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Abstract. For eachk > 1 and corresponding hexagonal numbét) = 3kk + 1) + 1,

we introducam(k) = max{(k — 1)!/2, 1} packings oh(k) equal disks inside a circle which
we call thecurved hexagongbackings. The curved hexagonal packing of 7 disks=(1,

m(1) = 1) is well known and one of the 19 disks £ 2, m(2) = 1) has been previously
conjectured to be optimal. New curved hexagonal packings of 37, 61, and 91ldisk3, (
4,and 5m(3) = 1,m(4) = 3, andm(5) = 12) were the densest we obtained on a computer
using a so-called “billiards” simulation algorithm. A curved hexagonal packing pattern
is invariant under a 60rotation. Fork — oo, the density (covering fraction) of curved
hexagonal packings tends #/12. The limit is smaller than the density of the known
optimum disk packing in the infinite plane. We found disk configurations that are denser
than curved hexagonal packings for 127, 169, and 217 disks§, 7, and 8).

In addition to new packings fdr(k) disks, we present the new packings we found for
h(k) + 1 andh(k) — 1 disks fork up to 5, i.e., for 36, 38, 60, 62, 90, and 92 disks. The
additional packings show the “tightness” of the curved hexagonal pattekn<ds: deleting
a disk does not change the optimum packing and its quality significantly, but adding a disk
causes a substantial rearrangement in the optimum packing and substantially decreases the
quality.

1. Introduction

Patterns of dense geometrical packings are sensitive to the geometry of the enclosing
region of space. In particular, dense packings of equal nonoverlapping disks in a circle
are different from those in a regular hexagon, as one might expect (see, e.g., [1], [4], or
[11]). In this paper, for eack > 1 and the corresponding hexagonal numibgs) =

3k(k + 1) + 1, we present a pattern of packingshgk) equal disks in a circle which

can be viewed as a “curved” analogue of the densest packihgptlisks in a regular
hexagon (see Fig. 1.1). For a particltathere exists a set afi(k) = max{(k — 1)!/2, 1}
differentcurved hexagonal packingd the same quality. A curved hexagonal packing
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91 disks 91 disks
density = 0.88434871149353 density = 0.81499829406214
D/d = 11.154700538379 D/d = 10.566772233506

Fig. 1.1. Left. The well-known best packing d¢f(5) = 91 disks in a regular hexagon. Right. One of the
twelve best (that we found) packingshu®) = 91 disks in a circle. In both diagrams, the density shown is the
ratio of the area covered by disks to the area of the containeDaamtld are the diameters of the container
and of the disks, respectively. (The different shading of the disks is auxiliary; it is not a part of the pattern.)

pattern is invariant under a 60@otation. The density (covering fraction) of a curved
hexagonal packing tends t?/12 ask — oo. Because this limit is smaller than the
density of the best (hexagonal) packing of equal disks on an infinite plane, the curved
hexagonal packing di(k) disks cannot be optimal for sufficiently large

Itis remarkable, though, that for several initial value& tfiere seems to be no better
packing than the curved hexagonal ones. Indeed, for 7 disks (, m(1) = 1) the
curved hexagonal packing is well known to be optimal and the one for 19 disks2(

m(2) = 1) has been previously conjectured as such [7]. For 37, 61, and 91 Kisk8(
4,and 5m(3) = 1,m(4) = 3, andm(5) = 12), the curved hexagonal packings were the
densest we obtained by computer experiments using the so-called “billiards” simulation
algorithm.

The “billiards” simulation algorithm [8], [9] has so far proved to be a reliable method
for generating optimal packings of disks in an equilateral triangle [5]. Our experiments
with this algorithm for packings in a circle either confirmed or improved the best previ-
ously reported packings far < 25. We are unaware of any published conjectures for
packingn > 25 disks in a circle, but the “billiards” algorithm kept producing packings
for manyn > 25, specifically, fom = h(3) = 37,n = h(4) = 61, andn = h(5) = 91.

