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Figure 1: Which rendering would you prefer? (from left to right) (a) Input triangulation, (b) Gouraud shaded input triangulation, (c) geometric
component of the PN triangles (shaded according to surface normal variation) (d) curved PN triangles (shaded with independently constructed
quadratically varying normals).

Abstract

To improve the visual quality of existing triangle-based art in real-
time entertainment, such as computer games, we propose replacing
flat triangles with curved patches and higher-order normal variation.
At the hardware level, based only on the three vertices and three
vertex normals of a given flat triangle, we substitute the geometry
of a three-sided cubic Bézier patch for the triangle’s flat geometry,
and a quadratically varying normal for Gouraud shading. These
curved point-normal triangles, or PN triangles, require minimal or
no change to existing authoring tools and hardware designs while
providing a smoother, though not necessarily everywhere tangent
continuous, silhouette and more organic shapes.
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1 Introduction

In interactive 3D entertainment, software design cycles are long
and hardware product release cycles are short. As a result, new
techniques added to hardware must have a simple migration path if
content already in development is to use the technique; conversely,
the less change a new hardware feature imposes on the art pipeline
and API, the more likely it is to be used.

A majority of computer games use triangles as their fundamental
modeling primitive, and all use triangles for hardware-accelerated
rendering. This is the result of existing tool support, hardware sup-
port and the artist’s familiarity with triangles. It is increasingly
common for applications to pass normals to the hardware to take
advantage of transform-capable video cards.

In this paper, we introduce curved point-normal triangles, or
short PN triangles, as an inexpensive means of improving visual
quality by smoothing out silhouette edges and providing more sam-
ple points for vertex shading operations. Each PN triangle replaces
one original flat triangle by a curved shape that is retriangulated into
a programmable number of small (flat) subtriangles. We select this
representation for a resource-limited hardware environment: the PN
triangle is to be generated on-chip without any software assistance.
Specifically, PN triangle generation and subtriangulation are to be
inserted between the vertex-and-primitive-assembly stage and the
vertex-shading stage of the graphics pipeline (Figure 2).

The geometry of a PN triangle is defined as one cubic Bézier
patch. The patch matches the point and normal information at
the vertices of the flat triangle. Its normal is a separate linear or
quadratic Bézier interpolant of the data. No additional data beyond
the position and normal data are used. Other data attached to the flat
input triangle are forwarded to the subtriangles, mostly by linearly



Figure 2: Curved PN triangle tessellation in the graphics pipeline

interpolating the values at the vertices of the flat input triangle.

The PN triangle emerged in comparison with more sophisti-
cated surfacing methods to address requirements specific to the
resource-limited hardware environment, e.g. that no information
about neighboring triangles can be accumulated:

1. Improved visual appeal.

2. Compatibility with existing API data structures: vertex arrays
plus triangle index streams where triangles arrive in unpre-
dictable order. Minimal or no modification of existing APIs.

3. Backward compatibility of the models with hardware that
does not support PN triangles; minimal or no effort to adapt
existing models.

4. No setup step of the application, API, or hardware driver;
in particular, hardware should not have to provide intermedi-
ate storage for random access; consequently knowledge about
neighboring facets is restricted to the shared vertices and ver-
tex normals on the common edge.

5. Applicability to shapes of arbitrary topology.

6. Fast execution and simple implementation in hardware.

In particular, it is not the purpose of PN triangles to convert trian-
gulations into designer quality, everywhere smooth surfaces, but to
soften triangle creases and improve the visual appeal by generating
smoother silhouettes and better shading.

The following sections will define the API-level usage and place-
ment of the curved PN triangles in the graphics pipeline (Section 2),
give a precise derivation of the PN triangle and its properties (Sec-
tion 3), and then discuss performance and visual impact to convince
the reader that the requirements are well addressed by curved PN
triangles.

Figure 3: The coefficients or control points of a triangular Bézier
patch arranged to form a control net.

2 Basic form, API-level usage and place-
ment in the graphics pipeline

We want to leverage the existing (flat) triangle-based data structures
such as vertex arrays: a stream of point and normal coordinates fol-
lowed by sets of indices that allow picking the vertices of a triangle
from the stream. That is, for each triangle, only the ✝✟✞✡✠ coordinates
of the position and normal of the three vertices of the triangles are
available and there is a unique normal for each vertex.

