final function examined is $f(x)=\sin \left(x^{2}\right)$ for $x \in[0,4.5]$, which allows for more than two periods of the sine wave and gradually increases the frequency. Three hundred data points were used with $\sigma=.2$ for the normal noise. Beginning and ending cubic spline fits from a stepdown run are shown in Figures 3.36 to 3.37 , starting with 19 interior knots and ending with 9. We note that more knots are needed for the final fit than for the functions previously discussed due to the increased curvature of the function. Most of the wiggliness in the initial spline fit occurs on the more gradual slope at the lower end of the x-range and is removed as knots are removed. This phenomenon also occurs on the "flat" portion of the SS and $W w$ data.

In order to assess the effects of a lower noise level on the KS technique, random variables used for the noise on the $W W$ function were generated using $\sigma=.1$ and .05 . Final fits are shown in Figures 3.38 to 3.39, and referring back to Figure 3.27, p. 22, which shows results using $\sigma=.2$, we see that fitting data with a lower noise level results in more knots remaining at the end of the procedure. This tendency is especially striking when data from the function itself is fit, that is, when no noise is added so that to

Figure 3.32. Final step of knot elimination from 19 knots. SS data.

Figure 3.33. Final step of knot elimination from 49 knots. SS data.

Figure 3.34. Cubic spline solution of Smith and Smith. SS data. (Actual data not shown.)

Figure 3.35. Final step of knot elimination from 9 knots. Cubic splines. SS data. (Actual data not shown.)

\therefore ORGINAL PRESEAS OF POOR QUALITY

Figure 3.36. First step of knot elimination with 19 knots. True function is $\sin \left(x^{2}\right)$.

Figure 3.37. Final step of knot elimination from 19 knots: True function is $\sin \left(x^{2}\right)$.

original page pe OF POOR QUALITY

Figure 3.38. Final step of knot elimination from 19 knots with $\sigma=0.1$ in the noise. WW data.

Figure 3.39. Final step of knot elimination from 19 knots with $\sigma=0.05$ in the noise. WW data.
recover the function we actually need to interpolate. A stepdown from 19 knots results in a spline with 12 knots as shown in Figures 3.40 to 3.41. Both the true and fitted functions are graphed, but there is no perceptible difference between the two.

Wiggliness in data should be smoothed (i.e., ignored) if it is perceived as noise, but should be fit if it is perceived as trends in the underlying process. Thus, a danger in applying the $K S$ technique is using too small or too large a pool of knots. The former problem is illustrated quite well in Figures 3.42 to 3.43 , where noisy data generated from sin (x^{2}) is fit with the KS technique beginning with too few knots to allow the bending necessary to recover the function, especially near the third peak. It is interesting to see that the three knots eliminated were in the lower end of the x range where the underlying function is not wiggly. A comparison of Figures 3.37 , P. 28, and 3.42 reveals that both have 9 knots, but a better fit is obtained from the one which began with 19 knots (Fig. 3.37): its 9 knots are more selectively and better placed.

4. COMPARISON OF METHODS AND SOFTWARE

In the previous section, two functions introduced in the literature (WW and $S S$) were examined using the FORTRAN knot elimination program. The purpose was to compare results, which we do in this section, in light of what we consider to be the most desirable properties of curve-fitting with splines. These are:
(1) good results;
(2) computational efficiency;
(3) diagnostics capabilities;
(4) user independence;
(5) ease of interpretation; and
(6) ease of use.

We also give in this section the results of using several statistical software packages on the Indy and WW data, fitting both linear and cubic splines.

Figure 3.40. First step of knot elimination with 19 knots. No Noise. WW data.

Figure 3.41. Final step of knot elimination from 19 knots. No noise.
WW data.

Figure 3.42. First step of knot elimination with 9 knots. True Function is $\sin \left(x^{2}\right)$.

Figure 3.43. Final step of knot elimination from 9 knots. True function is $\sin \left(x^{2}\right)$.

Most statisticians have ready access to variable selection procedures, either in programs they have written themselves, or in widely available statistical software packages. Fitting splines through knot selection with these programs is a potential advantage of their use, which is realized only if good results are obtained. A summary of the results of using four such packages is given in Table 4.1: SAS (ref. 14), SPSS (ref. 15), MINITAB (ref. 16), and BMDP (ref. 17).

Table 4.1. Results of using variable selection techniques to fit splines with four statistical software packages.

In the case of stepwise procedures, accuracy was determined by comparing outputs for the various packages among themselves, while outputs for the stepdown procedures were compared with the FORTRAN B-spline knot elimination program. Results are surprisingly good considering the fact that the "+" function basis must be used. Entries marked with an "X" indicate failure to produce accurate results or, sometimes, any results at all due to high multicollinearity in the models or low tolerance, especially in stepdown.

The minimum tolerance allowed for SPSS, 10 ${ }^{-12}$, had to be used to force entry of some of the polynomial tems or to get results in stepdown. For BMDP: the tolerance of 0.01 for variable selection was not low enough to force entry of necessary terms to get results for any of the cases considered. As expected, less trouble was had with fewer knots (Indy data), lower degree (linear), and simpler models (stepwise). Stepdown gave accurate results in several cases even for a large number of knots, but there are limitations. For instance, computational problems were encountered by SAS for the cubic WW data with 39 knots. The final models determined by stepwise and stepdown, however, were either identical or very similar. The occasional user of $s p l i n e s$ could thus safely rely on stepwise procedures from one of several packages to give good results.

Table 4.2 compares several spline-fitting methods: Wahba-Wold (WW), Smith-Smith (SS), and knot selection (KS). As the latter method may be implemented through several different computer programs, two statistical packages and the FORTRAN knot elimination routine are included. All methods give good results for the data examined, though as seen in earlier discussion, care must be taken when using the statistical packages, especially for stepdown. Their use of the " + " function makes them computationally inefficient and can cause severe problems. They are handy, however, for the occasional user as is the WW method which is available as an IMSL subroutine (ref. 18). The KS techniques depend on setting an α level for the hypothesis tests and specifying an initial pool of knots but are otherwise user independent. The $W W$ method is "completely automatic," while the sS method depends on user application of the stopping criterion. The KS approach in general produces results which are easier to interpret.

Results from this section and from Section 3 show that splines fit by knot selection recover the underlying functions quite well and compare very favorably with the results of Wahba and Wold and improve upon those of Smith and Smith. Though somewhat simplistic, the knot selection approach provides an alternative to the method of cross-validation and offers a great computational savings. In addition, there is the possibility of analytic or physical interpretation in many modeling situations, an exanple of which is given in the next section.

Table 4.2. Comparison of spline-fitting techniques and software.

Desirable Properties	WW	SS	Knot Selection		
			SAS	SPSS	$\begin{aligned} & \text { B-Splines } \\ & \text { FORTRAN } \\ & \hline \end{aligned}$
Good results	\checkmark	\checkmark	\checkmark	$\checkmark-$	\checkmark
Computational efficiency	\checkmark	\checkmark	X	X	\checkmark
Diagnostics capabilities	X	X	\checkmark	\checkmark	\checkmark
User independence	\checkmark	$\checkmark-$	$\checkmark-$	$\checkmark-$	$\checkmark-$
Ease of interpretation	X	X	\checkmark	\checkmark	\checkmark
Ease of use occasionally	\checkmark	X	1-1	\checkmark	X
${ }^{1}$ SAS is available only on IBM-compatible machines.					

5. SOME SPECIAL APPLICATIONS

Probably the most useful application of the KS technique is datasmoothing, and in Section 3 we saw several examples of recovering underlying functions from noisy data. A variation that is useful in simulation experiments is smoothing the sample quantile function. This function is a left-continuous step function defined as $Q(u)=x_{\text {(i) }}$ for $(i-1) / n<u<i / n$, where n is the sample size and $X_{\left(i^{i}\right)}$ is the i-th order statistic. Experimental conditions can be simulated by generating data which behaves like the original, and a smoothed sample quantile function provides a continuous distribution from which to draw the simulated data. An advantage of smoothing the sample quantile function, rather than its pseudo-inverse, the sample cumulative distribution function, is that the former always has domain $[0,1]$ regardless of the type of distribution.

Programming can thus be standardized, as, for example, in the determination of the original knot selection pool.

The KS technique is also useful in modeling. For example, stepwise regression has been applied successfully by Klein, Batterson, and Smith (ref. 19) to model flight data using splines. They use "+" function terms defined in the angle-of-attack variable in a Taylor series expansion of force and moment coefficients in order to model longitudinal motion of an airplane. One of their simple "splinemodified" Taylor series expansions of the vertical aerodynamic force coefficient C_{z} is given by
where

$$
\begin{aligned}
& C_{z}(a)=C_{z}(a=0)+C_{z} a+\sum_{\ell=2}^{u_{l}} A_{\ell}\left(a-a_{\ell}\right)+ \\
& C_{z_{q}}(a)=C_{z_{q}}+\sum_{\ell=2}^{u_{2}} B_{\ell}\left(a-a_{\ell}\right)_{+}^{0} \\
& C_{z_{\delta}}(a)=C_{z_{\ell}}+\sum_{\ell=2}^{u_{3}} D_{\ell}\left(a-a_{\ell}\right)_{+}^{0}
\end{aligned}
$$

and a is the angle of attack, q^{\prime} is the nondimensional pitch rate, δ_{e} is the elevator deflection, $C_{z_{a}}=\partial C_{z} / \partial a, c_{z_{q}}=\partial c_{z} / \partial q^{\prime}, C_{z_{\delta}}=\partial C_{z} / \partial \delta_{e}$. They then use stepwise :regression to select terms, and thus knots, in the model. This spline representation preserves the concept of stability and control derivatives inherent in the usual Taylor series expansion of aerodynamic coefficients but has the advantage of providing a representation of C_{z}^{-}over an extended range of the angle of attack. a. A global model over the observed range of a is thus obtained through the use of splines.
6. OTHER USES OF VARIABLE SELECTION PROCEDURES IN SPLINE RECRESSION

Thus far we have emphasized the use of variable selection to choose the number and location of knots. There are other possible, but perhaps less useful, "extensions" to spline regression of variable selection procedures based on polynomial or multiple regression models. In the latter cases, the purpose is to detemine the polynomial degree and the important independent variables and interactions. This is accomplished by examining the contribution of individual terms in the model. With univariate spline models, however, there are several polynomial pieces, not just one, whose degrees may be examined, and, as seen previously, we may examine the importance of each knot. Also, one may wish to examine the continuity conditions at one or more breakpoints as in the example discussed by Smith (ref. 11). Thus, the complexity of the spline model over the polynomial model manifests itself in the greater number of ways the dimension of the spline parameter space may be altered. Splines in several variables present even more possible diversity since, for example, two variable spline continuity occurs not across points but along lines connecting grid points.

While it might be nice to have a single software package which could perform any combination of these spline hypothesis tests, it is neither feasible nor desirable. The major reason is that variable order splines, i.e., splines with polynomial pieces of different degrees, have not been sufficiently researched by mathematicians to allow for the satisfactory construction in a general framework of a basis using either "+" functions or B-splines. Lowering or raising the degree of a single polynomial piece must be accomplished by applying restrictions to the model, and hypothesis tests must then use restricted least squares. In simple cases this may be straight forward (references 11 and 20), but in general the task is unmanageable. For example, the user is subject to hidden analytical errors as when the regression or hypothesis degrees of freedon are not equal to the number of restrictions because some restrictions are obtained automatically through linear combinations of others. While theoretically such dependencies can be checked, the usual methods would need some revision in Ehe case
of $B-s p l i n e$ regression since hypotheses involve values of the fitted spline or its derivatives (ref. 12). In the case of the "+" function basis, most, but not all, of the individual terms are meaningful. However, the innocent yet indiscriminant selection or removal of terms through hypothesis tests can result in fits which are statistically valid yet nonsensical because they are uninterpretable in terms of polymomial degree or knot locations (ref. ll). Because of these various difficulties, it is reasonable to construct task-specific procedures.

