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Abstract— We introduce a set of 10 bounded curved-surface
patch types suitable for modeling local contact regions both in
the environment and on a robot. We present minimal geometric
parameterizations using the exponential map for spatial pose
both in the usual 6DoF case and also for patches with revolute
symmetry that have only 5DoF. We then give an algorithm to
fit any patch type to point samples of a surface, with quantified
uncertainty both in the input points (including nonuniform
variance, common in data from range sensors) and in the output
patch. Finally, we outline how such patches can be composed
into a spatial patch map of the available contact surfaces both
on and around a robot.

I. INTRODUCTION

Whether locomoting or manipulating, most robots make

contact with environment surfaces. Contact is well-studied

(e.g. [1]) but, arguably, there is not yet any accepted general

system for modeling the shape and pose of potential contact

surface patches, including both patches on the robot (e.g.

finger tips, foot soles, etc) and also in the surrounding en-

vironment. This is especially true when (a) curved, bounded

patches with (b) geometrically meaningful minimal parame-

terizations and (c) quantified uncertainty are desired.

We introduce a general-purpose set of ten curved and flat

patch types (Fig. 1, Table I) suitable for both natural and

man-made surfaces. Eight come from the general second-

order polynomial approximation to a smooth surface at

a given point—the principal quadric—which is always a

paraboloid, possibly degenerated to a plane [2]. We add

two non-paraboloid types to better model common man-

made spherical and cylindrical surfaces, and we pair each

surface type with a specific boundary curve to capture useful

symmetries and asymmetries. We have implemented the

proposed models and algorithms in the Surface Patch Library

(SPL), with sourcecode available on our website [3].

Why curved patches? One of our long-term research

interests is legged locomotion on large rocks. Flat areas

can be rare in such natural environments. More broadly,

contact surfaces in man-made environments are also often

curved—railings, doorknobs, steering wheels, knobs, etc.

Though curved surfaces can be approximated by sets of

smaller planar patches [4], the job can often be done with

fewer and larger curved patches. Curved surface geometry

is more complex, but it may still be an advantageous trade-

off to reason about fewer and larger patches. For example, a

spherical robot foot stepping into a divot on a rock might be

modeled as the interaction between just one spherical and one

elliptic paraboloid patch (on foot and rock, respectively). If
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the surfaces were approximated using collections of smaller

planar patches the interaction could require combinatorial

reasoning about many possible contacting pairs.

By “geometrically meaningful minimal parameterizations”

we mean that each patch is defined by the fewest pos-

sible parameters, and that these have direct geometric

interpretations—rotations, translations, curvatures, lengths,

and angles. Geometric (vs. algebraic) parameterizations also

support reasoning [5] about possible actions with patches,

and allow some representation of spatial uncertainty with

geometric error ellipsoids in task space. Minimality is desir-

able because redundant (non-minimal) parameterizations can

slow the numerical optimizations used in surface fitting [6]

and must be handled specially in uncertainty modeling [7].

It is often important get both a best estimate of patch

parameters and a quantification of the uncertainty therein. We

develop full uncertainty quantifications based on Gaussian

modeling with covariance matrices. Though this is not the

only way to represent uncertainty, it does cover common

situations, and covariance matrices enable data fusion based

on the Kalman filter. We intend our models to be usable

in Kalman-type SLAM (simultaneous localization and map-

ping) algorithms that maintain a dynamic local patch map,

Fig. 4, of contact patch features around a robot, including

both environment surfaces and contact pads on the robot

itself (potentially uncertain due to kinematic error).

Next we cover related work and key mathematical tools.

We then give details of the patch models, followed by an

algorithm to fit a patch to heteroskedastic (nonuniform vari-

ance) point cloud data from common types of range sensor.

Such fitting is a typical step in recovering surface shape

and pose (other important steps, including segmentation of

patches, are not addressed here). We demonstrate practicality

in experiments with simulated and real range data. Finally,

we show how sensed environment-surface patches and kine-

matically uncertain patches on a robot can be combined into

a single patch map with quantified uncertainty.

A. Related Work

Detecting and modeling potential contact surfaces around

a robot is a common task, especially for locomotion in un-

certain environments. Many prior systems are grid based [8],

while some attempt to recover surface models [9]. These are

typically dense approaches in that they attempt to model all

of the terrain in view; we propose to only map a sparse

set of patches “of interest” for the problem at hand (we

acknowledge that selecting these may be a challenge). Also,

our patch-based approach can homogeneously model contact

surfaces both in the environment and on the robot itself,



whereas most prior work considers modeling environment

surfaces exclusively.

A few other works do take a sparse approach but are

restricted to planar patches, ranging from large flats in man-

made environments [7], [10], [11] down to small “patch-

lets” [12]. These mainly fall in the area of range image

segmentation, which also has a significant history [13]. Some

work has been done with curved surfaces [14], but the main

focus still appears to be on planes [11]. Also, as in traditional

image segmentation, the goal of range image segmentation

is usually to produce a dense labeling of the whole image.