(A detailed account of these experiments merged with the experiments of Nurmela and
Ostergird will be reported in a forthcoming paper [6].) The latter three sets of packings
happened to have the curved hexagonal pattern and they were the best found for their
value ofn. Asforn = h(6) = 127,n = h(7) = 169, anch = h(8) = 217, the algorithm

found packings which areetterthan the corresponding curved hexagonal packings.
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Forthevaluek < 5, forwhich the densest packingdak) disksin a circle apparently
have the curved hexagonal patterns, these packings look “tight.” To test our intuition of
their “tightness” we compared these packings with packings obtainddpr— 1 and
h(k) + 1 disks. Thus, we generated dense packings for 36, 38, 60, 62, 90, and 92 disks
and verified that deleting a disk does not change the optimum packing and its quality
significantly, butadding a disk causes a substantial rearrangement in the optimum packing
and substantially decreases the quality. This tightness may be considered an analogue of
the similar tightness property for the infinite classes of packings in an equilateral triangle
as noted in [5]. Specifically, the variations in the packing pattern and quality when one
disk is added or subtracted are similar to those observed for packikgs-6f1)/2 disks
in the triangles.

2. Packings of 7, 19, 37, and 61 Disks in a Circle

The four best packings are presented in Fig. 2.1. The packing of 7 disks is well known
and is easily seen to be optimalnd that of 19 disks is conjectured as such in [7]. The
packings shown of 37 and 61 disks have not been reported before; they are the best we
found for these numbers of disks. The density 7/9 of the 7-disk packing is presented in
decimal form in conformance with the other three densities; an alternative finite form of
the parameters for all the packings in Fig. 2.1 exists and is discussed in Section 3.

3. The Curved Hexagonal Pattern

The pattern can be explained by comparing it with the corresponding hexagonal pattern.
Figure 1.1 depicts the two patterns side-by-sideni@) = 91 disks. Each is composed

of six sections which we tried to emphasize by shading more heavily the disks on the
boundaries between them. In the true hexagonal packing, the sections are triangular, and
the boundaries are six straight “paths” that lead from the central disk to the six extreme
disks. In the curved hexagonal packing, the triangular sections are “curved” and so are
the paths.

To define the entire structure of the curved hexagonal packing, it suffices to define the
positions of disks on one path. Let the central disk be labeled 0 and the following disks
on the path be successively labele@1 .., k. Considek straight segments connecting
the centers of the adjacent labeled disks: 0to 1, 1t0.2(k — 1) to k. Given a direction
of rotation (it is clockwise in Fig. 1.1), each following segment is rotated at the same
angle, let us call itr, in this direction with respect to the previous segment. Consider
as a parameter. When= 0 we have the original hexagonal packing at the left. If we
gradually increase the, “humps” grow on the six sides of the hexagon. Wheeaches

Lndeed, if we partition the circle (of radiug, which contains the centers of the disks, into six equal
sectors, then one sector must contain at least two disk centers. The distance between the two centers is at most
r, and the maximum is achieved when either one disk is centered exactly at the enclosing circle center or when
two disks are centered at the peripheral corners of the sector. If needed, we rotate the partition to exclude the
latter possibility. Then the central disk position defines the rest of the packing pattern.
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7 disks 19 disks
density = 0.77777777777778 density = 0.80319214461341
D/d = 3.00000000000000 D/d = 4.8637033051563

37 disks 61 disks
density = 0.80996513779820 density = 0.81313735972642
D/d = 6.7587704831436 D/d = 8.6612975755404

Fig. 2.1. Top. The well-known best packing bf1) = 7 disks and the previously conjectured best packing
of h(2) = 19 disks. Bottom. The best (that we found) packind@) = 37 disks and the best (one of the
three that we found) packing bdf4) = 61 disks.

the valuexy = 7/3kK, all the disks of the laskth, layer are at the same distance from
the central disk.