The application of variable selection to knot selection, as in the examples in Section 3, is useful for smonching data with a fixed order spline with maximum continuity conditions. In these cases the interest is not in the spline order but rather in determining the minimal number of knots deemed adequate to faithfully represent the data. Cubic splines are popular because of their low degree and second derivative continuity. The selective use of forward or backward algorithms in some statistical software packages using "+" functions (see Section 4), or the backward elimination FORTRAN program developed here using B-splines, may be used for this purpose.

Another possible "extension" of variable selection to splines is the detemination of the polynomial degree while keeping the number and location of knots fixed, that is, not consider the knots as "variables" to be either entered or removed. Because of the difficulties with variable order splines discussed above, we mast restrict ourselves to polynomial pieces of the same degree. Unfortunately, even further constraints are necessary for this version. The ideal situation would be to compare a maximally continuous $\left(C^{k-2}\right) k-t h$ order spline, i.e., a $k-t h$ order spline with continuous f, $f^{(1)}, \ldots f^{(k-2)}$, with a maximally continuous $k-1-s t$ order spline $\left(c^{k-3}\right)$. A formal test, however, is not possible. This can be easily seen by considering a specific example using the partial ordering of some spline models given in reference 11. Basis elements for C^{0} and C^{1} quadratic.splines and for C^{0} linear splines with one knot are shown in Fig. 6.1. A comparison of orders 3 and 2 (degrees 2 and 1) which retained maximum continuity conditions would require comparing the c^{l} quadratic with the C^{0} linear.
clquadratic
$1, x, x^{2},(x-t)_{+}^{2}$

Figure 6.1. A partial ordering of some spline spaces.

Neither is a subspace of the other, however, so they cannot be formally compared (via testing). A solution of a sort is available if the C^{0} quadratic and the C^{0} linear are compared, since, as can be seen from the figure, the C^{0} linear basis generates a subspace of the C^{0} quadratic space.

In general, a test to compare spline orders can be made between splines of order k and $k-1$, both having continuity c^{k-3}. In the case of c ubic splines, for example, we could allow continuity of the function and its first (but not second) derivative in order to determine whether the order could be reduced from 4 to 3 or increased from 3 to 4 . Since a C^{l} cubic has sufficient smoothness (at least to the eye), the procedure is not so objectionable. Considerably less satisfactory, however, are the cases for linear and quadratic splines. In comparing splines of order 3 and 2 as seen in Figure 6.1, the quadratic spline would be continuous but not its first derivative while in comparing splines of order 1 and 2 , the linear $s p l i n e$ would not even be continuous. Of course, the results of formal tests can be used in combination with informal comparison between SSE's of the models of interest to decide upon an acceptable model, and we recommend this approach.

A backward elimination FORTRAN program using B-splines has been developed for the purpose of reducing spline order using the nesting of some "sub-optimal" spaces as described above. Details for the appropriate Bspline hypothes is tests are given in reference 12 . The listing, documentation and flowchart for the program are given in the Appendix, and we illustrate its use with the Indy data. While some statistical software packages could undoubtedly be used by defining "+" functions as in knot
selection, no attempt was made to use them in this context. However, using the results of Section 4 as a guide, we sumise chat several backward eimination procedures would be suspect while most forward selection algorithms should give fairly accurate results. Again, tolerance levels may have to be made small in order to force entry of certain terms.

Figure 6.2 gives the FORTRAN program output for stepdown order selection on the Indy data starting with a cubic spline (order 4) with the two knots in mid-WWI and WIJII as in Section. 3. The program compares splines of different order with the same continuity conditions, though other fits are given for information purposes. For this example, order reduction is made from cubic to quadratic to linear. Estimates of the B-spline coefficients and their standard errors are given for the spline of lowest order which can adequately fit the data, and the highest continuity conditions are imposed. For this case it is the C^{0} linear.

A graphical display of these results is quite helpful, and Figure 6.3 shows a partial ordering of the relevant s pline spaces along with hypothesis test results and $S S E$'s from the program. The dotted lines indicate the stepdown comparisons we wish to make, while the solid lines indicate those we can actually make through formal comparisons (tests). The importance of user input into the variable selection process is becoming more widely recognized, and here especially, because the formal tests available are not exactly what we would like. Consequently, we recommend the use not only of the formal tests, but also of informal comparisons between SSE's (or MSE's) of competing models using a display such as figure 6.3.

We illustrate this technique by going through Figure 6.3 step by step, and we will discover some interesting characteristics of splines along the way. We first observe that while a formal test is not possible between the d^{2} cubic and the c^{l} quadratic, it would not even be necessary since the d quadratic has a smaller SSE than the C^{2} cubic. A better fit is thus obtained with a lower degree! This phenomenon could never happen with polynomials, but such are the vagaries of splines. An informal comparison in

ORIGINAL PRGE IS

 of POOR QUALity

Figure 6.2. Output for order reduction. Indy data.

Figure 6.3. Partial ordering of spline spaces including SSE's and results of order reduction tests. Indy data.
in going from the C^{l} quadratic to the C^{0} linear reveals an increase of 77 in the SSE. While this increase cannot be formally judged insignificant, we may wish to draw such a conclusion based on the results of the formal test which compares the C^{0} quadratic with the C^{0} linear: the larger increase of 85 is insignificant in that case. Having thus "safely" arrived at the C^{0} linear, we must decide whether to further lower the order. The very large F value (285) from the program output which compares the C^{-1} linear and the C^{-1} constant splines reveals the importance of the linear trend. The big increase of 5742 in $S S E$ from the C^{-1} linear to the C^{-1} constant is thus highly significant, and since the increase of 5617 from the C^{0} linear to the C^{-1} constant (the desired comparison) is only slightly smaller, we conclude that the use of a constant spline fit is inadvisable.

7. SPLINES IN SEVERAL VARIABLES

A mathematical theory for $s p l i n e s$ in several variables is still developing, and a "satisfactory" basis even in two variables has not been found. However, tensor products of either " + " functions or B-splines can be used to form a spline basis in several variables. While a tensor product basis is somewhat clumsy and its interpretation difficult, we explain here some theoretical aspects of its use for the two variable case and give an example.

As in the example in Section 5 , a spline-modified Taylor series expansion can be used to model aerodynamic force and moment coefficients. This time, however, Klein and. Batterson (ref. 2l) use splines in two variables, the angle of attack a and the sideslip angle b, to approximate the lateral force coefficient and the rolling and yawing moment coefficients. They use the yawing moment coefficient C_{n} as a typical example, and C_{n} can be expressed as

$$
\begin{align*}
C_{n}=C_{n}(a, b)_{\delta} & =\delta_{r}=0+C_{n_{p}}(a) p^{\prime}+C_{n_{r}} r^{\prime} \\
\cdot p^{\prime} & =r^{\prime}=0 \tag{7.1}
\end{align*}
$$

$$
+C_{n_{\delta}}(a) \delta_{a}+C_{n_{\delta}}(a) \delta_{r}
$$

where p and r are the rolling and yawing velocity and δ_{a} and δ_{r} are the aileron and rudder deflection. They approximate the function $C_{n}(a, b)$ by

$$
\begin{align*}
C_{n}(a, b)= & C_{0}+C_{1} b+\sum_{i=1}^{\ell l}\left(A_{o i}+A_{l i} b\right)\left(a-a_{i}\right)^{0} \\
& +\sum_{j=1}^{\ell} B_{o j}\left(b-b_{j}\right)_{+}+\sum_{i=1}^{\ell} \sum_{j=1}^{\ell 2} D_{i j}\left(b-b_{j}\right)+\left(a-a_{i}\right)^{0}+ \tag{7.2}
\end{align*}
$$

while the remaining functions in (7.1) are approximated by splines in a alone. Results from a stepwise regression using these terms are not as good as in the one-variable case, and some fine-tuning remains.

From a theoretical point of view, the tensor product basis does not have the nice interpretation of knots and continuity constraints as in the one-variable case, even using "+" functions. There is, however, a one-toone correspondence between two-variable "+" function terms and grid points; or nodes, and for this reason, we use the tem node basis to refer to tensor products of the " + ". function basis. As before, we use right-continuous "+" functions so that 0^{0} is 1 . Tensor products of $B-s p l i n e s$ may also be used to
construct a basis for splines in two variables, and we shall see that the same advantages and disadvantages of the one-variable case carry over.

We discuss the simplest two variable case in some detail: first order splines, i.e. step functions. Their application is somewhat limited, but there are several reasons for their detailed consideration. First and foremost, splines in two variables are difficult to envision and manipulate, and consideration of the simplest case, namely constants, is thus highly desirable. Second, as seen in the example above and in Section 5 , the estination of aerodynamic force and moment coefficients using a spline-modified Taylor series expansion reveals the importance of using constants from both interpretative and numerical points of view. Finally, the two-dimensional cumulative distribution function is a first order spline in two variables. Thus, the constant case, while limited, has already shown its usefulness.

We first discuss the node basis by way of example. Suppose breakpoints in the x variable occur at x_{1}, x_{2}, x_{3} and in the y variable at y_{1} and y_{2} for data in $x_{0} \leqslant x<x_{4}$ and $y_{0} \leqslant y<y_{3}$. $A{ }^{\prime \prime}+$ " function basis of order 1 in the x variable is $\left(x-x_{0}\right)_{+}^{0}, \ldots,\left(x-x_{3}\right)_{+}^{0}$ and in the y variable is $\left(y-y_{0}\right)_{+}^{0} \ldots,\left(y-y_{2}\right)_{+}^{0}$. The tensor product basis is formed by taking all the $4 \times 3=12$ products $\left(x-x_{i}\right)_{+}^{0}\left(y-y_{j}\right)_{+}^{0}, i=0, \ldots, 3$; $j=0, \ldots, 2$. Each basis element in the two variables is thus a plane of height one bounded below by the line $y=y_{j}$ and on the left by the line x $=x_{i}$. Its support is thus a quadrant of a sort (Lll). We call the intersection of these boundary lines, the corner of the quadrant, a node, denoted *ij. Figure 7.1 shows the relevant grid and nodes. Through any

Figure 7.1. Nodes for a tensor product of "+" functions.
variable selection procedure, a model may be found whose terms are a subset of the 12 basis elements. Such a selection might result, for example, in the nodes shown in Figure 7.2 with the statistical model

$$
\begin{aligned}
f(x, y)= & B_{00} x_{0} y_{+} 0_{+}+B_{02} x_{0_{+}} y_{2_{+}}+B_{11} x_{1} y_{1} 1_{+} \\
& +B_{21} x_{2_{+}} y_{1+}+B_{22} x_{2+} y_{2_{+}}+B_{32} x_{3+} y_{2+}+\varepsilon,
\end{aligned}
$$

where $x_{i+} y_{j+}$ is an abbreviation for $\left(x-x_{i}\right)_{+}^{0}\left(y-y_{j}\right)_{+}^{0}$. We saw earlier the application of this technique to aerodynamic modeling.

Figure 7.2. Nodes resulting after variable selection on a tensor product of " + " functions.

For splines of higher order, the same principles apply in forming the basis elements: they are the tensor product of one-variable " + " functions. Knot multiplicities in one variable result in node multiplicities in several variables. The absence or presence of a node or node multiplicity corresponds to the absence or presence of a certain basis element. There is thus some carry-over from the one-variable case in interpreting the role that basis elements play, and also in the fact that standard variable selection software may be used. The major drawback of this basis, as in the onevariable case, is computational. The basis elements do not have small support, so that roundoff errors get worse as computations increase.