One of our main results is an algorithm to fit instances

of curved, bounded patches to noisy point samples. Fitting

planes is well studied [15], including uncertainty [16] and

fitting heteroskedastic range data [7]. For curved surfaces

quadrics are a natural option; Petitjean [2] surveyed quadric

fitting, but there were few results that (a) quantified uncer-

tainty, (b) recovered geometric parameterizations, and (c)

fit bounded patches. In [5], Dai et al describe recovery of

paraboloid geometric parameters1 by linear least squares,

without considering uncertainty. In [17] Wang et al studied

quadric extraction in the context of range image segmen-

tation, including quantified uncertainty in the algebraic (not

geometric) patch parameters, but not on the input points. Our

fitting algorithm quantifies both input and output uncertainty

and recovers geometric parameters of bounded patches.

II. TOOLS

We now introduce some less common mathematical tools

used in our algorithms. Due to space constraints we must

refer readers elsewhere for review of some topics, including

implicit and explicit (parametric) surfaces [18], Gaussian

uncertainty modeling, and propagation of uncertainty [19].

A. Extrinsic and Intrinsic Surface Parameters

An instance of a patch will be a vector of real parameters

which define both its shape (curvature and boundary) and

its 3D rigid-body pose. We call the former intrinsic and the

latter extrinsic parameters [20]. We must consider different

issues to achieve minimal parametrization for each, and the

distinction also enables the option to model shape (intrinsic)

and pose (extrinsic) uncertainty separately. Minimal intrinsic

parametrization for the proposed patches will be given by

(a) one parameter for each variable curvature, and (b) a

minimal parametrization of the boundary curve. However,

minimal extrinsic parametrization depends on the continuous

symmetry class of the patch. For example, a patch with two

different curvatures (Fig. 2) has no continuous symmetry: its

rigid body pose—here any element in the special Euclidean

group SE(3)—has six degrees of freedom (DoF). But a pla-

nar patch with a circular boundary has a continuous rotation

symmetry and only five extrinsic DoF. Remarkably, it has

been shown that there are exactly seven continuous symmetry

classes in 3D [20]: revolute, prismatic, planar, spherical,

cylindrical, helical, and general (the first six correspond to

1They verify that the fit result is a paraboloid and extract its parameters.
They do not consider constraining the fit to paraboloids (vs other quadrics).

the lower kinematic pairs; the last represents no continuous

symmetry). Since we only consider patches with boundaries,

we need only the general (no continuous symmetry, 6 DoF

pose) and revolute (one continuous rotation symmetry, 5

DoF pose) classes—continuous translation symmetries are

not possible for bounded patches.

B. Pose Representation with the Exponential Map

We require two extrinsic parameterizations: one with six

parameters for asymmetric patches and one with five param-

eters for patches with revolute symmetry. It is well known

that, because the Lie-manifold of the special orthogonal

group SO(3) (the rotation subgroup of SE(3)) is non-

Euclidean, there is no singularity-free minimal parametriza-

tion of SE(3). For the general case we thus select a minimal

parametrization with singularities that are easiest to handle

for our application. One of the core computations will be

patch fitting by iterative optimization, and for this Grassia

showed in [6] that a useful pose representation is2

[rT tT ]T ∈ R
6 with (r, t) ∈ R

3 × R
3 (1)

where t is a translation and r is an orientation vector giving

an element of SO(3) via an exponential map. Grassia ob-

served that in this parametrization singularities are avoidable

by a fast dynamic reparameterization, reviewed below.

We use Rodrigues’ rotation formula for the exponential

map3 R(r) :R3→SO(3)⊂R
3×3 (Grassia used quaternions):

R(r) = I + [r]×α+ [r]2×β (2)

θ , ‖r‖, α ,
sin θ

θ
, β ,

1− cos θ

θ2

r =
[

rx
ry
rz

]

, [r]× ,

[

0 −rz ry
rz 0 −rx
−ry rx 0

]

.

As promised, the (r, t) representation has a direct geomet-

ric interpretation: t is just a translation, and (wlog for θ 6= 0)

θ gives the right-hand-rule rotation angle about the spatial

axis defined by the unit vector r/θ. While exponential map

approaches are not new [21], [22], matrices in se(3) ⊂ R
4×4,

the Lie algebra of SE(3), are typically used instead of

(r, t). Though elegant, the former do not satisfy our goals of

minimal parametrization and direct geometric interpretation.4

Using the fact that counterclockwise rotation by θ is equiv-

alent to clockwise rotation by 2π−θ, Grassia’s reparametriza-

tion converts any r into a canonical one with ‖r‖ ≤ π.

Algebraically, (r, t) corresponds to an element
[

R(r) t

0T 1

]

of SE(3), a 4 × 4 homogeneous rigid body transform, and

can thus define the pose of a local coordinate frame L (and

2We explicitly notate transposes; orientation is crucial esp. for Jacobians.
3Despite division by θ = ‖r‖, (2) converges to I as θ → 0. For numerical

stability we use the series expansion approximations α ≈ 1 − θ2/6 and
β ≈ 1/2− θ2/24 for small θ (threshold depends on machine precision).

4It is true that there is a 1:1 correspondence between matrices in se(3)
and elements of the (r, t) parametrization; conceptually, we have invoked
this correspondence and simplified the results directly in terms of (r, t).



a patch therein) relative to a world frame W : R(r) is a basis

for L and t is its origin. The transformation of a point ql

in L to qw in W , and the reverse, are familiar functions

Xf,r : R3 × R
3 × R

3 → R
3

qw = Xf (ql, r, t) , R(r)ql + t (3)

ql = Xr(qw, r, t) , R(−r)(qw−t) = R(r)T (qw−t) (4)

where (4) makes use of the inverse transform

(r, t)−1 , (−r,−R(−r)t) = (−r,−R(r)T t). (5)

Eqns. (1–4) constitute our 6 DoF pose parametrization.