Following the path of labeled disks as defined above, the distanicadisk diameters
(d) from the center of disk O to the center of diskis given by

P=|1+€%+e? ... 4kl (1)
Sinceay = /3K, this simplifies to

1

P = Ssin 0 @
It follows that the ratioD /d of the enclosing circle diameter to the disk diameter for the
curved hexagonal packing is

1

g =1t sin(rr/6k) 3

| O



Curved Hexagonal Packings of Equal Disks in a Circle 183

The packing density, i.e., the fraction of the enclosing circle area which is covered by
disks, can then be found as

density= h(k)(d/D). 4

The density tends to the limit?/12 = 0.822467033. . ask — oo.

The limit density of the curved hexagonal packing is exactly the squar¢§'3 =
0.906899682. ., the density of the optimum hexagonal packing of the infinite plane
(see [2], [3], [5], or [10]). The fact that the latter density is larger than the former implies
that the curved hexagonal pattern is nonoptimal for ldeg&his is so, because as
increases, the density of the hexagonal configurationsohgruent disks that fit inside
a circle, arbitrarily closely approximates/2+/3 (see [2]). Indeed, we already found
better packings fok = 6, 7, and 8 which we discuss in Section 5.

A curved hexagonal packing bfk) disks can be constructed for aky 1. Figure 3.1
depicts aninstance far= 13. We believe there are atotalratk) = max{(k — 1)!/2, 1}
noncongruent equally good curved hexagonal patterndofdisks. A curved hexagonal
packing pattern is invariant under a’6@tation. A method to generate different curved
hexagonal packings of kelayered pattern, that is, fdr(k) disks, is as follows. Take
the pattern described above—Ilet us call ibasic pattern for brevity—and choose a
subset among layers 2, ..., k — 1. Flip the sense of rotation of the chosen layers (or
of the corresponding segments on the labeled path). The flip is equivalent to making
the mirror reflection of these layers. The flipped layers will fit in their place because of
the mirror symmetry of segments of the layers enclosed between consecutive paths in
the basic pattern. Note that layers 1 dndre not subject to the flip, because the disks
are positioned on them invariantly for all curved hexagonal packings for the given
The resulting ®-2 combinations yield 23 different packings ignoring the reflection

547 disks (13 layers)

density = 0.81954773488724 D/d = 25.834885197829

Fig. 3.1. Left. A curved hexagonal packing bf13) = 547 disks in a circle. In this packing the sense of
rotation is flipped for layers 6, 7, 8, and 9. Right. The bond diagram for the packing at the left. The diagram
contains a straight segment between centers of any pair of disks that are in contact.



184 B. D. Lubachevsky and R. L. Graham

symmetry. We call these modifications “regular” curved hexagonal packings; Fig. 3.1
displays one of them.

We separate regular packings into a distinctive class because their existence follows
from the existence of the basic regular packing and is easy to understand. Besides, the
regular packings are the most frequent ones among the optimal packings spontaneously
generated by our “billiards” procedure (see Section 4). However, the regular packings do
not exhaust all the variants sinck® < m(k) for k > 4. We believe that the packings
in the full set can be identified by different permutations in the order of summands
g e ek-Diw in the expression (1) foP, or simply by permutations in the
sequence

1,2,...,k—1 )

For each permuted sequence, a patk-pil disks can be constructed and this path, when
completed with layers, happens to form a curved hexagonal packing which is equal in
quality to the basic one. Permutation. . ., ix_1 of sequence (5) produces the mirror
reflection to the pattern produced by permutationis, ..., K —ix_1.