The computational difficulties present in the node basis lead to consideration of tensor product B-splines. While the formulation of the latter basis is straightforward, its interpretation and use in model selection through hypothesis tests are not. The polynomial degree and importance of knots in modeling are considerations that carry over from one to several variables, and unfortunately, so do their difficulties when using B-splines.

To compare differences in the two variable case between the node basis and B-spline basis, we consider a simple grid with nodes indicated (*) in Figure 7.3.

Figure 7.3. Nodes for model (7.3).

The statistical model for first order splines is thus

$$
\begin{equation*}
f(x, y)=\beta_{00} x_{0_{+}} y_{0_{+}}+\beta_{01} x_{0_{+}} y_{1_{+}}+B_{11} x_{1_{+}} y_{1_{+}}+\varepsilon . \tag{7.3}
\end{equation*}
$$

The function is a "rrue" spline in both variables except when $y \in\left[y_{0} y_{1}\right.$), for then f is constant over $\left(x_{0}, x_{2}\right)$. If this model is represented with B-splines, each cell i is the support of a right-continuous plane which has height 1 . Using the notation $B_{i}(x, y)$ for the basis element for each cell i, the model may be written

$$
f(x, y)=\sum_{i=1}^{4} \beta_{i} B_{i}(x, y)+\varepsilon \quad \text { subject to } \quad \beta_{1}=\beta_{3}
$$

This B-spline model is somewhat more complicated than the " + " function basis in its representation because of the model restrictions. It is also not obvious how to interpret the B-spline coefficients in terms of the presence or absence of nodes.

These simple examples illustrate that the " + " function terms are identifiable and meaningful on a grid as nodes, just as they correspond to knots in the one-variable case. They thus hold an advantage over the tensor
product of B-splines from an interpretative point of view. As B-splines hold the computational edge, however, it would be desirable to identify the linear combinations of $B-s p l i n e s$ which correspond to the presence or absence of nodes. The interpretation and use of tensor product splines of higher order is more difficult and remains to be examined in detail.

8. SUGGESTIONS FOR FURTHER WORK

There are potential research areas for both the univariate and multivariate cases. In the univariate case, an efficient stepwise computer routine using B-splines could be developed. This would give the user the choice of forward and backward procedures with a compurationally efficient basis. The use of knot selection to fit data with loops could be investigated, and approaching the problem using the parametric technique of Smith, Price, and Howser (ref. 22), seems feasible. The successful use of splines in two variables has already been demonstrated (Section 7), but further work remains such as investigating fits to known underlying functions like we have done in the one-variable case. Two-dimensional pictures in this case would be most helpful. Also, while the multivariate mathematical theory is still developing, interpretation of tensor-product bases from a statistical perspective could continue from that begun in Section 7.

1. de Boor, Carl: A Practical Guide to Splines. Springer-Verlag, 1978
2. Reinsch, C.H: Smoothing by Spline Functions. Numer. Math., Vol. 10, 1967, pp. 177-183.
3. Wahba, G.; and Wold, S.: A Completely Automatic French Curve: Fitting Spline Functions by Cross Validation. Comm. Statist., Vol. 4, No. 1, 1975, pp. 1-17.
4. Wahba, Grace: How to smooth curves and surfaces with splines and crossvalidation. Technical Report No. 555, University of Wisconsin, 1979.
5. Wahba, Grace; and Wendelberger, James: Some new mathematical methods for variational objective analysis using splines and cross-validation. Technical Report No. 578, University of Wisconsin, 1979.
6. Quandt, R.E.: Tests of Hypotheses that a Linear Regression System Obeys Two Separate Regimes. J. Amer. Stat. Assoc., Vol. 55, 1960, pp. 324330.
7. Smith, A.F.M.; and Cook, D.G.: Straight Lines with a Change-point: A Bayesian Analysis of Some Renal Transplant Data. Appl. Statist., Vol. 29, 1980, pp. 180-189.
8. Ertel, James E.; and Fowlkes, Edward B.: Some Algorithms for Linear Splines and Piecewise Multiple Linear Regression. J. Amer. Stat. Assoc., Vol. 71, 1976, pp. 640-648.
9. Smith, Patricia L.; and Smith, Philip W.: Empirical Stopping Rules for Data Fitting by Splines. Proceedings of the 1979 Army Numerical Analysis and Computers Conference, ARO Report 79-3, 1979, pp. 449-456.
10. Agarwal, Girdhar G.; and Studden, W.J.: Asymptotic Integrated Mean Square Error Using Least Squares and Bias Minimizing Splines. Ann. Stat., Vol. 8, 1980, pp. 1307-1325.
11. Smith, Patricia L.: Splines as a Useful and Convenient Statistical Tool. The American Statistician, Vol. 33, 1979, pp. 57-62.
12. Smith, Patricia L.: Hypothesis Testing in B-spline Regression. Comm. Statist., Vol. ll, 1982, PP. 143-157.
13. Poirier, Dale J.: Piecewise Regression Using Cubic Splines. J. Amer. Stat. Assoc., Vol. 68, 1973, pp, 515-524.
14. SAS User's Guide. SAS Institute, Inc., P.O. Box 10066, Raleigh, NC 27605, 1979.
15. SPSS UPDATE 7-9. C. Hadlai Hull and Norman H. Nie editors. McGrawHill, 1981.

ソ日月 000 $=$
16．Ryan，T．A．，Jr．；Joiner，B．L．；and Ryan，B．F．：MINITAB Reference Manual，Duxbury Press， 1981.

17．BMDP－79．Biomedical Computer Programs．W．J．Dixon and M．B．Brown editors．University of California Press， 1979.

18．IMSL Reference Manual Edition 9．IMSL，Inc．， 7500 Bellaire Blvd．， Houston，TX 77036－5085， 1982.

19．Klein，V．；Batterson，J．G．；and Smith，P．L．：On the Determination of Airplane Model Structure From Flight Data．Presented at the 6th IFAC Symposium on Identification and System Parameter Estimation， Arlington，VA June 7－11， 1982.

20．Gallant，A．R．；and Fuller，Wayne A．：Fitting Polynomial Regression Models Whose Join Points Have to be Estimated．J．Amer．Stat．Assoc．， Vol．68，1973，pp．144－147．

21．Klein，V．；and Batterson，J．G．：Determination of Airplane Aerodynamic Parameters From Flight Data at High Angles of Attack．Presented at the 13th Congress of the International Council of the Aeronautical Sciences，Seattle，WA，Aug．22－27， 1982.

22．Smith，Robert E．，Jr．；Price，Joseph M．；and Howser，Lona M．：A Smoothing Algorithm Using Cubic Spline Functions．NASA TN D－7397， 1974.

APPENDIX

Program Documentation

Two FORTRAN programs have been written which adapt stepdown procedures to B-spline regression. One program is for knot elimination while the other is for reducing the spline order. Theoretical details and appropriate references are given in Sections 2 and 6. The programs are written in FORTRAN 5 and have been implemented on both the ODU DEC-10 and the NASA/Langley CDC Cyber computers. Notation is patterned after that of de Boor (ref. 1), and definitions of parameters are given in the subroutine VL2NT, the second subroutine called. All necessary input is read in or specified in subroutine DATl: the data, sample size NDATA, (initial) spline order $K=$ degree +1, (initial) interior breakpoints and endpoints BREAK(•), number of continuity conditions $V(\cdot)$ at the breakpoints, number of intervals $L=\{$ interior breakpoints +1 , and tabled F value to be used in hypothesis tests. For equal spacing, the breakpoints and continuity conditions are most easily specified through a DO loop. Variables are dimensioned by one of three parameters (defined in comment statements) which are specified in the PARAMETER statement at the beginning of the main program.

「ata must be interior to $[\operatorname{BREAK}(1), \operatorname{BREAK}(L+1)]$. For the Indy data, $' X \min =1$ and X max $=61$, so we arbitrarily set $\operatorname{BREAR}(1)=0$ and $\operatorname{BREAX}(L+1)$ $=62$. $V(I)$ is the number of continuity constraints at BREAK(I). For example, $V(1)=0$ means that the spline is discontinous at BREAK(I) while $V(2)=3$ means there are 3 contiguous continuity conditions on the spline f at $\operatorname{BREAK}(2)$, i.e., f, f^{\prime}, and $f^{\prime \prime}$ are all continuous at BREAK(2). Note that $V(I)$ must be less than or equal to $K-1$ in order to have a "true" spline, not a polynomial, across BREAK(I). We always set $V(1)=0$, though only for 'symmetry" in the endpoint conditions, and $V(L+1)$ need not be specified since it is never used nor referred to.

The subroutine FLAG is designed to catch user input errors which would otherwise cause the progran to terminate abnormally or give inaccurate results which may or may not be obvious to the user. Sample output detecting errors in the input information of the Indy data is shown in figure A.l.

ORIGINAL PACE M

OF POOR QUALITY

```
THE ORDER K : 4
THE INTERVALS L = 3
ThE DIMENION N - 5
\begin{tabular}{|c|c|}
\hline BREAWPOINTS & CONTINUITY CONDITIONS \\
\hline 5.68 BOCOOD & 0 \\
\hline 33.56300600 & 4 \\
\hline 7.50000300 & 3 \\
\hline
\end{tabular}
62.00000000
```



```
EREOKPOINTS MUST BE STRICTLY INCREASING.
    BFEANPOINT 30.50000060 IS NOT LESS THAN EREAKPOINT T.50000000
THE MUMEER OF CONTIMUITY CONDITIONS MLST EE STRICTLY
    LESS THAN THE SPLINE ORDER K. V( 2)= 4
    AT EREAFOOINT 3.50080000 IS TOO LARGE.
x VAlue OST OF RANGE.
    X( 1)= 1.00000000 IS NOT IN THE RANGE BREAK(1)= 5.000000000
        TO BREAK(LNST): 62.80000000
```


STEPDOWN CANOT PROCEED. PROGPAM RBORTS.

Figure A.1. Sample output detecting input errors. Indy data.

Several lines in the programs are for ploting only. These are calls to the CDC system subroutines PSEUDO, INFOPLT, and CALPLT and the DO loop 10 which calculates the spline values at the knots.

For the knot elimination routine, input data and subsequently calculated information are printed by means of subroutines DATl and OUTNTS. This includes data values, spline order, number of intervals, dimension of the spline space, and knots. At each step of the procedure as indicated by the number of intervals L, the F-ratios for the importance of each breakpoint are given along with the SSE and MSE. If a breakpoint can be eliminated, it is specified and the procedure continues to stepdown. If no breakpoint can be eliminated, the resulting number of intervals and spline order are given along with a list of the values of the B-spline coefficients and their standard errors. Sample output appears in Figure 3.1, p. 8, in Section 3.

As in the knot elimination program, the subroutines DATl and OUTNTS of the order reduction routine print input data and subsequently calculated information. In addition, at each step, the printout gives the SSE's and MSE's for two splines of order K, one with continuity C^{K-2} and the other with continuity C^{K-3}. The hypothesis test is described in words with the results of the F test indicated. When further order reduction is not possible, estimates of the B-spline coefficients and their standard errors are given for the spline of lowest acceptable order with highest continuity imposed. Additional information is given by including the SSE and MSE of the next lowest order spline. Sample output for the Indy data appears in Figure 6.2, p. 41.

Flowcharts are given in Figures A. 2 to A. 3 followed by the program listings. A fuil listing of the knot elimination program from a CDC Cyber is given, including the subroutines of de Boor (ref. l) that are used. For the order reduction program we list only the main program and the subroutine SSHYP2, a variation of SSHYP appearing in the first program.

Figure A.2. Elowchart for knot elimination program.

Figure A. 2. (concluded).

Figure A. 3. Flowchart for order reduction program.

Figure A. 3 . (concluded).