For the 5 DoF case, observe that only one of the three basis

vectors of L need be specified; rotation symmetry allows

the others to make any mutually orthogonal triple. Only two

DoF are required, equivalent to specifying a point on the unit

sphere. We do this by re-using (1–4) with rz fixed at 0:

(rxy, t) ∈ R
2 × R

3 corresp. ([rTxy 0]T , t) ∈ R
3 × R

3. (6)

The geometric interpretation of (rxy, t) is the same as for

(r, t), except that rxy is constrained to the xy plane. For any

given canonical r, a canonical rxy always exists that satisfies

R([rTxy 0]T )ẑ = R(r)ẑ with [x̂ ŷ ẑ] , I3×3. (7)

rxy can be calculated as

rxy(r) =

[

x̂T

ŷT

]

{

r if θxy ≈ π

(ẑ× ẑl)/αxy otherwise
(8)

ẑl , R(r)ẑ, θxy , atan2(‖ẑ× ẑl‖, ẑT ẑl), αxy ,
sin θxy
θxy

As in Brockett’s product of exponentials [21], 6 DoF poses

can be composed to make any kinematic chain. Let

(rn, tn)
φn , . . . , (r1, t1)

φ1 with φi ∈ {+1,−1} (9)

be the poses (equiv. transforms) in the chain from end to

base in order from right to left. Then the pose (rc, tc) of a

patch attached to the end of the chain relative to the base is

(rc, tc) = (r(Rn · · ·R1), (Xn◦ · · · ◦X1)(0)) (10)

Rj , R(φjrj), Xj(q) ,

{

Xf (q, rj , tj) if φj = +1

Xr(q, rj , tj) if φj = −1

substituting rxy(rc) for 5 DoF patches, and using the log

map r(R) : SO(3) → R
3 corresponding to the inverse of

(2). We give an algorithm to compute r(R) in Appendix II.

We will need the partial derivatives of (4)

∂ql

∂qw

=RT,
∂ql

∂r
=

∂RT

∂r
(qw−t),

∂ql

∂t
=−RT, R,R(r) (11)

the Jacobian of (2)—including its use as part of ∂ql/∂r in

(11)—and the Jacobians of (8) and (10):

∂R

∂r
,
∂rxy
∂r

,
∂(rc, tc)

∂(r1, t1), . . . , (rn, tn)
.

The latter three are given in Appendix I.

surface bound parameters DoF world frame equations

intrin. extrin.

ell parab ellipse de,k r, c 10 14,15,17; sign(κx)=sign(κy)
hyp parab ellipse de,k r, c 10 14,15,17; sign(κx)6=sign(κy)

cyl parab aa rect dr, κ r, c 9 14,15,18,19;k=[0 κ]T

circ parab circle dc, κ rxy , c 7 14,15,17;k=[κκ]T,de=[dc dc]T

plane

ellipse de r, c 8 14,15,17;k=0

circle dc rxy , c 6 14,15,17;k=0, de=[dc dc]T

aa rect dr r, c 8 14,15,18,19;k=0

c quad dq r, c 11 14,15,21,19;k=0

sphere circle dc, κ rxy , c 7 24,25,17;de=[dc dc]T, |κ|dc≤1
circ cylind aa rect dr, κ r, c 9 28,29,18,19; |κ|dy≤1

TABLE I

Fig. 2. Left: a paraboloid patch with two negative curvatures (κx, κy),
symmetry point c, and local frame basis [x̂l ŷl ẑl]. Right: a convex
quadrilateral boundary parametrized by γ and d1...4.

III. PATCH MODELS

We now present the details of ten surface patch models

(Fig. 1, Table I) based on seven curved surface types. Five

of these partition the paraboloids, including the important

degenerate case of a plane; the other two add true spher-

ical and circular cylinder patches, non-paraboloids that are

common in man-made environments and on robots. For non-

planar surfaces we select one specific parametrized boundary

shape which trims the surface into a local patch. For planes

we allow a choice of four boundary shapes.

The next two sections give the details of the paraboloid

and non-paraboloid patch models. This particular system is

not the only possible taxonomy; it reflects our design choices

in an attempt to balance expressiveness vs minimality.

A. Paraboloids

The best-fit degree-two local polynomial approximation to

any smooth surface S ⊂ R
3 at a given point c ∈ S, called

the principal quadric, is always a paraboloid—a quadric of

one sheet with a central point of symmetry about which the

surface has two independent curvatures κx, κy in orthogonal

directions (Fig. 2). These are the principal curvatures of S
at c, and c is the symmetry point. Defining x̂l and ŷl as

unit vectors in the directions of the principal curvatures in

the tangent plane to S at c, the surface normal to S at c is

ẑl , x̂l × ŷl. If S is considered to be embedded in a world

coordinate frame W , then c ∈ R
3 is the origin and

R , [x̂l ŷl ẑl]

is a basis for the principal coordinate frame (all standard

terms) of S at c, which we also call local frame L.