The method described above fills the pattern layer-by-layer beginning from the central
disk out. An alternative methddills the layers in the opposite direction. The outermost
layer contains K disks densely placed at the periphery. (Examining the outermost layer
is an alternative way to infer (2).) Once laylers in place, we choose a spot to attach
the first disk of layek — 1 so that the disk contacts two disks of lakeThere are B
different attachment spots. We attach second, third,6(k — 1)th disk, say, clockwise,
so that each next disk contacts the previous disk and at least one disk okladyen
result exactly 6 disks of layde — 1, namely, disk 1, disk, disk & — 1, disk & — 2,
disk 4 — 3, and disk & — 4 will each contact two disks of lay&t while the remaining
6(k — 2) disks will each contact only one disk of laylerAll two-layer configurations
thus obtained are congruent to each other by rotation. However, beginning with layer
k—2 (whenk > 3), as we fill the pattern inward, the choice of the spot for the placement
of the “first” disk (the one that contacts two disks of the previous layer) distinguishes
the pattern, modulo a 6Qotation. Thus, we havk — 1 different ways to place the
first disk in layerk — 2, thenk — 2 different ways to place the first disk in layler- 3,
and so on. This process yiels— 1)! different clockwise placements. Congruence by
the reflection symmetry causes us to half the total: we fikve 1)! /2 noncongruent
placements (fok > 3).

One can enumerate curved hexagonal packings, either by the sequence of rotation
angles on a path beginning from the central disk outward, or by the sequence of relative
positions of “first” disks beginning from the external layer inward. For either method a
simple computer program can be written that synthesizes a curved hexagonal packing
giventhe sequence as an input. In what follows, we adopt the former enumeration because
the program we wrote uses that method. Note that we do not offer here a formal proof
that either construction method described above actually works, i.e., pra@tueds! /2
different packings (fok > 3), as claimed, but we strongly believe it does.

The basic packing of 61 disks depicted in Fig. 2.1 corresponds to the original sequence
1, 2, 3 or its reflection 3, 2, 1. The packings of 61 disks that correspond to permuted

2 suggested by the anonymous referee.
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61 disks; permutations 1, 3,2 and 3, 1, 2 61 disks; permulations 2, 3,1and 2, 1, 3

Fig. 3.2. Two out of the three existing packings of 61 disks in a circle; the third packing which corresponds
to permutations 1, 2, 3 and 3, 2, 1 is given in Fig. 2.1. The role of permutations is explained in the text. The
packing at the left is regular which is demonstrated by the path of disks labeled 0, 1, 2, 3, and 4, each of which
has a triangular hole attached. The packing at the right is irregular.

sequences 1, 3,2 and 2, 3, 1 ortheirreflections 3, 1, 2 and 2, 1, 3, respectively, are shown
in Fig. 3.2. A characteristic feature of a regular packing is the existence of a path, any
disk on which has a triangular hole attached. Onltbied diagramwhich has a straight
segment between the centers of any pair of disks that are in contact (see an example in
Fig. 3.1), this path is seen as a (broken) lin&kafegments that leads from the center
to the periphery, each segment on which is a side of a triangle. We identified such a
path in the packing at the left in Fig. 3.2 by labeling its disk components. Hence this
packing is regular. The one at the rightis irregular, because no required path can be found
for it. The basic packing of 61 disks shown in Fig. 2.1 is also regular. This amounts to
three different packings df(4) = 61 disks, two packings of which are regular. Indeed,
m(4) = 3 and 2= 2*~3. Our belief is that fon = 61 there is no better packing than the
three presented. We also believe that there ifonath packing equal in quality to the
three presented but distinct from any of them.