PROGFOM XPLOT (INPUT, OITPUT, TAPEG-OUTPUT, TAPE29, TAPE21, TAPEC2)
C STEPDON FOR EFIAOOINT EIMINATION FOR FIXED ORDER K.
C THE FUNCTION AND ITS FIRST K-Z DERIVATIVES MUST EE COMIINUNE.
C
C Nompor IS AT LEAST THE SPPPLE SIZI, NDATA.
C MMPX IS AT LEAST N. HITH MEXIMM CONTINUITY CONDITIONS,
C N-L+K-1. WITH NO COMTINUITY CONDITIONS, N-Luk.
C KTHMOX IS AT LSAST K KN.
$\stackrel{C}{C}$
PAPAMEIER (MPX=100, NTMAX-289, KTMPX-2880)
RISL BCOEF (MPAX), Q(KTMMPX), DIAG (KTMMEX), T(NDMAX)
, DCOSF (NPX), BRT (NYPX), BLY (NMX),F(NDMPX)
, CTRAST (NHEX), AA (NMPX, NHPX), ERPOR (NLMPX)
, MSE, MSH, SE(NMPX), FRATIO (NYPX)
, BB(NHPX, MMX), LIN (MMPX, NMPX), FB(MFX)
INTEGSR EPRDF, HDF, V, KDD (NMPX)
COMMON DDATA NDATA, X (NDMPOX), Y(NDNAX), FTAELE

ICOUNT:
C EMTER DATA
CAL DATI (ICOUNT)
C EET THE WOT SECUBCE
CAI VZNT (ERSAK,L,K,V,T,N,K曰D)
C PRILIMINARY OUTPUT
OAL OTNTS (EREPK,V,L, T, N, K, KEND)
OHEOK INPUT DATA
IFLA6-6
CRLI FAG(IFAG,N)
IF (IFLAG .EO. 1) 60 TO 25
ORL PSEIDO
C TEST FOR CONTIMUNS K-1-5T DERIVATIVE AT EROH KNT JDERIV-K-1
1 FMINaFTABE
$L M 1=L-1$
C EET THE LEAST SOURESS FIT, 1.E., THE G-SPLINE COBFICIINTS
CAL LSTSO1 (T, N, K, O, DIAG, BCOEF)
C LSTSO1 CALLS BSPLVE, BCFFAC, AND BOHELV
C GET SSE AND MER
ERRDF-NDATA-M
CALL BSPLPP (T, BCOEF, N,K, DIAG, BFIEAK, COEF,L)
ORU ERR21 (F, ERROR, ERRDF,SSE,MSE)

ORIGINAL PAGE IS

 OF POOR QUALITY```
C ERRL21 ORUS PPYYUU WHIOH CPLLS INTEPV
```

```
 LP1-L+1
```

    LP1-L+1
    DO 10 I=1,LP1
    DO 10 I=1,LP1
        FB(I)-PPVAUU(BRIEK, COEF,L,K, BRESK(I),0)
        FB(I)-PPVAUU(BRIEK, COEF,L,K, BRESK(I),0)
    1 0
    1 0
        CONTIME
    ```
 CONTIME
```




```
 CAL INFOPLTIO,NDATA,X,1,F,1,0.,62.,74.,158.,1.,9,
```

    CAL INFOPLTIO,NDATA,X,1,F,1,0.,62.,74.,158.,1.,9,
        * SHINDY DATA,1,1HY,0,5.,4.,.75,.75)
        * SHINDY DATA,1,1HY,0,5.,4.,.75,.75)
        CAULINFOPLT(0,NDATA,X,1,Y,1,0.,62.,74.,158.,1.,9,
        CAULINFOPLT(0,NDATA,X,1,Y,1,0.,62.,74.,158.,1.,9,
        * SHINDY DATA,1,1HY,22,5.,4.,.75..75)
        * SHINDY DATA,1,1HY,22,5.,4.,.75..75)
        CPLLINFOPLT(1,LM1, BREAK(2),1,FB(2),1,0.,62.,74.,159.,1.,9,
        CPLLINFOPLT(1,LM1, BREAK(2),1,FB(2),1,0.,62.,74.,159.,1.,9,
    *
    *
        MHINY DATA,1,1HY,1,5.,4.,.75,.75)
    ```
 MHINY DATA,1,1HY,1,5.,4.,.75,.75)
```

        IF(L .NE. 1) GO TO 12
        WRITE (20,11) SSE, MSE
    11 FORAT (//' SSE=',F16.8,5X, 'MSE=',F16.8)
                GOTO 9
    ```
C TEST IMPORTANCE OF EACH EREANPOINT
 12 WRITE(20,2) L,FTRELE, 5SE,MSE
 2 FOPMAT(///' L=',I3,5X,'F-TABLE VALUE I5',F16.8,//
 * 'S5E=',F16.8,5X,'MSE=',F16.B/
 * 'FTRATIOS APE: BREAKPOINTS APE')
 30 5 II=2,L
 ID=II
 CALL ONTRST (ID, JDERIV,N,K,L,T, BREAK, KEND, BRT, BLF, DCOEF
 * ,CTRAST)
 OMTRST CALLS BCONT
 CALL SSMP(BCOEF, CTRAST, O,K,N, BRT, VAR,SSH, MSH, HDF)
 SSHM' CMLLS FORSUB
 FROTIO(II)-MSUMSE
 WRITE(20,4) FRATIO(II), BREAK(II)
 4 FORMAT(2F16.8)
 IF(FRATIO(II),GE, RMIN) GO TO 5
 FMIN-FRATIO(II)
 WOT=II
 5 CONTIME
 IF (FMIN .LT. FTRELE) GO.TO 7
 WRITE(20,6)
 6 FORHAT(", NO EREAKPOINT CON BE EIIMINATED')
 GO TO }
 7 FMINaFRRTIO(NOOT)
```

```
 WRITE(20,0) ERENK(KOOT)
 g FORMAT(/' GRENFOINT',F7.3,' IS EIMINATED')
C RELAEM WNOT SEQUNCE T AS WEIL AS BREAK, KEND, AND V
 CALL RENOT(LDND, NOOT,N,K,L,T,V, BREAK)
 GO TO 1
C PRINT RESUTING COEFICIEMTS, STANDFRD DEVIATIONS, AND F-VALLES
 S CRL STDEFR(Q, BCOEF,K,N,L,MSE,DIAG,AA,SE,LINV)
C
 CALL CALPLT(0.,0.,999)
 25 STOP
 END
C INDY DATA
 SUBROUTINE DATI(ICOUNT)
COMMON STATEMNTS /DATA AND /APPROX/ ARE USED.
C
C THIS SUBROUTINE READS IN THE DATA AND GIVES THE MUMBER AND
C RLACETENT OF THE WNOTS FOR THE FITTED SPLINE.
 PAROMETDR (NMAX-100, NDMAX-200, KTMMAX-2000)
 INTEGER V
 REAL Y, X
 COMTON / DATA / NDATA, X(NDMAX), Y(NDMAX), FTARLE
 COMMON , APPRROX / BREOK (NMAX), COES (KTNMAX), L,K
 * , V(NMAX)
 NDATA - 55
 WRITE (20,5)
 5 FOPMAT(' INDY DATA'/,' YEAR Y X')
 DO 1 I-1, NDATA
 READ(21,4) YERR,Y(I),X(I)
 4 FORMAT(I4,1X,F7.3,1X,F2.0)
 WRITE(20,2) YEAR,Y(I),X(I)
 2 FORMT(I4,1X,F7.3,1X,F3.0)
 1 CONTINE
C GIVE THE ORDER X AND NUMEER OF INTERMALS L
 K=4
 L - 3
 FTARE - 8.80
C GIVE THE BPEAFOINTS AND CONTINUITY CONSTRAINTS
 BRE{K(1) - }0
 EREM(2)=7.5
```

```
EREAK(3) = 33.5
BPEOK(4) - 82
V(1) -0
v(2) -
V(3) - 3
```

END
RETLRN
SUEPOUTINE VZNTT (EREEK,L,K,V,T,N, KEDD)
COMPUTES THE KNOT SEOUNCE T AND DIMENSION N FROM THE BREAKOINT C SEQUNCE GPAAK, GIVEN THE SPLINE ORDER K, THE NUMBER OF IMTER$G$ VALS L, AND THE MMBER OF COMTINUITY COMDITIONE V(I) AT BPEEK $C$ (I)
$C$

```
C******* INPUT *
```

C BREAK (1), ..., BREAK (L+1) . . . THE EREAPOINT SEOUENCE.
C L....THE NMEER OF INTERVALS.
C K....THE ORDER OF TE SPLINE.
$C V(2), \ldots, V(L) \ldots$ THE NMBER OF CONTINUITY CONSTRAINTS AT
BREAK (2), ... EREPK (L).
C