Using the log map, the transform

(r, c) , (r(R), c)



Fig. 1. Examples of all patch types, each with axes of the local coordinate frame. Concave variants shown inset.

takes points from L to W, enabling a short derivation of

equations for a general paraboloid parametrized by k ,

[κx κy]
T, r, and c. Starting in L where the paraboloid is in

standard position, with pli :R
3×R2→ R and ple :R

2×R2→ R
3,

0 = pli(ql,k) , qT
l diag([kT 0]T )ql − 2qT

l ẑ (12)

ql = ple(u,k) , [x̂ ŷ]u+
1

2
uT diag(k)uẑ (13)

are the implicit and explicit forms, respectively, with ql ∈ R
3

a point on the patch in L and u ∈ R
2 parameters of the

explicit form. Moving to qw ∈ R
3 in world frame W only

requires composing (12,13) with (3,4), yielding

0 = pwi(qw,k, r, c) , pli(Xr(qw, r, c),k) (14)

qw = pwe(u,k, r, c) , Xf (ple(u,k), r, c) (15)

pwi : R
3×R2×R3×R3 → R, pwe : R

2×R2×R3×R3 → R
3.

Note that in this formulation u is always the projection of

ql onto the local frame xy plane:

u , Πxyql = ΠxyXr(qw, r, c), Πxy , [x̂ ŷ]T . (16)

In the general case κx 6= κy , giving 7 or 8 DoF

paraboloids—6 pose DoF plus up to two curvatures. (Bound-

ary parameterizations will add DoF.) Six DoF pose is re-

quired because κx 6= κy implies no continuous rotation

symmetries, only discrete symmetries about c. It is standard

to separate three surface types where κx 6= κy (Fig. 1):

elliptic paraboloids have two nonzero curvatures with equal

signs, hyperbolic paraboloids have two nonzero curvatures

with opposite signs, and cylindric paraboloids have one

nonzero curvature. In all cases ẑl is the outward pointing

surface normal and positive/negative curvatures correspond

to concave/convex directions on the patch, respectively.5

We bound elliptic and hyperbolic paraboloid patches with

ellipses in the xy plane of the local frame L, axis aligned

and centered at c. If de , [dx dy]
T are the ellipse radii then

the bounded patch is the subset of the full surface (12–15)

where, with e :R2×R2→ R, u satisfies

0 ≥ e(u,de) , uT diag([1/d2x 1/d2y])u− 1. (17)

5To reduce ambiguity wlog choose |κx| < |κy |, though some ambiguity
is unavoidable due to bilateral symmetries.

For cylindric paraboloid patches, replace the ellipse bound-

ary with an axis aligned rectangle with half-widths dr =
[dx dy]

T . In the xy plane of L the vertices are

v1 , dr,v2 , [−dx dy]
T ,v3 , −v1,v4 , −v2 (18)

in counterclockwise order, and the bounding condition can

be stated as, with q : R2 × R
2 × R

2 × R
2 × R

2 → R,

0 ≥ q(u,v1,v2,v3,v4) , (19)

max(l(u,v1,v2), l(u,v2,v3), l(u,v3,v4), l(u,v4,v1))

where l : R2 × R
2 × R

2 → R is the implicit form for a 2D

line given two points on the line; u is on or to the left of

the directed line through vi towards vj iff

0 ≥ l(u,vi,vj) , (u−vi)
T [vj−vi]⊥,

[

x
y

]

⊥

,

[

y
−x

]

. (20)

For the special case κx = κy we identify two more surface

types (Fig. 1): circular paraboloids have both curvatures

equal and non-zero, and planes have both curvatures zero.

Both of these have continuous rotation symmetry about ẑl,

so we use the 5-DoF pose parametrization (rxy, c), provided

that the patch boundary also has the same continuous rotation

symmetry. The latter holds for circular boundaries, which we

use for circular paraboloids. Let κ be the surface curvature

and dc the bounding circle radius; circular paraboloids are

then defined by (12–17) with k = [κ κ]T , r = [rTxy 0]T ,

de = [dc dc]
T , and with the dimensions of the function

domains correspondingly reduced.

For the important case of paraboloids degenerated to

planes we give a choice of four boundary types: ellipses,

circles, rectangles, or general convex quadrilaterals (devel-

oped next). For all except circles, the planar patch loses its

continuous rotation symmetry and requires full 6-DoF pose

parametrization; the patch is defined by (12–15) with k = 0

(and correspondingly reduced function domains) and either

(17) or (19). Planar patches with circular boundary are the

same as circular paraboloids but with k = 0.

For convex quadrilateral boundaries, keep c at the intersec-

tion of the diagonals v1v3 and v2v4 (Fig. 2), where v1...4

are the vertices in counterclockwise order in the xy plane

of local frame L. Define γ as half the angle between the



diagonals and d1...4 ≥ 0 the half-diagonal lengths such that

vi , di[cosφi sinφi]
T (21)

φ1 , γ, φ2 , π − γ, φ3 , π + γ, φ4 , −γ
0 < γ < π/2.

Then the quadrilateral is defined by (19) using vertices

(21) parametrized by dq, [d1 d2 d3 d4 γ]T . Convexity is

ensured by construction, and only five parameters are needed

even though a general planar quadrilateral has 8 DoF—the

remaining three (a rotation about the plane normal and two

in-plane translations) are contributed by the extrinsic pose.