Similarly, there aren(5) = 12 curved hexagonal packingsiofs) = 91 disks, 4=
25-3 of which are regular. One regular packing is represented in Fig. 1.1; it corresponds
to the original sequence 1, 2, 3, 4 or its reflection 4, 3, 2, 1. The three other regular
packings correspond to permuted sequences (1, 2, 4, 3), (1, 4, 2, 3), and (1, 4, 3, 2) or
their reflections (resp. (4, 3, 1, 2), (4, 1, 3, 2), and (4, 1, 2, 3)). While the existence of the
additional regular packings is obvious and those packings are not shown, for a reader
who might be not fully convinced in the formal validity of the construction procedures
described above we show eight irregular packings in Figs. 3.3 and 3.4. Each packing is
accompanied by its two generating sequences and its bond diagram. The bond diagrams
clearly distinguish the packings and also show that the packings are irregular. Again, we
believe there is no packing better than those 12 and there is no thirteenth packing equal
in quality to those 12 but distinct from any one of them.

For k > 5 there are packings df(k) disks that are better than tma(k) curved
hexagonal ones. It is therefore easy to produce, for &ycéhfinitely many different
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Fig. 3.3. First four irregular densest (that we found) packings of 91 disks. Each packing shown on the left is
accompanied by its two generating sequences in the middle and the bond diagram on the right.

configurations of nonoverlapping disks that are equal in quality to curved hexagonal
ones. We believe, however, that if a configuratioh@) congruent disks of the same
quality as a curved hexagonal packing of the same disks has a general structure of a
curved hexagonal packing described below, then it must be one ahtkecurved
hexagonal packings. The general structure consistdayfers that surround the central

disk; layeri consists of 6disks placed in a circular fashion, foe=1, 2, . .., k, a disk
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Fig. 3.4. Second four irregular densest (that we found) packings of 91 disks. Each packing shown on the left
is accompanied by its two generating sequences in the middle and the bond diagram on the right.

of layeri can only contact two disks in the same layer (the previous and the next disk
along the circle) and the disks of layers- 1 andi + 1 (with the central disk being
counted as layer 0 and the boundary as l&kyerl).

Note that we distinguish betweencanfigurationand a (igid) packing We call
a configurationof nonoverlapping disks inside a circlerigid packing (or simply a
packing if there exists a nonempty subset of disks in the configuration, such that the
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only continuous motion of some or all of disks in the subset is the rotation of this subset
as a whole with the center of rotation being at the center of the enclosing circle. Curved
hexagonal patterns are rigid packings because each initriejer of disks has triangles

(as seen on bond diagrams) that connect it to the corresponding outer faylerand
because the outermdsh layer is obviously rigid.

4. How the “Billiards” Algorithm Produces Packings

A detailed description of the philosophy, implementation, and applications of this event-
driven algorithm can be found in [8] and [9]. Essentially, the algorithm simulates a
system ofn perfectly elastic disks. In the absence of gravitation and friction, the disks
move along straight lines, colliding with each other and the region walls according to
the standard laws of mechanics, all the time maintaining a condition of no overlap. To
form a packing, the disks are uniformly allowed to increase gradually in size, until no
significant growth can occur. Figure 4.1 displays four successive snapshots in an
experiment with 61 disks. We took the snapshots beginning with the time when a
local order begins to form and until the time when the set of neighbors of each disk is
stabilized.

The latest snapshot shown in Fig. 4.1, one after 441704 collisions, looks dense and,
within the drawing resolution, itisidentical (up to a mirror-reflection) to the final snapshot
(see Fig. 2.1). However, numerically there are gaps of the order &ftbaL0~2 of the
disk diameter in disk—disk and disk—wall pairs that appear to be in contact with each
other in Fig. 4.1. Accordingly, only the first three decimal digitdofd, corresponding
to the latest shown in Fig. 4.1, snapshot are identical with the cdirattTo close these
gaps and to achieve full convergenceldfd and of the density, it usually takes a 10 to
20 million further collisions. We considéd /d and the density to have converged when
their values do not change with full double precision for several million collisions.