C T(1),...,T(NH)....THE KNOT SEOLIMCE.
C N....THE DIMENSION OF THE SPLINE SPACE OF ORDER K.
$C$ KEND(I)....THE INDEX OF THE LARGEST WHOT EOUAL TO BREOK (I)
C
C***** METHOD ******
$C$ ThE FIRST $K$ WYOTS ARE SET ECURL TO BREOK (1). THE KNOTS ARE
C THEN SLCUENCED 50 THAT K - V(I) WHOTS ARE AT BREAK (I) WITH
$C$ KEND (I) EOUR TO THE INDEX OF THE LORGEST KNOT AT BPEAK (I).
$C$ NIS SET ECUAL TO KEND(L) AND THE LRST K WNOTS $T(N+1), .$.
C T(NHK) AFE SET EQUAL TO EREOK (L+1).
INTEGER K,L,N, I,V(1), J, ISTART, ISTOP, KEMD(1)
RERL BREAK(1), T(1)
$C$ SET THE FIRST K WOTS EQUA TO BREPK(1).
DO 1 I E 1, K
1 T(I) - BREF ( 1 )
C
C FIND THE INDEX KEND (I) OF THE LORGEST WVOT EQUA TO BREAK (I).
KEND(1) - K
DO 2 I . 2, L
$2 K \operatorname{KED}(I)=K E N(I-1)+K-V(I)$
c
C SET T(KIND(I-1) + 1) ..... T(KEND(I)) - BREAK(I).
D 10 I - 2, L
ISTART $=\operatorname{KEND}(I-1)+1$
ISTOP - KEND(I)
DO 11 J - ISTART, ISTOP
$11 \quad T(\mathrm{~J})$ - BREAK(I)
10 CONTINLE
$N \cdot \operatorname{MDE}(L)$
$c$
C. SET THE LRST K WNTS EOUAL TO BREAK(L+1).

```
 DO 20 I = 1. K
 28
 T(N+I) - BREAK(L+I)
 RETIFN
 END
 SUBROUTINE OUTNTS(BREOK,V,L,T,N,K, KEND)
C THIS SUBROUTINE IS FOR OUTPUTING ONLY. IT OUTPUTS AL
C ORUING ARGUMENTS AF T E R VZNT HAS EEEN CALLED.
C
C******INPUT AND OUTPUT******
C K....THE SPIINE ORNER
C L.... THE MMEER OF INTERNALS
C N....THE DITENSION OF THE SPLINE SPACE
C BREAK(1),..., EREAK(L+1)....THE BREAHPOINT SEQUIMCE
C V(1),..V(L)...THE NUMEER OF CONTINUITY CONSTRAINTS AT
C BREAK(1),...BPEEK(L)
C T(1),...T(N)....THE NOT SEQUNCE
C KPND(1),...,MDPD(L)....INDEX OF THE LARGEST KNOT EQURL TO
 BREAK(1),..., BREAK(L)
 DIMENSION T(1), KEND(1), BPEOK(1)
 INTEGIR V(1)
 WRITE(20,40) K, L, N
 46 FORHT(//' THE ORDER K - ', I3/'' THE + INTERVALS L .', I3,
 * //" TEE DIMENSIONN: , I3)
 WRITE(20,41)
 41 FOR'AT(//' ERENFOINTS', TEQ, ' CONTINUITY CONDITIONG')
 DO 45 J - 1, L
 45 WRITE(20,42) EREOK(J), V(J)
 42 FOPMAT(F16.8,T30,I3)
 LPI = L + 1
 WRITE(20,43) BREAK(LP1)
 43 FOPMAT (F16.8)
 WRITE (20,0)
 日 FOPMAT(ハ! T INDEX')
 NFK = N+K
 ICONT - 1
 INDEX - 1
 WRITE(20,5) T(1), INDEX
 5 FORMAT(F16.8, 5x, 13)
 D 7 J - 2, NPK
 IF (T(J) ,EQ. T(J-1)) GO TO 50
 WRITE(20,12) ICOWNT, WDD(ICONNT), T(J), J
 FOPMAT(T30, 'KEMD(',I3,')- ',I3T1,F16.8,5X,I3)
 WRITE(20,9) T(J), J
 FORPAT(F16.8,5X,I3)
 GO TO 7
 ICONNT - ICQNT + 1
 CONTINEE
 RETLPN
 ED
 SUBROUTINE FLAG(IFLAG,N)
C THIS SUBROUTINE O-EOKS FOR
```

```
\(C\) (1) EPEAPOINTS WHIOH APE NOT STRICTLY IMCREASIMG;
\(C\) (2) TOO MPN CONTINUITY CONDITIONS;
C (3) K LPREER THAY 20
C (4) \(x\) VQUES OUT OF RONGE OF THE FIRST AND LOST BREAFOINTS.
 PAPPTLTER (NPAX=100, NOMPX=200, KTMPRX=2000)
 INTEGTR \(V\)
 COMTION / DATA / NDATA, X(NDPRX), Y(NDMAX), FTARLE
 COMPON / APPROX / BREAK (NMAX), COEF (KTMMAX), L,K,V(NMAX)
 D 1 I-1,L
 IPI \(=1+1\)
 IF(BREAK(I).GE. BREAK (I+1)) GOTO 2
 1 CONTINE
 GO TO 4
 2 WRITE(29, 3) BREAK(I), BREAK (IP1)
 3 FOPMAT(" BPEAPOINTS MUST BE STRICTLY INCREASING.',
 * ' EREAPOINT',F16.6, \(2 \times\),'IS MOT LESS THAN BREAFOINT',
 * Fi6.日)
 IFLAG: 1
\(4005 \mathrm{I}=1, \mathrm{~L}\)
 IF(V(I).GE.K) GOTO 6
 CONTINE
 60 TO 20
 6 WRITE(20, 7) I,V(I), BREAK(I)
 7 FOFPTL \(:\) THE NEMEER OF CONTINUITY CONDITIONS MUT BE STRICTLY',
 * 5X,' LESS THAN THE SPLINE ORDER K. V(',I2,')', I2,
 * 5x,' AT EREAKOINT',F16.8,' IS TOO LARGE.')
 IF-AG:1
20 IF (K:GT. 20) GO TO 日
 GO TO 10
 © \(\operatorname{WRITE}(20,9) K\)
 9 FORPAT'; K=',I2,' IS TOO LARGE.',' THE ORDER K MLST BE 20 OR',
 * 'LESS.')
 IFLAG: 1
10 DO 11 I-1, NDATA
 \(I F(X(I)\).LE. BREAK(1) .OR. X(I) .GE. BREAK(L+1)) GO TO 12
11 CONTINE
 GOTO 14
12 WRITE (20, 13) I, X(I), BREAK (1), BREAK (L+1)
13 FORMT:' \(x\) VRLLE OUT OF RANGE.' '' \(X(', 14, ')=', F 16.8\),
 - IS MOT IN THE RAMGE BREOK(1) =, Fí.8
 * \(5 \mathrm{X},{ }^{\prime}\) TO BREAK(LAST)=', F16.日)
```

```
IFAGG:1
14 IF(N .GT, NOATA) GO TO 16
 GO TO 18
16 FRITE(20,17) N, NDATA
17 FOPAT,", THE DIMENSION N=',I2,
 * ' IS GREATER THAN THE SAMPIE SIZE',I4,'.')
 IFLAG=1
18 KTN-K*N
 IF(NDNAX .LT. NDATA) GO TO 19
 GO TO 22
19 LRITE (20,21) NIMAX,NDATA
21 FOPHAT(;' OECK FAPANETER STATEMENT.' SX,' NDMAK=', IS,
 * ' MLST NOT BE LESS THON THE NMBER OF DATA POINTS',
 IFLAG-1
22 IF (NAXX .LT. N) GO TO 23
 GO TO 25
23 WRITE(20,24) N
24 FORHAT(/' OEOK AARMETER STRTEMNT.'/SX,' MMAX MUST NOT BE',
 * ' LESS THPN N=',I5)
 IF_~G=1
25 IF(KTNMPX .LT. KTN) GO TO 26
 GO TO 28
26 LRITE(20,27) KTN
27 FOPRAT('' OHEOK PAPBMETER STATEMENT,'/5X,' KTMMAX MLST NOT',
 * ' EE LESS THAN KTN=',I4,',')
 IFLAG-1
Z日 IF(IFLAG. EQ. 0) GO TO 30
 WRITE(20.29)
```


## 

 - ' STEPDOWY CANYOT PROCEED. PROGPOM ABORTS.')```
30
    OD
RETURT
```

SUBROUTINE LSTSO1(T,N,K,Q,DIAG, BCOEF)

| |
| :---: |
| | |
| | |
| | |
| | |
| | |

PAPA-ETER (KMAX-29, NAMAX-290)
REAL BCOF $(N), \operatorname{DIFG}(N), Q(K, N), T(1)$, BIATX(KMAX)
COMPON / DATA / NDATA, X(NDMPX), Y(NDMPX'), FTABLE
C
D $7 \mathrm{~J}=1, \mathrm{~N}$
BCOF(J) - 0.
DO 7 I-1,K

7
LएT = K
LEFTMK - 0
DO 20 L•1, NDATA
C LOCATE LEFT ST \times (LL) IN (T(LEFT), T(LFT+1))
10 IF (LIFT.EQ. N) GO TO 15
IF (X(LL) .LT. T(LET+1)) GO TO 15
LET - LET+1
LETMK - L戶TMK+1
GO TO 10
CALL BSPLVB(T,K, 1, X(LL),LEFT, BIATX)
DO 20 MM-1,K
DW - BIATX (MM)
J - LETMK+4M
BCOEF (J) - DWAY(LL) + BCOEF (J) I-1
D0 20 JJ.MTM, K
$\therefore \quad Q(I, J)=B I A T X(J J) * D W+Q(I, J)$
20 I:I+1
$C A L B C A C(Q, K, N, D I A G)$
CALL BCHSV(Q,K,N, BCOEF)
ED
SUEROUTINE BSPLVBIT, JHIGH, INDEX, X, LEFT, BIATX)
C CALOLATES THE VRLLE OF AL POSSIEYY MOREERO B-SPLINES AT x OF ORDER
C JOUT-MคX(JHIGH, (J+1)*(INDEX-1))
C WITH WOT SEQUCE T.
C DE BOOR PACE 134-135
ROFOTETER (JPAX-20)
INTEGER INOEX, JHIGH, LEFT, I, J, JPI
REAL BIATX (JHIGH), T (1) , X, DETAL (JMAX), DELTAR (JMAX), SPMED, TERM
C DIMESION BIATX(JOUT), T(LEFT + JOUT)
C OF T AND OF BIATX PFECISEIY WITHOUT THE INTRODUCTION OF OTHERWISE

```
C SPPERLOLS ADDITIONAL ARGUENTS.
    DATA J/1/
C SPNE J,DELTAL,DELTAR (VALID IN FORTRON TT)
10 J=1
    BIATX(1)=1.
    IF (J.G.JHIGH) GOTO 99
C
20 JP1:J+1
            DETAR(J)-T(LEFT+J)-X
            DETFL(J):X-T(LEFT+1-J)
            SNVED-0.
            DO 26 I•1,J
                    TERM-BIATX(I)/(DEITPR(I)+DETTAL(JPI-I))
                    BIATX(I)=SANED->DEITAR(I)*TERM
                    26 SPNED-DETTAL(JP1-I)*TERM
            BIATX(JP1)=SPMED
            J= JP1
            IF (J.LT.JHIGH) GOTO 20
C
99
                                    RETLRY
        ED
        SIBROUTINE BOFAC (W, NBANDS, MROW, DIAG)
C
C CONSTRUCTS THE OHOLESKY FACTORIZATION C - L* D*L-TRAMSPOSE.
C SEI DE BOOR P. 256
    INTEGER NPANDS, NROW, I, IMPX, J, JMPX, N
    REQL W(NBGNOS,NROW), DIAG(NROW), RATIO
    IF ( NROW .GT. 1 ) GO TO }
    IF (W(1,1) .GT.9.) W(1,1) - 1.N(1,1)
C STORE DIAGONFL OF C IN DIAG.
            9 DO 10 N=1, NROW
    10 DIAG(N) - W(1,N)
C FACTORIZATION
            DO 20 N-1, NROW
            IF(W(I,N)+DIAG(N) .GT. DIAG(N))GO TO 15
            DO 14 J-1.NBANDS
                W(J,N)=0.
                    60 TO 20
    15W(1,N)=1.W(1,N)
            IMAX = MINO(NBENDS-1,NROW - N)
            IF (IMROX.LT. 1) GO TO 20
            תAXX = IMAX
            DO 10 I-1.IMAX
                RATIO = W(I+1,N)WW(1,N)
                    DO 17 J=1, Jax
                        W(J,N+I) - W(J,N+I) - W(J+I,N)**ATIO
                    Max - תNax - 1
                W(I+1,N) = RATIO
            CONTINE:
```


ORIGINAL PAGE IS OF POOR QUALITY

RETURY

ED
SUEROUTINE BOMEV(W, NEPNDS, NROW, B)
C SQVES THE LINER SYSTEM C*X-B OF ORDER NPOW FOR X
C PROVIDED W CONTAINS THE OHLESKY FACTORIZATION FOR TE BONDED (SMM
C MEIRIC) POSITIVE DEFINITE MATRIX C RS CONSTRUCTED IN THE SLBROUTINE
C BCFAC (ONO VIDE).
C DEBOOR PREE 258
INTEGJR NQANDS,NROW, J, JMAX,N, NENDTMI
FEAL W(NBENDS, NPOW), B(NROW)
IF (NROW.GT.1) GOTO 21
$B(1)=B(1)=W(1,1)$
RETLPN
FORWPD SUBSTITUTION. SOLVE L*Y-B FOR Y, STORE IN E.
21 NENDMI-NEPTDS-1
DO $30 \mathrm{~N}=1$. NROW
JRXXMINO (NENDM1, NROW-N)
IF (JinX.LT. 1)
GOTO 30
DO $25 \mathrm{~J}=1$, JPAX
$B(J+N)=B(J+N)-W(J+1, N) * B(N)$
contine

DO 40 N-NROW,,-1
$B(N)-E(N) * W(1, N)$
JPRX-MINE(NENDM1, MROW-N)
IF (JPOX.LT. 1)
GOTO 40
D 35 J.1, JMPX
$\theta(N)-B(N)-W(J+1, N)=B(J+N)$
CONTINE
RETURN
END
SUBROUTINE ESPLPP (T, BCOEF, N,K, SCRTOH, BREAK, COEF,L)
C COLLS BSPLV
$\stackrel{c}{c}$
C COMERTS THE B-FEPPESEMTATION T, BCOEF,N, K. OF SOME SPLIIE INTO ITS
C PO-PEPRESENTATION BREAK, COEF, L,K.
C DE BOOR POGES 140-14:
PAPOMETER (KMAX-ZZ)
INTEGR K,L,N, I, J, JPI, KMJ, LEFT, LSOFAR
REAL BCOEF (N), BREAK (1), COEF $(K, 1), T(1)$, SCRTOH(K,K
*ision becek $(L+1), \operatorname{COEF}(K, L), T(N+K)$
LSOFAR-1
BREAK(1)=T(K)
DO 50 L戶T-K,N
C FIND THE NEXT NONTRIVIAL WNOT INTERYAL.
IF (T(LET+I).EQ.T(LEFT)) GOTO 50
LSOFPR-LSOFAR +1
EREAK (LSOFAR+1)-T(LEFT+1)
IF (K.GT.1)
GOTO 9
COF (1.LSOFAR):BCOEF (LET