B. Spheres and Circular Cylinders

Spheres and circular cylinders are common on robots and

in man-made environments. Though still quadrics, neither is

a paraboloid, suggesting two additional patch types (Fig. 1).

(We do not model complete spheres or cylinders, only

bounded patches of hemispheres and half-cylinders.)

Again starting in local frame L, the implicit and explicit

equations of an upright hemisphere with apex at the origin

and curvature κ (hence possibly infinite radius |1/κ|) are6,

with sli : R
3 × R→ R and sle : R

2 × R→ R
3,

0 = sli(ql, κ) , κqT
l ql − 2qT

l ẑ, 0 ≤ κqT
l ẑ ≤ 1 (22)

ql = sle(u, κ) , [x̂ ŷ]u+(ẑ/κ)
(

1−
√

1−κ2uTu
)

. (23)

Composing these with (3,4) gives the world frame forms

swi : R
3×R×R

2×R
3 → R, swe : R

2×R×R
2×R

3 → R
3

0 = swi(qw, κ, rxy, c) , sli(Xr(qw, [r
T
xy 0]T , c), κ) (24)

0 = swe(u, κ, rxy, c) , Xf (sle(u, κ), [r
T
xy 0]T , c). (25)

Circular half-cylinder surfaces are similar but (a) have no

dependence on xl and (b) require 6 DoF pose:

0 = cli(ql, κ) , qT
l Kql − 2qT

l ẑ, 0 ≤ κqT
l ẑ ≤ 1 (26)

ql=cle(u, κ), [x̂ ŷ]u+(ẑ/κ)
(

1−
√

1−κ2uTY u
)

(27)

K , diag([0 κ κ]T ), Y , [0 1]T [0 1]

0 = cwi(qw, κ, r, c) , cli(Xr(qw, r, c), κ) (28)

0 = cwe(u, κ, r, c) , Xf (cle(u, κ), r, c). (29)

To maintain revolute symmetry we use circular boundary

for spherical patches: u must satisfy (17) with de = [dc dc]
T

and |κ|dc ≤ 1. For circular cylinder patches we use rectan-

gular boundary: u must satisfy (18,19) with |κ|dy ≤ 1.

IV. PATCH FITTING

It is natural to consider recovering patches from point

samples, especially now that high quality range sensors

are easily available, including stereo and structured light

systems like the Microsoft/PrimeSense Kinect, time-of-flight

cameras, and laser scanners. Much work has been done on

range image segmentation [14], but it is still an interesting

question how to best segment point samples of a surface

for the purpose of mapping patches; we leave this open for

6In the limit as κ → 0 (22–29) all reduce to planes.

now, and focus on the underlying fitting problem, which is

neither trivial—we have found very few prior reports on

fitting curved surface patches to noisy data with quantified

uncertainty both in the inputs (the points) and the outputs (the

patch parameters). Though linear least squares (LLS) can fit

a quadric surface to points [5], and its extension to linear

χ2 maximum likelihood fits data corrupted by white noise,

the problem appears to become nonlinear when the points

are heteroskedastic (i.e. have nonuniform variance). Also,

we want to fit bounded paraboloids, spheres, and circular

cylinders, not just unconstrained quadrics.

Whether based on stereo or time-of-flight, range data does

in fact exhibit heteroskedasticity—typically there is much

more uncertainty in range than aim [7], [12], the variance

changes with range, and because the measurement rays

usually have a single center of projection, the error ellipsoids

for the sampled points are not co-oriented: each is elongated

in the direction of its own measurement ray (Fig 3).

Our fitting algorithm handles these issues. The inputs

are N sample points qi ∈ R
3 with covariance matrices

Σi ∈ R
3×3; general surface type7 s ∈ {parab, plane, sphere,

ccyl}; if s = plane, boundary type b ∈ {ellipse, circle,

aarect, cquad} (b is implied if s 6= plane); and a boundary

containment probability Γ ∈ (0, 1]. The outputs are the fitted

patch type (s, b), parameters p ∈ R
p, and covariance matrix

Σ ∈ R
p×p, where p is the DoF of the patch type (Table I).

The algorithm proceeds in 9 steps. The first three fit an

unbounded surface; the rest are largely concerned with fitting

the bounds, which can include final resolution of the patch

center and orientation (in steps 6 and 9) where the bounding

shape breaks symmetries of the underlying surface.

1. (i) Fit a plane with LLS, ignoring Σi. Unless s = parab,

re-fit the plane with weighted Levenberg-Marquardt (WLM),

detailed below, including Σi, using (24) with κ = 0. (ii) Set

c← q̄− ẑTl (q̄− c)ẑl (perp. proj. of q̄ , avg(qi) on plane).

2. If s 6= plane: (i) With k = [0 0]T , r , [rTxy 0]T , and c

from 1 as initial estimates, according to s fit an unbounded

paraboloid, sphere, or circ cyl with WLM on (14,24,28). (ii)

If s = sphere keep rxy from 1. If s = circ cyl set r =
r([x̂l ŷl ẑl]) (log map) where ẑl is the normal of the plane

from 1, x̂l is along the fitted cylinder axis, and ŷl , ẑl× x̂l.