Of course, as is typical in numerical iterative convergent procedures, if the computa-
tions were performed with infinite precision, the convergence would be never achieved
and the ever-diminishing gaps would always be there. The “experimental” converged
values agree with the “theoretical” ones computed by formulas (3) and (4) to 14 or more
significant digits. Moreover, when we initialize the disk positions differently, then the
final parameters achieved are either quite distinct and significantly smaller than those
achieved in the run presented in Fig. 4.1—and then the corresponding pattern is differ-
ent from a curved hexagonal packing—or they are identical to 14 or more significant
digits—and then the corresponding final pattern is one of the six known curved hexag-
onal ones. This makes us suspect that we have found the best possible packing and that
its parameter® /d and density are correct to 14 significant digits.

This algorithm does not equally favor the existing curved hexagonal packings. For
the chosen algorithm parameter settings, including the slow disk expansion (the ratio of
the disk expansion speed to the average linear motion speed is 0.001), the overwhelming
majority of produced curved hexagonal packings were of the regular patterns. For ex-
ample, out of our 1002 runs with= h(5) = 91 disks, curved hexagonal packings were
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at 53764 collisions at 441704 collisions

Fig. 4.1. Successive shapshots of the simulating expansion of 61 disks inside a circle. The progress is
monitored by counting collisions. Disks are labeled 1 to 61 arbitrarily but the same disk carries the same label
in all four snapshots. The last pattern is a mirror-reflection of the packing of 61 disks in Fig. 2.1.

obtained 90 times (9%). Among those, the four existing regular patterns (33%) were seen
in 81 runs (90%), with about the same frequency each. Only three out of the existing
eightirregular patterns were seen in the remaining nine runs. We gave up waiting for the
other five irregular patterns, shown in Figs. 3.3 and 3.4, to be generated spontaneously,
i.e., from random initial configurations. Instead, we constructed those from their path
sequences, using the method discussed in Section 3.
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5. Packings of 127, 169, and 217 Disks

We ran the “billiards” algorithm fon = h(6) = 127,n = h(7) = 169, anch = h(8) =
217 disks. For thesethe algorithm produced better packings than the curved hexagonal
ones. The patterns of those packings can all be described as a (possibly disturbed)
hexagonal disk assembly in the middle, surrounded with irregularly placed disks at the
circular border. For larger this common pattern becomes more evident. As an example,
we show in Fig. 5.1 the best packing we obtained for 127 disks.

We believe the packings achieved fo= 127, 169, and 217 are stable. But we do
not think they are the best, because of a large number of local minima fornhEse
example, the packing shown in Fig. 5.1 was the best among 111 independent tries. Each
try resulted in a packing which is distinct from the others, and had distinct parameters

127 disks (244 bonds; 9 rattlers)
density = 0.81755666415904
D/d= 12.463583540213

Fig. 5.1. A packing ofh(6) = 127 disks in a circle that is better than the corresponding curved hexagonal
packings. Each disk is provided with its unique identification label to facilitate the reference. Little black dots
are “bonds”; a bond indicates that the corresponding distance is less th&haf@he disk diameter. Where

a pair disk—disk or disk—wall are apparently in contact but no bond is shown, e.g., between disks 3 and 108,
the computed distance is at least 2 ®f the disk diameter. The shaded disks cannot move given the positions

of their neighbors, the nonshaded are “rattlers” that are free to move within their confines. It might seem that
there are sufficiently large cavities near disks 27, 104, 28, and 88, that are in contact with the boundary, so that
if the disks are pushed into the cavities the packing will “unjam.” This does not happen. For example, pushing
disk 27 into the position of contact with 97 and 49 results in the overlap with 24.
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Table 5.1. Curved hexagonal packings versus the experimental onés=fo8, 7, and 8.

k 6 7 8

n 127 169 217

Curved hexagonal density 0.81622935362082 0.81710701192903 0.81776562948873
Curved hexagondD/d 12.473713245670 14.381489999655 16.289788298679
Experimental density 0.81755666415904 0.82672262170717 0.83499393075147
ExperimentalD /d 12.463583540213 14.297609837687 16.120860041887
Better packings 14 out of 111 all 70 all 62

D/d and density. We found 14 out of 111 packings were better than the curved hexagonal.