```
CALLS SUEPROGROM PPYALU(INTERV)
C
C THIS SUBROUTINE COMFUTES THE ERROR SS AND MS. IT IS A
C MODIFIED VERSION OF DE BOOR'S SUEROUTINE LZERR, PAGE ZG1.
C MSE IS THE OUTPUIED MENN SOUPRED EPROR.
```



```
    INTEGER ERRDF, V
    REAL FTAU(1), ERROR(1), MSE, Y, X, BPERK, COEF
C DIMEYSION FTRU(NDATA), EPROR(NDATA)
    COMPINN / DATA / NDATA, X(NOMPX), Y(NDMAX), FTABLE
    COMTION / APPROX / BREOK(NPHX), COEF (KTMMPX), L, K
    #
                            , V(IMRX)
C
    S5E-0.
    DO 10LL.1, NDATA
            FTAU(LL) - PPVALU(BRESK,COEF,L,K,X(LL),Q)
            ERROR(LL) - Y(LL) - FTRU(LL)
        10 SSE - SSE + ERPOR(LL)**2
            MSE - 55E/EPRDF
            END
            REPL FUNCTION PPUALU(BRSEK,COEF,L,K,X, JDERIV)
C CALLS 'INTERV'
C CPLOLATES VALLE RT }X\mathrm{ OF JDERIV-TH DERIVATIVE OF PP FCT FROM PP-REPR
    INTEGRR JDERIV,K,L, I,M,NDLMTY
    REAL EREAK(L),COEF (K,L),X, FTMIDR,H
    PPVPLU=0.
    MMMJDR=K-JDERIV
C DERIVATIVES OF ORDER K OR HIGHER APEARI IDENTICALLY TERO.
    IF (FIMJDR.LE.0) GOTO }9
C
    FIND INDEX I OF LORGEST BRENKPOINT TO THE LEFT OF }x\mathrm{ .
    CALL INTERV(BREAK,L,X,I, NDUNTHY)
C
    EVRLUATE JDERIV-TH DERIVATIVE OF I-TH POLTNOMIRL PIECE AT X.
    H=X-BPEPK(I)
    DO 10 M0K, JDERIV+1,-1
        PPYALU=(PPYALUFFMMDR)*COEF (M,I)
        FTPUDR - FTMJDR-1
1 0
99
                                    RETURN
    END
    SUBROUTINE INTERV (XT,LXT, X, LEFT, MFLAG)
C COMPUTES LEFTGMRX(I,I.LE.I.LE.LXT.AND.XT(I).LE.X)
C DE BOOR PAGE SE
    INTEGER LEFT,LXT,MTLAG, IHI,ILO,ISTEP,MIDDEE
    REAL X, XT(LXT)
    DATA ILOM,
C SPVE ILO (A VALID FORTRON STATENENT IN THE NEW 1977 STANDPRD)
    IHI= ILO+1
    IF (IHI.LT.LXT) GOTO z0
        IF (X.GE.XT(LXT)) GOTO 110
        IF (UXT.LE.1) GOTO 90
```



```
C JDERIV-TH DERIVATIVE OF THE SPLINE FUNCTION AT BREOK(I).
C
```



```
C L....NUMEER OF INTERVALS
C T(1),...,T(N+K)....THE NNOT SEQUDNCE
C I....TTE' INDEX OF'THE EREANPOINT OF INTEREST
C BFSAK(1),.,.BRERK(L+1)....THE BREEHPOINT SEQLONCE
C JDERIV....NDNEGATIVE INTEGER GIVING THE ORDER OF THE DERI-
G VATIVE TO BE EVALUATED
C KEND(1),...KDDD(L)....INDEX OF THE LORGEST WNOT EGUAL TO
```



```
C N....DIMEMSION OF SPliNE SPACE
C K....ORDER OF SPLINE
C ERT, EF, DCOE...WORK ARPOYS OF LDNGTH N
C
C*****OM OUTPUT (1)
C CTRAST(I),...,CTRAST(N)....THE CONTRAST COEFFICIENTS USED TO
                                    TEST CONTIMUITY OF THE SDERIV-TH
                                    DERIVATIVE AT BREAK(I)
Cxownac* METHOD worcole*
THE FINCTION SUBPROGPOM BCONT IS USED TO COMPUTE THE VALLE OF
C THE LEFT AND RIGRT LIMITS OF THE JDERIV-TH DERIVATIVE OF
C RGEVANT E-SRINES AT BPEAK(I).
C
        INTEGER KEND(1)
        REPL ERT(1), BLF(1), CTROST(1), T(1),
        * ERCOK(1), DCOEF (1)
    22 DCOEF(jJ).N0.
            D 10 J . 1, N
            DCOF(J) - 1.
COPPUTE VALLE FOR RIGHT CONTINUITY
            IF (KEMD(I)K+1 .LE. I AND. I .LE.KEND!I!) GOTO 30
            ERT(J) - 0.
                                    GO TO 40
    30. ERT(J) = BCONT(T,DCOEF,N,K, BREAK(I),KEND(I),
COHPUTE VALLE FOR LETT CONTINUITY
    40 IF(KEND(I-1)-K+1 .LE. J .AND. J .LE. KEMD(I-1)) GO TO 50
        BLF(J)=0.
                                    GOTO 60
    50 BLF(J) - BCONT (T,DCOEF,N,K, BREFK(I),
C
COMPUTE DIFFERENCE OF THE LEFT AND RIGHT VALLES
    60 CTRRAST(J) - ERT(J) - ELF(J)
            DOF(J) - }0
    10 CONTINLE
```


and

RETLRYM
PEAL FUNCTION BCONT (T, BCOEF, N, K, X, I, JDERIV)
COLOLATES VPLUE AT X OF JDERIV-TH DERIVATIVE OF SPLINE FROM B-REP. C THIS IS A MODIFIED VERSION OF DE BOOR'S SUEROUTINE BVALLE, C PAGE 144. THE ONLY DIFPERENCE IS THAT THE LEFT-HAND KNOT C INDEX I IS INPUTED RATHER THAN FOUND IN INTERV. CONEEC QUOMLY, LINE 10 IS MODIFIED TO INPIT I AND LINES 710 AND C TZQ PRE CMITELD. THE PLRPOSE IS TO ALIOW EVALUATION AT C EREAKPOINTS WITH LET (GR RIGKT) CONTIMUITY.

PARAETER (KTFXX 20)
INTEGR JDERIV,K,N, I, ILO, IMK, J, JC, JOMIN, JOMAX, JJ, KMJ, KMI, MTLAG
-
REAL BCOEF (1),T(1), X, AJ (KTAX), DL(KPAX),DR(KMAX),FKMJ
DIHENSION T(NHK)
BCONT-0.
IF (JDERIV.GE.K) GOTO 99
c
C Now IF K-1 (AND JDERIV-0), BCONT-BCOEF (I).
$K M 1=K-1$
IF (KM1.GT.8) GOTO 1
BCONT-BCOST (I)
GOTO 99
c
c
c
6
c
c
*OO STORE THE K B-SPLINE COEFFICIENTS REEVENT FOR THE KNOT INTERVAL ($T(I), T(I+1)$) IN $A J(1), \ldots, A J(K)$ AND COMPUTE $D(J)=X-T(I+I-J)$. $\operatorname{DR}(J)-T(I+J)-X, J-1, \ldots, K-1$. SXT ANY OF THE AJ NOT OBTAIMARE FROM INPUT TO ZERO. SET AYY T.S NOT OBTAIMABLE EQLAL TO T(1) QR TO T(NAK) APPROPRIATELY.
1 JOMIN-1
IMK-IK
IF (IMK.GE.0) GOTO 日
JCMIN=1-IMK
DO 5 J.1.I
$5 \quad D(J)=X-T(I+1-J)$
D $6 \mathrm{~J}=\mathrm{I}, \mathrm{KMI}$
AJ $(K-J)=8$. DL(J)=D(I)
$8009 \mathrm{~J}=1, \mathrm{KM1}$
c
18 JOAX=K
MMI - N-I
IF (NMIGE.D) GOTO 18
JCMAX $=K$ KMI
DO 15 J-1, JOAPX
$15 \operatorname{DR}(J) \cdot T(I+J)-X$
DO 16 J-JORX, KM1 AJ $(J+1) \cdot \theta$. DR(J)-DR(JOAX)

GOTO 20

```
DR(J)=T(I+J)-X
C
    20 DO 21 JC.JOMIN,JOMPX
    21 AJ (JC)=BCOFF(IMK+JC)
C
    IF (JDERIV.EO.0)
        DO 23 J.1,JDERIV
        KMJ-K-J
        FON-FLOPT (KOU)
        ILO-kMJ
        DO 23 JJ=1,kMJ
                            AJ(JJ)=((AJ(JJ+1)-AJ(JJ))/(DL(ILO)+DR(JJ)))*FNOJ
        23 ILO-ILO-1
C
    30 IF (JDERIV.EQ.KNI)
        DO 33 J-JDERIV+1,KM1I
        kMJ=k-J
        ILO-kMJ
        DO 33 JJ.1,MMJ
            AJ(JJ)=(RJ(JJ+1)*DL(ILO)+AJ(JJ)*DR(JJ))/(DL(ILO)+DR(JJ))
                        ILO=ILO-I
    39 BCONT-AU(1)
C
    99 RETLRN
        EM
C THIS IS FOR I DF HMPOTHESES.
        SLGROUTINE SSHMP(BCOEF,CTRAST, W, NBPNDSS,N, PYAR, YAR,
        *
                            5SH, MSH, HDF)
CALS FORSUB
C
C FINDS THE YARIANCE OF A CONTRAST AND THE MS FOR TESTING THAT
C THE CONTAST IS ERO.
C
C LINN....THE IMMERSE OFLLOBTAINED FROM E CHINNV
C CTRAST.... THE CONTRAST VECTOR OBTAINED FROM C N T R ST
C BCOFF.... THE B-SPLINE COEFFICIENTS
C W....THE MATRIX FROM B C H F A C CONTAINING D-IMMERSE
C MBMNDS... EQUALS K
C N....THE NUNEER OF EDEENTS IN THE CONTRAST VECTOR-
C ALSO THE DIMENSION OF TILE SPLINE SPACE
C PVAR....WORK VECTOR OF LENGTH N EQUPL TO THE PRODUCT
    W(1,.)*&, I.E. D-INM&IN*GTRAST
C-******OUTPUT*******
C VAR...THE COEFFICIDNT OF SIGM-SQUARED IN THE VARIANCE OF THE
        CONTRAST, I.E. THE PRODUCT CTROST-TRNMSPOSE`IIN-
        TRANSOSE*D-IMV*IMN*CTRAST
    SSH, MSH, HDF....THE SS, MS, AND DF FOR THE HMPOTHESIS
```


ORGGNARL PAGE

OF POCR QUALITY