An interesting aspect of the curved PN triangle that may surprise
the non graphics-immersed reader is that the normal component of
the curved PN triangle is independently specified from the geomet-
ric component of a curved PN triangle. The geometry of a curved
PN triangle defined by a cubic patch ☛ (c.f. Figure 3)
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We group the ☛ ✯ ✲❆✴ together as

vertex coefficients: ☛ ✔❂❁❂❁ ✕ ☛ ❁❂✔❂❁ ✕ ☛ ❁❂❁❂✔ ✕
tangent coefficients: ☛ ✏❆❅❇❁ ✕ ☛ ❅❈✏❉❁ ✕ ☛ ❁❋✏❆❅ ✕ ☛ ❁✳❅❈✏ ✕ ☛ ❅❇❁❋✏ ✕ ☛ ✏❉❁✳❅ ✕

center coefficient: ☛ ❅❂❅❂❅ ❏

Coefficients are also often called control points and are connected
to form a control net or control polyhedron (see Figure 3). The
normal component of a curved PN triangle is either a linear average
of the vertex normals or a quadratic function of the positional and



Figure 4: Subtriangulation (lod 0 through 5) induced by a uni-
form ✢ ✕ ✥ grid (top) and the visual effect of two light sources on an
octahedron (bottom).

normal data. The quadratic function ❑ is defined as (c.f. Figure 7)

❑✦☞✎✍ ✏▲✑✓ ✍ ✔✖✕ for ✗❀✘✛✚▲✜✣✢✤✜✦✥ ✕ ✢ ✕ ✥ ✕ ✗▼✧✩★
❑✭✪✫✢ ✕ ✥✡✬✭✘ ✮✯◆✰✡✲✳✰✵✴✷✶ ✏ ❑ ✯ ✲❆✴ ✢

✯ ✥ ✲ ✗ ✴ ✕
✘❖❑ ✏❉❁❂❁ ✗ ✏❄❃ ❑ ❁❋✏❉❁ ✢ ✏✭❃ ❑ ❁❂❁❋✏ ✥ ✏❃ ❑ ❅❂❅❇❁ ✗●✢ ❃ ❑ ❁✳❅❂❅ ✢✟✥ ❃ ❑ ❅❇❁✳❅ ✗❊✥✟❏

We call ❑ ❅❂❅❇❁ , ❑ ❁✳❅❂❅ and ❑ ❅❇❁✳❅ mid-edge coefficients. The values of❑ are normalized before they are passed on to the vertex shading
stage of the pipeline.

Section 3 describes in detail how to choose the coefficients ☛ ✯ ✲✳✴ ,
respectively ❑ ✯ ✲❆✴ so that the patches match the position and normal
at each of the three corners of the original flat triangle. The PN
triangle is a special three-sided, or “triangular Bézier” patch. Three-
sided patches were invented by de Casteljau [3]. Farin [6] gives a
thorough treatment of de Casteljau’s patch and its applications.

Given the simple, closed form of the patches it is straightforward
to evaluate and tesselate ☛ and ❑ . In particular, we can efficiently
subtriangulate both patches over the same uniform ✢ , ✥ grid by pre-
scribing just one number, the level of detail lod, defined as the
number of evaluation points on one edge minus two (c.f. Figure 4).
If lod=0 then the patch is just evaluated at the corners and this is
equivalent to sending the original flat triangle down the graphics
pipeline. An application developer enables PN triangles by a call
that specifies lod and a flag that indicates whether ❑ or the linearly
varying normal is to be evaluated (c.f. reffig:oct).

Figure 5: Input data: points P ✯ and normals ◗ ✯ .
2.1 Why choose cubically varying geometry and

quadratically varying normals?

In opting for cubic geometry and quadratic normals, we balanced
the simplicity needed for hardware realization with a modeling
range that would allow us to improve contours and shading.