3. If s= parab, refine it based on the fitted curvatures k =
[κx κy]

T : If max(|κx|, |κy|) < ǫk (a small threshold), set s=
plane, b=ellipse, and rxy using (8). Else if min(|κx|, |κy|) <
ǫk swap axes s.t. |κy| > ǫk, then set s = cyl parab and

κ = κy . Else if |κx − κy| < ǫk set s = circ parab, κ =
avg(κx, κy), and rxy using (8). Else if sign(κx) = sign(κy)
set s = ell parab. Else set s = hyp parab.

4. If s 6= plane, set b based on s and8 λ ,
√
2 erf−1(Γ).

5. Project the data qi ∈ R
3 to ui = [xi yi]

T ∈ R
2 using (16).

Set x̄ , avg(xi), ȳ , avg(yi), vx , avg(x2
i ), vy , avg(y2i ).

7Taking s, b as inputs allows constrained fitting of specific types; they
could be automatically found by checking all possibilities for the best fit.

8We use 1D and 2D moments to fit approximate boundaries, see e.g. [23].



6. If s ∈ {cyl parab, circ cyl} set dr = λ[
√
vx − x̄2

√
vy]

T

and c←Xf (x̄x̂, r, c) .

7. If s ∈ {circ parab, sphere} set dc = λmax(
√
vx,
√
vy).

8. If s ∈ {ell parab, hyp parab} set de = λ[
√
vx
√
vy]

T .

9. If s = plane, rxy and c will be available from either 1 or

3. Set c←Xf (x̄x̂+ ȳŷ, rxy, c) and (c.f. [23])

l+,− ,

√

− ln(1− Γ)(α+ φ±
√

β2 + (α− φ)2) (30)

α , vx − x̄2, β , 2(avg(xiyi)− x̄ȳ), φ , vy − ȳ2.

If b=circle set dc=max(l+, l−) and rxy from r using (8). If

b∈{ellipse, aarect} set de,r=[l+ l−]
T . If b=conv quad set9

dq = [d d d d γ]T, d ,

√

l2
−
+ l2+, γ , atan2(l−, l+). (31)

If b 6= circle, using [x̂l ŷl ẑl] , R([rTxy0]
T ) set

r = r([x̂′

l ŷ
′

l ẑl]) (log map) (32)

θ,(1/2) atan2(β, α−φ), x̂′

l, x̂l cos θ+ŷl sin θ, ŷ
′

l, ẑl × x̂′

l.

Σ is calculated by first order error propagation through the

above computations, see our implementation [3] for details.

A. Weighted Levenberg-Marquardt

Levenberg-Marquardt (LM) is a standard iterative nonlin-

ear optimization [24]. It can find a parameter assignment

popt ∈ R
p that locally minimizes the sum-of-squares residual

r of a differentiable objective function f : Rd × R
p → R

applied to a dataset qi ∈ R
d, 1 ≤ i ≤ N , starting from an

initial estimate p0. That is, it finds

popt = argmin
p near p0

r, r ,

N
∑

i=1

e2i , ei , f(qi,p). (33)

Implementations typically take as inputs functions f and

∂f/∂p, the data qi, and p0, and return both popt and a

covariance matrix Σ ∈ R
p×p representing its uncertainty.

A well known extension is to replace ei with Ei , ei/σi

where σi > 0 are constant standard deviations modeling

uncertainty in ei. The residual is then called χ2, and popt

locally maximizes the likelihood of the “observations” ei.
For our use, f is always the implicit form of a surface

in world frame, i.e. pwi, swi, or cwi (14,24,28). The σi are

not constant, but can be estimated with with first order error

propagation as10

σi =
√

var(f(qi,p)) ,
√

vf (i,p) (34)

vf (i,p) ,

(

∂f

∂q
(qi,p)

)

Σi

(

∂f

∂q
(qi,p)

)T

.

We define weighted LM (WLM) to combine σi and f into

a meta-objective function F : [1 . . . n]× R
p → R:

F (i,p) , f(qi,p)/σi = f(qi,p)/
√

vf (i,p). (35)

9We currently fit convex quad the same as aa rect, but note that the former
is still useful for designed (vs fit) patches, e.g. part of a foot sole.

10A heuristic to allow semi-definite Σi is to clamp small vf (i,p) to a
minimum positive limit.

Both F and its gradient ∂F/∂p are implied given qi, Σi, f ,

∂f/∂p, ∂f/∂q, and ∂2f/∂p∂q (which is d× p):

∂F

∂p
(i,p) =

∂f
∂p

(qi,p)

σi

− ei

∂f
∂q

(qi,p)Σi
∂2f
∂p∂q

(qi,p)

σivf (i,p)
. (36)

Given qi, Σi, f , ∂f/∂p, ∂f/∂q, and ∂2f/∂p∂q, WLM

synthesizes F and ∂F/∂p by (35,36) and then applies LM.