```
C ****** METHOD******* THEN FRREILTIPLIED BY
C D-INN THEN THAT RESUT IS PREMUTIRLIED EY (LINN*CTRAST)-
C TROMSPOSE
C
        INTEGER HDF
        FEAL MMM, MSH
        RERL CTRRSST(1), W(NBPMNS,N), PVAR(N)
        REPL BCOEF(1)
        NMM }0
        DO 3 II-1,N
        3 MM=NMM + (CTRAST (II)*BCOEF (II))
        CALL FORSUB(W, CTRRST, NBPNDS, IV)
            DO1 II=1,N
        1
        PVAR(II) = W(1,II)*CTRAST(II)
        VAR = D.
        00 2 II-1,N
        V VAR - VRR + CTRRST (II NFPVAR I I I)
        SSH - (NLM**2) NGR
        MSH - SSH
        HDF - 1
                                    RETUFN
        END
            SUBROUTINE FORSUB(W, AA, NBAIDS, HROW)
C SOLVES LY-AA FOR Y AND STORES IN AA
C ******INPUT******
C W...A MATRIX FED IN FROM B C H F A C AND CONTAINING IN ITS ROWG
    THE DIFGONFLS OF A P. D. SYMMETRIC MATRIX C
C NEONDS...THE BANDWIDTH OF C
C NROW. . THE ORD OF C
C AA...THE VECTOR OF LEMGTH NROW CONTAINING THE RIGHT HAND SIDE
C****** UTPUT*******************)
C AP...THE VECTOR OF LEMGTH MPOW CONTAINING THE SOLUTION
C*****METHOD*******
C THE FORWARD SUBSTITUTION ROUTINE FRON DEBOOR'S BOHSLV IS USED
    REAL W(NEPNDS, NROW), AA(NROW)
    IF (NROW.GT.1) GO TO 21
    AA(1)=AA(1)*W(1,1)
    RETURN
    21 NBNDN11 = NBANDS-1
        DO 30 N.1, NPOW
        JMAX-MIND(NENDM1, NROW-N)
        IF (JMAX.LT.1) GO TO 3O
        DO 25 J.1,JMAX
        AP(J+N)=AP(J+N)-W(J+1,N)*PA(N)
    25
    CONTINE
```

ORIGNAL PAGER IS
OF POOR QUAEITY

RETLRY

END
SUEROUTINE REOOT (KIND, NOOT, N, K, L, T, V, BREAK)
C RELABEIS THE KNOT SEQUNCE $T($) BY OMITTING THE LERST
C SIGNIFICANT WYOT, BREAK (KONT)
C
C
C KDND (I)...THE INDEX OF THE LARGEST KHOT EQURL TO BREAK (I)
C WNOT...INDEX OF THE BREAFPOINT TO BE OMITTED
C N...DIMEXSION OF THE (OLD) SPLINE SPRCE
C K...ORDER OF THE SPLINE
C T... MNOT SEOUEXE
C V(I)..NUMEER OF CONTINUITY CONDITIONS AT BREAK(I)
C BREAK... BRTAPOINT SEQUYCE
c
C ********
C N...DIMENSION OF (NOW) SPLINE SPACE WITH BREAK(KNOT) OMITTED
$C T(1) . . T(N) \ldots$...(ND) KAOT SEQLENCE WITH EREAK (NYOT) OMITTED
c
C *******
C SIMCE BREAK (KYOT)-T(KDND (KYOT-1) +1)-...-T(KDMD(KNOT)), WE C PEIABEI PLL T'S BEYOND.

DIMBSIION KDMD(1), T(1), BREAK(1)
IMTEGER V(1)
II-KEND($\mathrm{FHOT}-1$) +1
I2-KDND(مNOT) +1
j1 $=1+\mathrm{K}-52+1$
D $1 \mathrm{KT} \cdot 1, \mathrm{~J} 1$
K1-KT-1
$T(I 1+K 1)-T(12+K 1)$
$\mathrm{N}=\mathrm{N}-(\mathrm{K}-\mathrm{V}(\mathrm{KNOT}) \mathrm{S}$
DO 2 II -KNOT,L
BREAK(II)=BREAK(II+1)
IF(II.EQ. () GO TO 2
$V(I I) \cdot V(I I+1)$
KEND(II)-KEMD (II-1) $+\mathrm{K}-V$ (II)
CONTIME
LeL-1
RETURY
END
SUEROUTINE STDERR (W, BCOEF,K,N,L,MSE, BB, AA, SE, LINV)
CALLS BCHIN AMD MATVEC
c
C THIS SUBROUTINE COMPUTES THE STANDPRD ERRORS OF THE E-SPLINE C COEFFICIENTS AND OUTPUTS THEM.

REAL W(K,N), BCOEF (N), MSE, $\operatorname{BB}(N, N), \operatorname{SE}(N), \operatorname{LIN}(N, N), A A(N, N)$
CAL BCHINV(W,K,N,LINV)
WRITE (20,10) L,K
10 FORMAT(//,' PROCEDLRE TERMINATES WITH L.',I3,' AND K.',I3/,

```
                                    ORIGNAL PGGE R
                                    OF POOR QUALITY
```

 * 'N COEF S.E.')
    ```
    * 'N COEF S.E.')
```

 * 'N COEF S.E.')
 DO 11 II-1,N
 DO 11 II-1,N
 DO 11 II-1,N
 DO 11 JJ-1,N
 DO 11 JJ-1,N
 DO 11 JJ-1,N
 BB(JJ,II)=W(1,II)*INN(II,JJ)
 BB(JJ,II)=W(1,II)*INN(II,JJ)
 BB(JJ,II)=W(1,II)*INN(II,JJ)
 CAL_ MATVEC(N,N,N,BE,LINN,AA)
 CAL_ MATVEC(N,N,N,BE,LINN,AA)
 CAL_ MATVEC(N,N,N,BE,LINN,AA)
 DO 13 II-1,N
 DO 13 II-1,N
 DO 13 II-1,N
 SE(II)-SCRT(AA(II, II)*TSE)
 SE(II)-SCRT(AA(II, II)*TSE)
 SE(II)-SCRT(AA(II, II)*TSE)
 WRITE(20,12) II, BCOEF(II),SE(II)
 WRITE(20,12) II, BCOEF(II),SE(II)
 WRITE(20,12) II, BCOEF(II),SE(II)
 FORMT(I3,2F16.日)
 FORMT(I3,2F16.日)
 FORMT(I3,2F16.日)
 CONTIME
 CONTIME
 CONTIME
 RETURN
 RETURN
 RETURN
 ED
 ED
 ED
 SUBROUTINE BOHINN (W, NBANDS, NROW, INV)
 SUBROUTINE BOHINN (W, NBANDS, NROW, INV)
 SUBROUTINE BOHINN (W, NBANDS, NROW, INV)
 C FINDS L-IMERSE WHDRE L IS THE LOWER TRIANGULAR MATRIX
C FINDS L-IMERSE WHDRE L IS THE LOWER TRIANGULAR MATRIX
C FINDS L-IMERSE WHDRE L IS THE LOWER TRIANGULAR MATRIX
C IN THE OHOLSSY FACTORIZATION OF THE BANDED SHMPETRIC P.D.
C IN THE OHOLSSY FACTORIZATION OF THE BANDED SHMPETRIC P.D.
C IN THE OHOLSSY FACTORIZATION OF THE BANDED SHMPETRIC P.D.
C MATRIX C AS CONSTRUCTED IN THE SUBROUTINE B C HFAC.
C MATRIX C AS CONSTRUCTED IN THE SUBROUTINE B C HFAC.
C MATRIX C AS CONSTRUCTED IN THE SUBROUTINE B C HFAC.
C SEE DE BOOR, P. 256
C SEE DE BOOR, P. 256
C SEE DE BOOR, P. 256
C
C
C
C*omacom I NPUT N
C*omacom I NPUT N
C*omacom I NPUT N
C NROW.....IS THE ORDER OF THE MATRIX C.
C NROW.....IS THE ORDER OF THE MATRIX C.
C NROW.....IS THE ORDER OF THE MATRIX C.
C NBONDS.....IS THE BPNDWIDTH OF C.
C NBONDS.....IS THE BPNDWIDTH OF C.
C NBONDS.....IS THE BPNDWIDTH OF C.
C W.... CONTAINS THE OHOESKY FACTORIZATION OF C RS OUTRUT
C W.... CONTAINS THE OHOESKY FACTORIZATION OF C RS OUTRUT
C W.... CONTAINS THE OHOESKY FACTORIZATION OF C RS OUTRUT
C FROM SUEROUTINE BCHF ACWITH ROWS 2 THROUGH NEPNDS-1
C FROM SUEROUTINE BCHF ACWITH ROWS 2 THROUGH NEPNDS-1
C FROM SUEROUTINE BCHF ACWITH ROWS 2 THROUGH NEPNDS-1
C COMTAINING THE NON-ZERO AND NON-UNIT DIRGONHL ENTRIES
C COMTAINING THE NON-ZERO AND NON-UNIT DIRGONHL ENTRIES
C COMTAINING THE NON-ZERO AND NON-UNIT DIRGONHL ENTRIES
C OF L.
C OF L.
C OF L.
C**atc* OUTPUT UT,
C**atc* OUTPUT UT,
C**atc* OUTPUT UT,
C INN.....THE IMNERSE OF L.
C INN.....THE IMNERSE OF L.
C INN.....THE IMNERSE OF L.
C
C
C
Cwow*****
Cwow*****
Cwow*****
C THE LINEPR SYSTBM L*L-INUERSE - IDENTITY IS SOLVED FOR
C THE LINEPR SYSTBM L*L-INUERSE - IDENTITY IS SOLVED FOR
C THE LINEPR SYSTBM L*L-INUERSE - IDENTITY IS SOLVED FOR
C L*IMURSE BY SUCCESSIVEY FINDING THE COLUMNS OF L-INNERSE
C L*IMURSE BY SUCCESSIVEY FINDING THE COLUMNS OF L-INNERSE
C L*IMURSE BY SUCCESSIVEY FINDING THE COLUMNS OF L-INNERSE
C LSING THE FORWRD SUBSTITITION ROUTINE IN B CHSLVV.
C LSING THE FORWRD SUBSTITITION ROUTINE IN B CHSLVV.
C LSING THE FORWRD SUBSTITITION ROUTINE IN B CHSLVV.
C
C
C
INTEGER NGANOS, NROW, J, MPAX,N, NBNDM1
INTEGER NGANOS, NROW, J, MPAX,N, NBNDM1
INTEGER NGANOS, NROW, J, MPAX,N, NBNDM1
REAL W(NBANDS,NROW), IMV(NROW,NROW)
REAL W(NBANDS,NROW), IMV(NROW,NROW)
REAL W(NBANDS,NROW), IMV(NROW,NROW)
IF (NROW.GT. 1) GO TO 21
IF (NROW.GT. 1) GO TO 21
IF (NROW.GT. 1) GO TO 21
INN(1,1) = 1.
INN(1,1) = 1.
INN(1,1) = 1.
RETURN
RETURN
RETURN
C STOPE THE IDENTITY MATRIX IN INN
21 DO 10 J.1,NROW
21 DO 10 J.1,NROW
21 DO 10 J.1,NROW
DO 10 I=1,NROW
DO 10 I=1,NROW
DO 10 I=1,NROW
IF (I.EQ. J) GO TO 20
IF (I.EQ. J) GO TO 20
IF (I.EQ. J) GO TO 20
INN(I,J) - 0.
INN(I,J) - 0.
INN(I,J) - 0.
GOTO 10
GOTO 10
GOTO 10
INv(I,J) - 1.
INv(I,J) - 1.
INv(I,J) - 1.
10 CONTINE
10 CONTINE
10 CONTINE
20

```
    20
```

 20
    ```
```

C

```
C
```

C
C
C
C
C NOW USE FOPWPD SUBSTITUTION FROM 8 CHSLV.

```
C NOW USE FOPWPD SUBSTITUTION FROM 8 CHSLV.
```

C NOW USE FOPWPD SUBSTITUTION FROM 8 CHSLV.