These runs foh(k) disks,k > 5, were in contrast to the runs for= h(5) = 91 and
smallem. For example, for 91 disks, the best (curved hexagonal) packings were obtained
90 times out of 1002 with parametddy'd and density, agreeing to 15 significant places.
The results of packings fdr(k), k > 5, disks are summarized in Table 5.1.

6. Tightness of Curved Hexagonal Packings

Figures 6.1 and 6.2 depict the best found packings efh(k) — 1 andh(k) + 1 disks
fork = 2, 3, 4, and 5, that is, fan = 18, 20, 36, 38, 60, 62, 90, and 8Zhe known
packings ofn = 6 and 8 disks have to the same tendencies, namely:

(a) the pattern of dense packingrof= h(k) — 1 disks is obtained by removing one
disk from the pattern of dense packingk) disks (which is a curved hexagonal
packing for the considerdd< 5) and, foik > 3, by a small rearrangement of the
disks; its parameted /d is either not changed (fdc = 1 and 2) or is decreased
only slightly (fork = 3, 4, and 5); and

(b) the pattern of dense packing of= h(k) + 1 disks differs significantly from
the pattern of dense packing btk) disks and its parametd/d is increased
substantially for alk = 1, 2, 3, 4, and 5).

The changes i /d are “slight” and “substantial” only in comparison to each other.
The ratio of the decrease @/d for n = h(k) — 1 over the increase ob/d for
n = h(k) + 1 is given in Table 6.1.

7. Discussion

Our experiments reveal that for sufficiently langegood packings ofi equal disks in a
circle have a complex pattern like that in Fig. 5.1, with a large, perhaps disturbed, core of

3 The forthcoming paper [6] lists nine more distinct packings of 18 disks that are equal in quality to the
one presented in Fig. 6.1.
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18 disks (41 bonds, 1 rattler) 36 disks (66 bonds, 3 rattlers)
density = 0.76091887384428 density = 0.79088397691361
D/d = 4.8637033051564 D/d = 6.7467537934242

60 disks (115 bonds, 3 rattlers) 90 disks (172 bonds, 4 rattlers)
density = 0.80259916264035 density = 0.80921006858796
D/d = 8.6462198454579 D/d = 10.546069177954

Fig. 6.1. The best found packings of= h(k) — 1 disks fork = 2, 3, 4, and 51f = 18, 38, 60, and 90).

hexagonally packed disks and irregularly placed disks along the periphery. The fraction
of the irregular peripheral disks and the perturbation in the hexagonally packed core
usually diminish wit. It is very difficult to obtain the best packings for langgbut we

would guess their pattern to be of the same irregular type. On the other hands 25,
symmetric and regular patterns of the best packings have been previously observed that
do not obey the general description given above for largeur computer experiments
show that at least for a particular classrot= h(k) = 3k(k + 1) + 1, the transition

from the regular, here curved hexagonal, pattern to the irregular core-hexagonal pattern
occurs between = 91 andn = 127.
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20 disks (38 bonds, 1 rattler) 38 disks (70 bonds, 3 rattlers)
density = 0.76224828956498 density = 0.78402454881084
D/d = 5.12232073699150 D/d = 6.96188696522814

62 disks (120 bonds, 2 rattlers) 92 disks (172 bonds, 6 rattlers)
density = 0.79523110498328 density = 0.80586815498812
D/d = 8.82976540897204 D/d = 10.68468975902245

Fig. 6.2. The best found packings of= h(k) + 1 disks fork = 2, 3, 4, and 5rf = 20, 38, 62, and 92).

Table 6.1. The ratio of the decrease Bf/d forn = h(k) — 1
over its increase fan = h(k) + 1.

k 1 2 3 4 5

n=hk 7 19 37 61 91

Ratio 0 0 0.0592 0.0895 0.1755
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