This is simplified further by the common form of the world-

frame surfaces (14,24,28), which are all variants of

fl(ql,k3) , qT
l Kql − 2qT

l ẑ (37)

fw(qw,ps)=fl(Xr(qw, r, c),k3) (38)

ps, [kT
3 rT cT ]T , k3 , [κx κy κz]

T , K , diag(k3)

where some components of k3, and for (24) the last compo-

nent of r, are held at zero. The required derivatives of (38)

are given by the chain rule from (11) and derivatives of (37)

(using R , R(r)):

∂fw
∂qw

=
∂fl
∂ql

∂ql

∂qw

,
∂fl
∂ql

= 2(qT
l K−ẑT ),

∂ql

∂qw

= RT (39)

∂fw
∂ps

=

[

∂fw
∂k

∂fw
∂r

∂fw
∂c

]

,
∂fw
∂k

= qT
l diag(ql) (40)

∂fw
∂r

=
∂fl
∂ql

∂ql

∂r
,
∂ql

∂r
=

∂RT

∂r
(qw − c)

∂fw
∂c

=
∂fl
∂ql

∂ql

∂c
,
∂ql

∂c
= −RT

∂2fw
∂ps∂qw

=
∂

∂ps

[

∂fw
∂qw

]T

=

[

∂

∂k3

[

∂fw
∂qw

]T
∂

∂r

[

∂fw
∂qw

]T
∂

∂c

[

∂fw
∂qw

]T
]

(41)

∂

∂k3

[

∂fw
∂qw

]T

= 2R diag(ql),
∂

∂c

[

∂fw
∂qw

]T

= −2RKRT

∂

∂r

[

∂fw
∂qw

]T

= 2
∂R

∂r
(Kql − ẑ) + 2RK

∂RT

∂r
(qw − c)

B. Experimental Results

We tested the fitting algorithm both in real data from a

Kinect and in simulation (Fig. 3). In lieu of automatic seg-

mentation, we implemented a simple interactive segmenter—

this was used for the physical experiment only; the simulated

patches were already isolated. We used the two-parameter

pointing/disparity stereo error model proposed by Murray

and Little in [12] (based on earlier work by others) to esti-

mate input sample covariances Σi for all experiments. The

error model parameters we used for the Kinect are σpointing =
0.35px, σdisparity = 0.17px; the former is from [25], the latter

was determined experimentally following [12].

The results graphically show that the algorithm can pro-

duce reasonable curved-surface paraboloid patch models for

local parts of non-flat environment surfaces. Average times

for our unoptimized Matlab implementation are ∼225ms to



Fig. 3. Left: 95% probability error ellipsoids for simulated stereo range sensing using the pointing/disparity error model of Murray and Little [12]
(pointing error exaggerated for illustration). Middle: Experimental dataset; (fake) rock is ∼70×30×90cm W×H×D; ∼125k samples collected in a single
scan with a Kinect at a distance of ∼1m (decimated for display); 21 patches manually segmented and automatically fit. Right: Automatic fits (red) for a
variety of paraboloid and non-paraboloid (lower right) patch types in simulated noisy range samples, using Kinect projection and error models.

Fig. 4. Concept of the patch map: a sparse set of patches locally
approximate both environment surfaces (green) and key contact surfaces
on a robot (brown). All are spatially mapped with quantified uncertainty
(blue Gaussians) relative to a body-centered reference frame.

fit n ≈ 150 sample points on a commodity workstation.

(SVD computations within LM are quadratic in n, though

runtime also depends on the LM convergence rate.)

V. THE PATCH MAP

Once patches are fitted (or otherwise modeled) they can

be assembled into a spatial map including quantified uncer-

tainty, providing a sparse “summary” of nearby surfaces for

higher-level reasoning (Fig. 4). Relative to a given frame of

reference (a body-centered frame may be appropriate in lo-

comotion) patch models can either be sensed exteroceptively

by range sensors or proprioceptively through kinematic and

tactile sensing. Exteroception can detect upcoming terrain

patches from a distance, but with relatively high uncertainty.

Kinematic proprioception senses the pose of contact patches

on the robot itself—e.g. heel, toe, foot sole—potentially

with relatively low uncertainty. Finally, once a contact is

established, the environment patch can be re-measured ex-

proprioceptively through kinematics and touch, possibly with

reduced uncertainty compared to prior exteroception.

All of the classic elements of SLAM [26] are needed

to build such a map: propagation of spatial uncertainty

through kinematic chains, associating different observations

of the same surface patch, and optimal data fusion. The

association problem could be challenging, we leave it open

for now. Fusion by Kalman update is supported by the patch

covariance matrices. First-order propagation of uncertainty

through a chain of transforms with 6×6 covariances Sj is

facilitated by the chain Jacobian Jc given in Appendix I:

Σc = JcSJT
c , S , diag(Sn, . . . , S1). (42)

Σc∈R6×6 is the covariance of the pose of a patch at the end

of the chain relative to the base. For a 5-DoF patch,

Σc5 = J5JcSJT
c JT

5 , J5 ,

[

∂rxy

∂r
0

0 I3×3

]

. (43)

VI. CONCLUSIONS AND FUTURE WORKS

We introduced a set of 10 particular bounded curved-

surface patch types, an algorithm to fit patches to noisy

point samples of a surface, and the concept of a patch map

to sparsely represent potentially useful contact surfaces in

the environment near a robot, and also on the robot itself.

The presented patch models all have minimal geometric

parameterizations and quantified uncertainty in the form of

covariance matrices.

Though surface modeling and surface fitting have been

studied extensively, many prior works ignore uncertainty,

are limited to planes, are dense vs sparse, and/or are con-

cerned only with surfaces in the environment. We address

all of these issues to some extent. Though some challenging

aspects of the problem—such as segmentation and data

association—remain future work, we demonstrated the ef-

fectiveness of our approach both in real data and in realistic

simulation. We invite the reader to try our approach for

themselves using the provided implementation [3].