Simplicity means that we do not generate and store neighborhood
information, as would be required by generalized subdivision algo-
rithms (e.g. [10, 8]) or surface splines [13]. Simplicity made us
opt for a closed-form, polynomial surface representation that is fast
to evaluate with little memory use. While it is possible to derive
smoothly joining patches without being able to look at the neighbor
(by deriving a unique normal along the common boundary for each
of the abutting patches) the corresponding surface representations
are expensive: Nielson’s adaptation of the Coon’s patch [11] for
example (or [7], [1]) yields surface pieces of high rational degree
and with (removable) singularities at the vertices. The exact surface
normals are a challenge to compute. Polynomial tangent continu-
ous constructions require several pieces per triangle, e.g. a Clough-
Tocher-like split [2], [16],[15] since the tangents of one edge must
not take information from the neighboring edge into account. (Both
the original Powell-Sabin [14] and Clough-Tocher constructions do
not apply in the setting of free-form surfaces.) Since tangent conti-
nuity does not imply overall better visual impression (smooth inter-
polating schemes often generate extraneous creases, see Figure 12),
we settled for a least cost surface with one polynomial piece per tri-
angle. Its geometric shape is not necessarily normal-continuous,
but we improve the shading monotonicity by prescribing a sepa-
rate, continuous normal. In [17] a more complex construction with
quadratic pieces is used.

The modeling range of our surface representation should, for
example, capture inflections implied by the triangle positional and
normal data. This requires at least cubic geometry (quadratics do
not have strict inflections) and quadratic normals. The choice of the
center coefficient ☛ ❅❂❅❂❅ , in particular, allows us to bulge the PN trian-
gle. There is no additional data to suggest the use of higher degree
patches and so we settled on the form of ☛ and ❑ given above. Of
course there are many possible choices for the coefficients. The par-
ticular choice described in the next section has the merit of keeping
the curved patch provably close to the flat triangle while interpolat-
ing its corner position and normals.

3 PN triangles

This section specifies and discusses the properties of the choice of
PN triangle geometry and normals respectively. The geometry com-



Figure 6: Construction of a tangent coefficient: project ✪❇❘❙P ❅ ❃P ✏ ✬❂❚ ✸ into the tangent plane at P ❅ .
ponent will influence, in particular, the object silhouette and the
normal component influences the lighting calculation (vertex shad-
ing). The algorithm assumes an input in the form of vertex arrays,
i.e. there is a unique normal for each vertex; however, there are sit-
uations when two triangulations are to be connected across sharp
edges. The last subsection discusses this case.

3.1 Geometry coefficients of the PN triangle

We are given the positions P ❅ ✕ P ✏ ✕ P ✔❱❯❳❲ ✔ and normals◗ ❅ ✕ ◗ ✏ ✕ ◗ ✔ ❯❨❲ ✔ of the triangle corners as shown in Figure 5.
Our choice of coefficients (control points) ☛ ✯ ✲✳✴ is as follows.

0 Spread the ☛ ✯ ✲✳✴ out uniformly over the flat triangle, i.e. place☛ ✯ ✲✳✴ in the intermediate position ✪ ✻ P ❅ ❃ ✼ P ✏ ❃ ✾ P ✔ ✬❂❚ ✸ .
1 Leave the vertex coefficients in place so they match the corner

positions.

2 For each corner, project the two tangent coefficients closest
to the corner into the tangent plane defined by the normal at
the corner. Here projection means: find the closest point on
the plane to the point. This is illustrated by Figure 6. Recall
that the projection of a point ❩ onto a plane with normal ◗
attached to a point P is ❩❭❬✟✘❀❩❪✜❊✗❫◗ where ✗✙✘❴✪❵❩❛✜✌P❭✬✷❜❝◗
and ❜ denotes a the dot product.

3 Move the center coefficient from its intermediate position ❞
to the average of all six tangent points and continue its motion
in the same direction for ✚❡❚✖❘ the distance already traveled.

In formulas for implementation, coefficients or control points of the
curved PN triangle are defined as follows:

☛ ✔❂❁❂❁ ✘✙P ❅ ✕☛ ❁❂✔❂❁ ✘✙P ✏ ✕☛ ❁❂❁❂✔ ✘✙P ✔ ✕✗ ✯ ✲ ✘❢✪❵P ✲ ✜❣P ✯ ✬❤❜✐◗ ✯ ❯❥❲ here ‘ ❜ ’ is the scalar product
✕

☛ ✏❆❅❇❁ ✘❢✪❇❘❙P ❅ ❃ P ✏ ✜✦✗ ❅❈✏ ◗ ❅ ✬❂❚ ✸ ✕☛ ❅❈✏❉❁ ✘❢✪❇❘❙P ✏ ❃ P ❅ ✜✦✗ ✏❆❅ ◗ ✏ ✬❂❚ ✸ ✕☛ ❁❋✏❆❅ ✘❢✪❇❘❙P ✏ ❃ P ✔ ✜✦✗ ✏❉✔ ◗ ✏ ✬❂❚ ✸ ✕☛ ❁✳❅❈✏ ✘❢✪❇❘❙P ✔ ❃ P ✏ ✜✦✗ ✔❋✏ ◗ ✔ ✬❂❚ ✸ ✕

Figure 7: Coefficients of the normal component of a curved PN
triangle.