```

\section*{original pige is OF POOR QUALITY}
```

NEMDM1 - NBANDS - 1
DO 40 J.1,NROW
DO 30 NO1,NROW
JMXX = MINE (NENDM1, NROW-NY)
IF (JHAN.LT.1) GO TO 30
DO 25 I = 1, M"0x
INN(I+N,J)
CONTIMLE
CONTINLE
ED
RETURN
SUBROUTINE MATVEC(N,NM,M,X,Y,Z)
C FINDS THE NOM MATRIX OR VECTOR Z WHICH IS THE PRODUCT
C XiY WHPE X IS NODMM AND Y IS NPNM.
RESL X(N,NM), Y(NM,M), Z(N,M)
DO I I - I,N
D 2 J = 1,M
Z(I,J) : 0.
DO 3 K=1,NM
3 Z(I,J) - Z(I,J) + X(I,K)*Y(K,J)
2 CONTINE
1 CONTINUE
END

```
            PROGRCM XPLT2(INPUT, OUIRUT, TPPEG=QUIPUT, TAPE20, TAPE21)
C STEPDOWN FOR REDUCING SPLINE ORDER (FOR AL INTERVALS
C SIMU TAEOUSLY) WHILE KIEPING THE KNOTS FIXED AND RSSUMING
C K-2 continulit conditions
C
C NDMAX IS AT LEAST THE SAPPLE SIZE, NDATA.
C MAXX IS AT LEAST N. WITH MAXIMMM CONTINUITY CONSTRAINTS.
C N-L+K-1. WITH NO CONTINUITY CONSTRAINTS, N=L*K.
C KTMPAX IS AT LEAST K*N.
    PAPOMETER (NMPX-100,NDMPX-200,KTMMPX-Z800)
    REAL BCOEF (MPAX),Q(KTMMAX),DIRG(KTMMAX),T (NDMAX)
    * ,LINN(KTMMAX),DCOEF (MAX), BRT (NHAX),BLF (NHAX)
    * ,AA(NMAX),VAR(MPOX),B(NMAX),C(NMAX),ATRP(NMAX)
    * ,F (NDMAX), ERROR (NCMPX),MSH,MSE, SE (MMAX)
    * ,KMAT (NMPX,NMAX),FR(NPAX)
    * ,WMPR(NMAX),CC(NHAX),CT (NPX), CTRAST (IMPX)
        INTEGER EPRDF,HDF,V, KEND(NMAX)
        COPTON /DATA NDATA, X(NDMPX),Y(NDPAX),FTARLE
        COMTON /APPROX ERESK (MAPX),COEF (KTNMAX),L,K,V(NHAX)
        ICONT=0
C ENTER DATA
    CAL DAT1 (ICOUNT)
C GET THE MOT SEOUDNE
    CAL VLONT(BRERK,L,K,V,T,N,KDMD)
C PREI IMINAPY OUTPUT
    CALL OITNTS(EREEK,V,L,T,N,K,KDND)
OECK INPUT DATA
    IFMAG-0
    CPLL FMG(IFLAG,N)
    IF IFLAG .EQ. 1) GO TO ZS
    CALL PSEUDO
    IDND-0
    LM1 -L-1
C WE WILL TEST THAT THE K-1-ST DERIVATIVE IS IIRO IN AUL INTERVALS
C
C GET THE LEAST SQUAPES FIT, I.E., THE B-SPLINE COEFFICIDNTS.
1 CALL LSTSO1(T,N,K,O,DIMG,BCOEF)
C
                        LSTSOI CALLS BSPLVB,BCHFAC, AND BCHSLV.
```

```
C GET SSE AND MSE
    ERRDF-NDATA-N
    CAL BSPLPP(T,BCOLF,M,K,DIAG, EREAK,COEF,L)
    CALL ERRL21(F, ERROR, ERRDF,SSE,MSE)
C ERRLI CALS PPMALU HHICH COLLS INTERV.
    IF(IEN .EQ. 2) GO TO 30
    LP1-L+1
    DO 10 I-1.LP1
    10 FB(I)=FPNRLU(BREAK,COEF,L,K, BREAK(I),Q)
```



```
    CALI INORLT(0,NDATA,X,1,F,1,0., 62,,74.,158.,1.,
    * 9,9HINDY DATA,1,1HY,0,5,,4.,.75,.75)
    CAL INFOPLT(0,NWATA,X,1,Y,1,0.,G2.,74.,150.,1.,
    * 9,SHINDY DATA,1,1HY,22,5.,4.,.75,.75)
    COL INFOPLT(1, LM1, BREAK(2),1,FB(2),1,0.,62.,74.,158.,1.,
    4,9HINDY DATA,1,1HY,1,5.,4.,.75,.751
    KM1-K-1
    W-2-k-2
    KME-K-3
    IF(IEN.EO.1) GO TO B
    IF(V(2).EQ.NT2) GO TO 12
    WRITE(20,15) K,MR,S5E,MSE
```



```
    * /K THE SMOOTHEST SPLIRE OF ORDER K=',IZ,ZX,
    * 'WITH MAXIMLM CONTIMUITY C',I2,2X 5X,
    * 'HPS SSE-',F16.B, ZX, 'AND MSE:',F16.B)
    IF(K.EQ.1) GO TO 日
    WRITE (20,16) K,KMO,KOM1,KMS
    15 FORMATI;' CON ORDER K=',I2, 2X, 'WITH SUBMAXIMLM CONTINUITY C',
    * 12, XX SX,'EE REDUCED TO ORDER K:',I2, 2X,
    * 'WITH MAXIMM CONTINUTIY C'.I2,; '',
        DO 18 II•2,L
    18
        V(II)=K-2
        ONL VLNTT (EREAK,L,K,V,T,N,KEND)
        GOTO I
C TEST FOR LOWER ORDER WITH THE HÏPOTHESIS MATRIX KMAT.
    12 DO E0 JJ-I,N
    80 DCOEF(JJ)=0.
        DO2III=I,N
        DCOEF(III) - I.
        DO E1 II=I,L
                        MMT(II,III)= BCONT (T,DCOEF,N,K, BREOK(II),KEND(II),KM1)
                M=(II-1) 种++III
                CT(M)=NMAT(II,III)
        MCOEF(III) - 0.
```

```
        2 CONTINLE
        COLL SSMPZ(BCOEF,CT,O,K,L,N,AA,DIAG,YAR, SSH,MSH, HDF,B,C
        * ,ATRP,LNAR,CC, (TRAST)
            SSMPR CALLS FORSNE AND MATVEC.
        FRATIO-MSHNTSE
        IF(FRATIO.GE.FTARLE) GO TO 5
        WRITE(20,3)
        3 FOPMAT(//' YES.')
        WRITE(20,31) K,KMS,FTABLE,FRATIO, S5E, MSE
    31 FOPMAT('FOR KO',I2,2X,'PND C',I2, 2x/5X,
        * 'FTABLE value =',F16.8,5x,'OBSERVED F=',F16.e
        * SX,'SSE=',F16.G,ZX,'MSE'',F16.8)
        K-k-1
        CRLI ULNTT(BREAK,L,K,V,T,N,KIND)
        GO TO 1
        5 IDMD-1
    WRITE(20,6)
    6 FORMAT(//' MO.')
        WRITE (20, 31) K,NTS,FTABLE,FRATIO,SSE,MSE
    WRITE(20,32)
```



```
    DO 71 II-2,L
    71 V(II)=K-1
        CRLL V_ZNT(BRSAK,L,K,V,T,N,KPMD)
        GO TO 1
C PRINT RESULTING COEFFICIENTS AND STANDAPD ERRORS.
    8 HRITE (20,13) L,K,MM
    13 FORMAT(///' PROCEDUFE TERMINATES WITH L=',12,'; K=',I2,'; C',I2
        * //' N COEF ST. ERP.',
            CALL STDERR(Q,BCOET,K,N,L,MSE,DIAG,AA, SE,LINN)
C
                        STDEPR CALLS BOHINN AND MATVEC.
        IF(K .EG. 1) GO TO 25
        IDND-2
        K=K-1
        DO 40 II=2.L
    4 0
            V(II) =K-1
        CALL YZNT(BRENK,L,K,V,T,N,KEND)
        GO TO 1
    30 WRITE (20,29) KM1,KMG,SSE,MSE
    29 FORMRT(/ノ'********************* FURTHER ITFOPMATION**********)
        * 5X,'FOR K=',I2, 2X,'AND C',I2, 2X
        * 5x,'SSE',F16,8,ZX,'MSE=',F16.8)
        CALL CALPLT(0.,0.,999)
    2S STOP
        EN
```

```
    SUBROUTINE SSHMPZ(BCOE,CT,W, NBONDS,NCON,N,A
    *
    INTEGER hDF, NCON,N, NEPNDS
    REA SSH
    RELL PVAF(NCON,N),A(NCON,N),W(NBENDS,N),CT(1)
    REAL VAP(NCON,NCON). B(N), E(NCON), ATRP(N,NCON)
    REPL MSH, WNFP(NCON,NCON), CTPAST(NCON,N), BCOEF (N),CC(N)
    DO 1 I-I', NCON
    DO 2 JJ=1,M
        M-JJ+(I-1)*N
        CC(JJ)-CT(M)
                CTRAST(I, JJ)=CC(JJ)
        CALL FORSUB(W,CC, NBANDS,N)
        \infty 3 J=1,N
            A(I,J)=CC(J)
        COMTIME
    DO 4 II-1,NCON
        DO 4 JJ=1,N
        PVFR(II,JJ)=W(I,JJ)*@(II,JJ)
    DO 5 I.1,N
        DO 5 J.1, NCON
        ATRP(I, J)=A(J,I )
    COLL MATVEC(NCON, N, MCON, PYAR, ATRP, VAR)
    DO }6\mathrm{ I=1,NCOM
                MM-NCOK+I+1
        DO 6 J=1,MM
        WNAR(I,J)=VFR(I I J-I,J)
    CAL BCFFAC (WWAR,NCON,NCON,DIAG)
    CALL MATVEC (NCON,N, 1, CTRAST, BCOEF,B)
    CNLL FORSUB(WMAR, B,NCON, NCON)
    DO E J=1,NCOM
    C(J):WVAR}(1,J)*B(J
    COLL MATVEC(1,NCON, 1, B,C,S5H)
    MSH-SSH-NCON
    HDF-ACON
    RETLRY
END
```

| 1 Report No. NASA CR-166034 | 2. Government Accession No. | 3. Recipient's Catalog No. |
| :---: | :---: | :---: |
| 4. Title and Subtite
 CURVE FITTING AND MODELING WITh SPLINES USING STATISTICAL VARIABLE SELECTIOA TECHNIQUES | | 5. Repar Date November 1982 |
| | | 6. Performing Organization Code |
| 7 Author(s)
 Patricia L. Smith | | 8. Performing Organization Report No. |
| | | 10 Work Unit No |
| ```9. Performing Organization Name and Address Old Dominion University Research Foundation P.0. Box 6369 Norfolk, Virginia 23508``` | | |
| | | 11 Contract or Grant No NAG1-223 |
| 12 Sponsoring Agency Name and Address
 National Aeronautics and Space Administration Washington, DC 20546 | | 13. Type of Repon ana Period Covered Contractor Report |
| | | 14. Sponsoring Agency Code |
| 15. Supplementary Notes
 Langlev Technical Monitor: James R. Schiess | | |
| 16 Abstract.
 This report demonstrates the successful application of statistical variable selection techniques to fit splines. Major emphasis is given to knot selection, but order determination is also discussed. Two FORTRAN backward elimination programs, using the $\mathrm{B}-\mathrm{spline}$ basis, were developed. The program for knot elimination is compared in detail with two other spline-fitting methods and several statistical software packages. An example is also given for the two-variable case using a tensor product basis, with a theoretical discussion of the difficulties of their use. | | |

[^0]
[^0]: *For sale by the National Technical information Service Springtie:d Virginia 22161