APPENDIX I

We calculate the Jacobian of the exponential map (2) as a

[3× 3]× 3 row tensor11:

∂R

∂r
= [r]×

∂α

∂r
+

∂[r]×
∂r

α+ [r]2×
∂β

∂r
+

∂[r]2×
∂r

β (44)

∂α

∂r
=

θ cos θ − sin θ

θ3
rT ,

∂β

∂r
=

θ sin θ + 2 cos θ − 2

θ4
rT

∂[r]×
∂r

=
[

[0 ẑ −ŷ] [−ẑ 0 x̂] [ŷ −x̂ 0]
]

∂[r]2×
∂r

= [r]×
∂[r]×
∂r

+
∂[r]×
∂r

[r]×.

The Jacobian of (8) is, with θxy , αxy , and ẑl from (8),12

∂rxy
∂r

=

[

x̂T

ŷT

]

{

I if θxy ≈ π
∂
∂r

ẑ×ẑl

αxy
otherwise

(45)

∂

∂r

ẑ×ẑl
αxy

= [ẑ]×

(

I

αxy

−RZ(γxyR
T (I−Z)+I)

)

∂R

∂r
ẑ

R , R(r), Z , ẑẑT , γxy ,
θxy − sin θxy cos θxy

sin3 θxy
.

Viewing (10) as a vector function,

[rTn tTn . . . rT1 tT1 ]
T ∈ R

6n → [rTc tTc ]
T ∈ R

6,

its Jacobian Jc is 6×6n where 6×6 block j from right to left

is, with φj from (9), Rj , Xj from (10), ∂r
∂R

from Appendix II,

∂[rTc tTc ]
T

∂[rTj tTj ]
T

=

[

∂rc
∂rj

0
∂tc
∂rj

∂tc
∂tj

]

,
∂rc
∂rj

=
∂rc
∂Rc

Rl

∂Rj

∂rj
Rr (46)

if φj = +1 if φj = −1
∂tc
∂rj

= Rl

∂Rj

∂rj
tr

∂tc
∂rj

= Rl

∂Rj

∂rj
(tr − tj)

∂tc
∂tj

= Rl

∂tc
∂tj

= −RlRj

Rl , Rn · · ·Rj+1, Rr , Rj−1 · · ·R1, Rc , Rn · · ·R1

tr , (Xj−1◦ · · · ◦X1)(0).

APPENDIX II

Due to numerical issues with other equations we found in

the literature, we developed the following numerically stable

algorithm to calculate the log map

r(R), R ,

[

Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz

]

11(44) remains finite as θ → 0. Small angle approximations for α and β
were given in footnote 3; their derivatives can be approximated as ∂α/∂r ≈
(θ2/30− 1/3)rT and ∂β/∂r ≈ (θ2/180− 1/12)rT .

12For small θxy , γxy ≈ 2/(3− θ2xy/2).

and its 3×[3×3] column tensor Jacobian ∂r/∂R. Explanation

omitted for space; the algorithm is tested in our software [3].

v = [Rzy−Ryz Rxz−Rzx Ryx−Rxy]
T

c = (tr(R)− 1)/2, s = ‖v‖/2, θ = atan2(s, c)

choose ijk ∈ {xyz, yzx, zxy} s.t. Rii=max(Rxx, Ryy, Rzz)

δ = 1 +Rii −Rjj −Rkk

if δ > ǫδ then ✄R not identity, θ not small

γ=θ(3−tr(R))
−1

2 , d =
√
δ

ri=dγ, rj=γ(Rji+Rij)/d, rk=γ(Rki+Rik)/d

r = [rx ry rz]
T
✄ solution up to sign

if θ < (π − ǫθ)✄ resolve sign by testing action of R

p = r×[0 0 1]T , if pTp < 1/4 then p = r×[0 1 0]T

if (Rp)T (r× p) < 0 then r← −r, d← −d
✄ solution for r(R) complete, now find ∂r/∂R

r̂ = [r̂x r̂y r̂z]
T = r/θ, ∂θ/∂R = (c[r̂]× − sI)/2

wi = 1, wj = −1, wk = −1, U = diag([wx wy wz]
T )

γ∂d/∂R = (γ/(2d))U, d∂γ/∂R = r̂i

(

∂θ

∂R
+

Iθ

6−2 trR

)

∂ri/∂R = γ∂d/∂R+ d∂γ/∂R

V = 03×3, Vji←1, Vij←1,W = 03×3,Wki←1,Wik←1

∂rj/∂R = (γ/d)V +(Rji+Rij)(d∂γ/∂R− γ∂d/∂R)/δ

∂rk/∂R = (γ/d)W+(Rki+Rik)(d∂γ/∂R− γ∂d/∂R)/δ

∂r/∂R = [∂rx/∂R ∂ry/∂R ∂rz/∂R]T

else ✄ small θ

if θ > ǫθ then α = s/θ else α = 1− θ2/6

r = v/(2α)✄ solution for r(R), now find ∂r/∂R

if θ>ǫθ then λ=(s−cθ)/(2s2), ∂θ/∂R = (c[r/θ]×−sI)/2
else λ = θ/12, ∂θ/∂R=(c(13×3 − I)− sI)/2

✄ using ∂[r]×/∂r from (44) and Kronecker product ⊗
∂r/∂R = (1/(2α))(∂[r]×/∂r)

T + λv ⊗ (∂θ/∂R)
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