☛ ❅❇❁❋✏ ✘❴✪❇❘✖P ✔ ❃ P ❅ ✜❦✗ ✔✳❅ ◗ ✔ ✬❂❚ ✸ ✕☛ ✏❉❁✳❅ ✘❴✪❇❘✖P ❅ ❃ P ✔ ✜❦✗ ❅❇✔ ◗ ❅ ✬❂❚ ✸ ✕❧ ✘❴✪✫☛ ✏❆❅❇❁ ❃ ☛ ❅❈✏❉❁ ❃ ☛ ❁❋✏❆❅ ❃ ☛ ❁✳❅❈✏ ❃ ☛ ❅❇❁❋✏ ❃ ☛ ✏❉❁✳❅ ✬❂❚ ❍❞▼✘❴✪❵P ❅ ❃ P ✏ ❃ P ✔ ✬❂❚ ✸ ✕☛ ❅❂❅❂❅ ✘ ❧ ❃ ✪ ❧ ✜❣❞♠✬❂❚✖❘♥❏
3.2 Properties of the PN triangle geometry

While smoothing out contours, the curved PN triangle should not
deviate too much from the original triangle to preserve the shape
and avoid interference with other curved triangles. Evidently, the
final geometry interpolates the vertices of the original flat triangles.
Let ♦ be the length of the longest triangle edge. The lemma be-
low shows that each cubic boundary curve stays close to its edge,
because its Bézier coefficients stay within a radius of ♦♣❚ ❍ of the
edge. Therefore

❧
is within a distance ♦❄❚ ❍ from the flat triangle

and, since ❞ lies on the triangle, ☛ ❅❂❅❂❅ ’s distance to the triangle is
at most ♦♣❚❡q . An improved estimate, since the coefficients are only
approximate, yields ♦♣❚ ❍ the for the center and ♦♣❚❙r for the bound-
ary.

Lemma 3.1 The coefficient ☛ ✏❆❅❇❁ lies on a circle of radius s✳P ❅ ✜P ✏ s✳❚ ❍ about P ❅ ❃ ❅t ✪❵P ✏ ✜✣P ❅ ✬ .
Proof [Thales of Milet, 500 B.C.] The locus of all right triangle
corners above a line of length ♦❄❚ ✸ is a semicircle of radius ♦❄❚ ❍ .✉✫✈

Symmetry suggests a formula of the type ☛ ❅❂❅❂❅ ✘❴✪❉✚✽✜❭✇✭✬ ❧ ❃ ✇①❞
for the central coefficient. The specific choice ✇✛✘②✜③✚✐❚✄❘ which
results in ☛ ❅❂❅❂❅ ✘❴✪❉✚✿✜♠✇✭✬ ❧ ❃ ✇✭❞④✘ ✸ ❧ ❚✄❘⑤✜⑥❞♠❘✌✘ ❧ ❃ ✪ ❧ ✜✤❞✌✬❂❚✖❘
reproduces quadratic polynomials exactly as shown by Farin[5]. In
other words, if the other nine coefficients were already chosen to
represent a quadratic polynomial patch, then ✇❣✘❴✜③✚❡❚✖❘ makes the
PN triangle equal to the quadratic polynomial. Alternatively, ☛ ❅❂❅❂❅
is the average of the three choices that each make one transversal
tangent function linear.

If we assume that the triangles stem from a triangulation that has
one normal associated with each vertex, then the boundary curves
of abutting PN triangles are generated by the same algorithm, and



Figure 8: Linear interpolation of the normals at the endpoints (top)
ignores inflections in the curve while the quadratic normal construc-
tion of curved PN triangles (bottom) picks up such shape variations.

the surface is continuous, i.e without cracks. PN triangles do not
usually join with tangent continuity except at the corners. If they al-
ways did, we would have solved an open problem of approximation
theory: whether the vertices of a triangulation can be interpolated
by a ⑦ ❅ function with one cubic piece per triangle.

3.3 Normal coefficients of the PN triangle

The normal to the geometry component of the PN triangles does not
generally vary continuously from triangle to triangle (c.f. Figure 1
(c)). Therefore we define an independent linear or quadratic normal
variation. The value of the normal at a parameter point ✢ ✕ ✥ under
linear normal variation is the normalized average of the values at
the vertices:

◗✣✪✫✢ ✕ ✥✡✬⑧✘ ⑨s ⑨ s
✕ ⑨ ✘❴✪❉✚✒✜✦✢❛✜✦✥✡✬❉◗ ❅ ❃ ✢✿◗ ✏ ❃ ✥♥◗ ✔ ❏

Since the shading stage of the pipeline receives subtriangles with
normals, say ◗✣✪✫✢ ✕ ✥✡✬ ✕ ◗✣✪✫✢ ❃✛⑩✵✕ ✥✡✬ ✕ ◗✣✪✫✢ ✕ ✥ ❃▼⑩ ✬ for some step-
length

⑩
, linear variation of the normal approximates Phong shad-

ing.

Linearly varying normals ignore inflections in the geometry as
illustrated in Figure 8 (top). We therefore provide the option of
quadratic normal variation. To capture inflections as in Figure 8
(bottom) a mid-edge coefficient for the quadratic map ❑ is con-
structed following e.g. [12]: the average of the end-normals is re-
flected across the plane perpendicular to the edge as illustrated in
Figure 9. Recall that the reflection ❶ ❬ of a vector ❶ across a plane
with (unnormalized) normal direction ❷ is ❶ ❬ ✘❢❶✙✜❸❘❙✥♥❷ where✥❹✘❺✪❵❷▼❜❡❶❫✬❂❚✡✪❵❷▼❜✷❷❹✬ and ❜ denotes a the dot product. Figure 1 (d)
illustrates this choice of normal.

In formulas for implementation, coefficients or control points of
the normal component of a curved PN triangle are defined as fol-

Figure 9: Construction of the mid-edge normal coefficient ❑ ❅❂❅❇❁ for
quadratically varying normals: the average of the end-normals is
reflected across the plane perpendicular to the edge.

lows for s❆◗ ✯ s✒✘✛✚ (c.f. Figure 7):

❑ ✏❉❁❂❁ ✘❀◗ ❅ ✕❑ ❁❋✏❉❁ ✘❀◗ ✏ ✕❑ ❁❂❁❋✏ ✘❀◗ ✔ ✕
✥ ✯ ✲ ✘✙❘ ✪❵P ✲ ✜❣P ✯ ✬❤❜❻✪❵◗ ✯ ❃ ◗ ✲ ✬✪❵P ✲ ✜✣P ✯ ✬①❜✄✪❵P ✲ ✜❣P ✯ ✬ ❯❼❲❑ ❅❂❅❇❁ ✘ ⑩ ❅❂❅❇❁ ❚✽s ⑩ ❅❂❅❇❁ s ✕❽⑩ ❅❂❅❇❁ ✘❀◗ ❅ ❃ ◗ ✏ ✜✦✥ ❅❈✏ ✪❵P ✏ ✜✣P ❅ ✬ ✕❑ ❁✳❅❂❅ ✘ ⑩ ❁✳❅❂❅ ❚✽s ⑩ ❁✳❅❂❅ s ✕❽⑩ ❁✳❅❂❅ ✘❀◗ ✏ ❃ ◗ ✔ ✜✦✥ ✏❉✔ ✪❵P ✔ ✜✣P ✏ ✬ ✕❑ ❅❇❁✳❅ ✘ ⑩ ❅❇❁✳❅ ❚✽s ⑩ ❅❇❁✳❅ s ✕❽⑩ ❅❇❁✳❅ ✘❀◗ ✔ ❃ ◗ ❅ ✜✦✥ ✔✳❅ ✪❵P ❅ ✜✣P ✔ ✬❆❏

The values of ❑ are normalized before they are passed on to the
vertex shading stage of the pipeline.

3.4 Curved Sharp Edges

So far we assumed that the data originated from a triangulation
with one normal associated with each vertex. This implies that we
smooth out all edges. To model sharp or crease edges, say a hemi-
sphere capped by a disc, we would like to connect two triangula-
tions by identifying vertices on their global boundary to form the
crease. Evidently, the vertices on the crease now have two distinct
normals and this must lead to cracks in the surface if only infor-
mation based on one of the two flat triangles is available. Spline
and generalized subdivision surfaces solve the problem by tagging
the vertices, respectively searching the neighborhood and recogniz-
ing global boundary status. The argument below shows that with
entirely local information, cracks can not be avoided.

Observation 3.1 (curved sharp creases) If two patches share a
vertex but not the corresponding normal, there is no strategy based
only on the vertex and normal information (and respecting the ver-
tex and normal information) local to one patch at a time to generate
the same curve tangent for either patch independent of the normal
information of the other.

Proof The tangent of the curve is defined as the intersection of
two planes, each defined by the vertex and one of the two normals.
Since only one plane is known when constructing each patch a con-
sistent choice is only possible by chance.

✉✫✈



Figure 10: Sharpening a blunt axe (left two) by adding a seam of
small triangles (right). Small triangles at the bottom also isolate the
shaft from its end to keep it more cylindrical.

The observation implies that curved sharp creases with different
normals associated with each side of the (logical) edge between two
triangles will in general result in gaps in the surface.

An exception is the PN construction when the normals at two
endpoints consistently imply a straight line segment as common
boundary, e.g. when both normals are perpendicular to the edge.
We are considering several options to also support curved sharp
creases, e.g. increasing the number of indices in the input stream
from three to (at most) nine for triangles with up to six crease half-
edges. The additional indices point to the point-normal pair of the
abutting triangle in the neighboring triangulation. This setup sup-
ports darts, i.e. edges that are sharp at one end and smooth at the
other, as well as generic crease edges.

The algorithm for determining the PN triangle geometry is un-
changed except that we now project onto a tangent line to obtain the
tangent coefficient of an edge: let ◗ ❅ and ◗ ✏ be the two normals
associated with the crease point P ❅ along the edge P ❅ P ✏ . Then ☛ ✏❆❅❇❁
has to lie on the line P ❅ ❃✤❾ ✪❵◗ ❅✵❿ ◗ ✏ ✬ where

❿
is the cross product

and ☛ ✏❆❅❇❁ is the projection of ✪❇❘✖P ❅ ❃ P ✏ ✬❂❚ ✸ onto that line:

☛ ✏❆❅❇❁ ✘✙P ❅ ❃ ✪❵P ✏ ✜❣P ❅ ✬①❜✳➀
✸ ➀ ✕ ➀❀✘❀◗ ❅ ❿ ◗ ✏ ❏

Currently, as illustrated in Figure 10, a software preprocessing
step adds a rim of small triangles along edges intended to be sharp.

4 Hardware Performance

As Figure 2 illustrates, curved PN triangles are generated and
tesselated in the pipeline stage inserted between the vertex-and-
primitive-assembly stage and the vertex-shading stage. The vertex-
and-primitive-assembly stage combines multiple streams of data
such as 3-space position, 3-space normal, 3-space tangent vectors,
texture coordinates and colors. Of these, the PN triangle construc-
tion only uses position and normal data. The other data are for-
warded to the subtriangles typically by linearly interpolating the
values at the vertices of the flat input triangle. Vector-valued at-
tributes can also use quadratic interpolation. Because the input and
output triangles of the curved PN triangle stage are of the same
format, the impact on the design on adjacent pipeline stages is min-
imal.

To get an initial estimate of the impact of inserting the triangle-
spawning PN triangle stage, we determined the number of vector
operations for each output subtriangle vertex. The vector opera-
tions are dot products, additions of two vectors, scaling and per-
component multiply of two vectors. The current implementation
uses between 6.8 and 11.6 vector operations per generated vertex
depending on the number of evaluations. lod 2 and 3 (see Figure
4) have the highest ratio of vector operations per vertex.

Figure 11: Mask of PN triangles with linearly varying normal (left)
and quadratically varying normal (right).

To get a more detailed estimate of the impact, we need to con-
sider fill rate and vertex shading. Fill rate is not a bottleneck since
the screen area in pixels is unchanged. Vertex shading (transfor-
mation and lighting) and triangle set up, on the other hand, have to
cope with a larger number of vertices. The overall rendering perfor-
mance, in many applications, is, however, limited by the bandwidth
needed to feed vertices to the graphics processor rather than the
graphics processor cycles available for the geometry. Therefore,
if the processor is sufficiently fast and the bus is busy, curved PN
triangles render at the same speed as flat triangles.

Allowing a higher-order surface primitive, such as curved PN
triangles, to be passed directly to hardware is a form of geometry
compression that reduces bus traffic into the graphics chip. PN tri-
angles, like other curved surface primitives, can act as a level of
detail mechanism. Since the input to the PN triangle stage is the
lowest level of detail, a flat triangle, its storage costs and bandwidth
usage are minimal; and we can obtain higher levels of detail on
the fly. If, instead, a developer were to store models for lod 0-4
(Figure 4) she would need approximately 70 times the amount of
memory.

Key-frame interpolation is another instance where PN triangles
substantially enhance performance. Given two models with iden-
tical topology, either the CPU or the graphics processor must gen-
erate interpolated values between the vertex positions of the two
models. An application can reduce the number of vertices it has to
store by applying the PN triangle algorithm after key-frame inter-
polation.

In summary, PN triangles can be viewed as a method for com-
pressing geometry. Both bus bandwidth and memory usage can be
substantially reduced by employing coarser input and PN triangles.

5 Visual Results

Figure 11 highlights the difference in visual appearance between
curved PN triangles with linear and with quadratic normal. At
times, the PN surface rendering is even preferable to the exact ren-
dering of higher quality surfaces. Figure 12 places next to each
other a 20-triangle cone refined with Butterfly interpolating subdi-
vision [4] (which converges to an almost everywhere ⑦ ✏ surface)
and the geometrically non-smooth surface of curved PN triangles.
Surfaces generated with modified Butterfly [18] and interpolatory➁ ✸ subdivision ([9], Figure 10) exhibit the same extraneous oscil-
lations as Butterfly interpolating subdivision. Our experiments with



Figure 12: Input ‘diamond model’ (top), Butterfly interpolatory
subdivision [4], (left), and the curved PN triangle surface (right).

(Compare also with modified Butterfly and interpolatory
➁ ✸ subdi-

vision shown in Figure 10 of [9]).

characters from existing games demonstrate an appreciable increase
in visual quality already for lod 1 or 2; the models rendered on the
right in Figure 13 use lod=6.

6 Conclusions and Future Work

Curved PN triangles aim at providing a smoother silhouette and
more organic shape for triangle-based models at a minimal cost for
model preparation, application program modification, and render-
ing performance. Curved PN triangles can be viewed as a triangle
multiplier in that each PN triangle takes on input a flat triangle and
outputs many subtriangles in the same format. Sending a coarser
triangulation to be rendered can therefore be viewed as a form of
geometry compression that reduces bandwidth requirements and al-
lows more geometry to be delivered to graphics memory, because
the subtriangles ultimately rendered exist only on the chip. The
underlying architecture is a first step towards supporting much ne-
glected triangle-based surfaces at the hardware level.
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Aided Geometric Design, 3(2):83–127, 1986.

[7] J. A. Gregory. Smooth interpolation without twist constraints,
pages 71–88. Academic Press, 1974.

[8] L. Kobbelt.
➁ ✸ subdivision. SIGGRAPH 2000 Conference

Proceedings, pages 103–112, 2000. New Orleans.

[9] U. Labsik and G. Greiner. Interpolatory sqrt(3)-subdivision.
In M. Gross and F. R. A. Hopgood, editors, Computer Graph-
ics Forum (Eurographics 2000), volume 19(3), 2000.

[10] Charles T. Loop. Smooth subdivision surfaces based on tri-
angles, 1987. Master’s Thesis, Department of Mathematics,
University of Utah.

[11] G. Nielson. A transfinite, visually continuous, triangular in-
terpolant, pages 235–246. SIAM, 1987.

[12] C. W. A. M. Van Overveld and B. Wyvill. Phong normal inter-
polation revisited. ACM Trans. on Graphics, 16(4):397–419,
October 1997.

[13] J. Peters. Smoothing polyhedra made easy. ACM Transactions
on Graphics, 14(2):161–169, April 1995.

[14] M. J. D. Powell and M. A. Sabin. Piecewise quadratic approx-
imations on triangles. ACM Transactions on Mathematical
Software, 3(4):316–325, December 1977.

[15] L. A. Shirman and C. H. Séquin. Local surface interpola-
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Figure 13: A family of game characters (left) and their PN triangle counterparts (right). The models were provided by id Software. None of
these characters were authored with PN triangles in mind.


