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CURVED TRIANGULAR FINITE C™-ELEMENTS

ALEXANDER ZENISEK

(Received February 4, 1977)

INTRODUCTION

The aim of the paper is to construct curved triangular finite C”-elements and to
apply them in solving elliptic boundary value problems of order 2(m + 1). The
paper consists of five sections.

In Section 1 the approximation of a curved boundary used in the paper is descri-
bed and a modification of the transformation first analyzed by Zldmal [9, 10, 11]
is presented.

In Section 2 curved triangular finite C™-elements are constructed. The results
presented in this section modify and generalize the ideas of Mansfield [6] where
curved C'-elements were first constructed.

In Section 3 an interpolation theorem for curved finite triangular C™-elements
is presented. This theorem is a generalization of the interpolation theorem for
“classical” triangles (cf. Bramble and Zlamal [1]).

In the last two sections the C™-elements are applied. As a model problem, the
Dirichlet problem is chosen. The main attention is devoted to analyzing the effect
of numerical integration. The theory is a generalization of the results of Ciarlet and
Raviart [2] and Ciarlet [3].

The results of the paper can be described in the case m = 1 as follows: The Diri-
chlet problem of the fourth order elliptic equation in a domain Q with a smooth
boundary I is solved by the finite element method. The domain Q is triangulated
and Bell’s element of degree N = 5 is used on the interior triangles. The curved
side of each boundary triangle is approximated by an arc of the third degree. The
union I', of these arcs is the approximation of the boundary I'. Using a special
polynomial w*(¢, n) of degree N* = 7 on the triangle T, with vertices R,(0, 0),
R,(1,0), R4(0, 1) we can create, by means of one-to-one mappings of T, onto the
curved triangles T, elements wy(x, y) which give by piecing them together with Bell’s
elements a function from C'(€,). Such functions are used in solving the problem

346



by the finite element method. In order to get numerical results the weak formulation
of the problem must be expressed approximately by means of numerical integration.
If the quadrature formula used for interior triangles has degree of precision d = 6
and the formula used for curved triangles has degree of precision d = 10 then the
approximate solution exists and is unique and the rate of convergence is O(h?), h
being the length of the greatest side in the triangulation.

In the case m 2 1 the Dirichlet problem (107), (108) is solved and on the interior
triangles the generalized Bell’s element of degree N = 4m + 1 is used. The boundary
I' is approximated piecewise by arcs of degree 2m + 1. This implies that w*(é, 1)
is a polynomial of degree N* = N + 2m? on Ty. If d = 2N — 2(m + 1) for the
interior triangles and d = 2N* — 2(m + 1) for the curved triangles then the appro-
ximate solution exists and is unique and the rate of convergence is O(h*™*1).

In the paper the following notation for partial derivatives is mostly used:
Du(x, y) = d™lufox18y*, Du(&, n) = d"vfoemon™

with o = (ay, o), lozl = a; + o,.

Let k = 0 be an integer and p any number satisfying 1 < p < oo. In the paper,
the symbol W ¥(Q) denotes the Sobolev space which consists of those functions
ve L(Q) for which all partial derivatives D*» with |a| < k belong to the space
L,(Q). It is a Banach space with the norm

“U“k,p,sz = (J;ol”lf‘p,n)””

where the seminorms are given by

Nolsp0 = (|a|Z:fJ'~L

with the standard modification for p = oo:

Dav|p dx dy)l/p

[0]),00,0 = vraimax [D*|, o] .0 = vrai max | D% .
(¥ lal=J (.79, la] Sk

When p = 2 we shall use the notation

wiQ) = Q)5 [ lize = [lkos |20 =1le-

1. APPROXIMATION OF A CURVED BOUNDARY

Let Q2 be a bounded domain in the x,y-plane with a boundary I which is piecewise
of class C**! with g sufficiently large to fulfil our requirements. Then the boundary I’
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can be divided into a finite number of arcs each of which has a parametric representa-
tion

(1) x=0¢(s), y=y(s), ass=<b

with functions ¢(s), ¥(s) belonging to C*** and such that at least one of the derivatives
@'(s), ¥'(s) is different from zero on [a, b].

Let us triangulate the domain @, i.c., let us divide it into a finite number of triangles
(the sides of which can be curved) in such a way that two arbitrary triangles are either
disjoint, or have a common vertex, or a common side. Let the triangulation have the
property that each interior triangle (i.c. a triangle having at most one point common
with the boundary) has straight sides and each boundary triangle has at most one
curved side. This side lies then on the boundary. Further, we assume that the domain
Q is triangulated in such a way that the curved side of each boundary triangle lies
on one arc of the type (1) from which the boundary I' consists.

With every triangulation t we associate two parameters h and 3 defined by

(2) h =max hy, 9 = min Y,

Ter Tet
where hp and 97 are the length of the greatest side and the smallest angle, respectively,
of the triangle (with straight sides) which has the same vertices as the triangle T.
We restrict ourselves to such triangulations that 9 is bounded away from zero as
h -0, ie.

3) 9

Let Tbe a curved boundary triangle and Py, P,, P a local notation of its vertices.
Let P(x;, y:), P(x;, y;) be the end points of the curved side of Tand let

v

3o, 9o = const > 0.

(4a) Di(1) = [ols; + 5t) — x; — X)) — 1),
(4b) Pit) = [uls; + 55t) = v = Futf(1 = 1)
where

(5) Xij=X;— X, Vig=yi— Vi>» Sij =58 —5;.

The symbols s, (k = i, j) denote the values of the parameter s for which
(6) xe=0(s), ye=V0), k=ij.

For the sake of brevity, it is convenient to set

)

In what follows we shall use the notation X;, y; even if one of the vertices lies inside
of Q.

Ll

i =Xy Vi=JYits Si=8;.
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Finally, let T, denote the triangle (with straight sides) which lies in the &, #-plane
and has the vertices R(0, 0), R,(1, 0), R5(0, 1). Now we are ready to formulate the
following theorem.

Theorem 1. Let I' be of class C**', q¢ = 1. Let the local notation of the vertices
of T be chosen in such a way that P,P; is the curved side of the triangle T.If (3)
holds and hy is sufficiently small then each of the transformations

(8a) x =x(En) = x; + 5,E + X + & Dyy(n),
(8b) y =& n) =y + & + Fan + & ¥in(n),
(9a) x =x(&n) = x; + X8 + X3 + 5 Dy5(8),
(9b) y=WEn) = vy + F28 + Fan + 1 ¥as()

maps T, one-to-one onto T. The Jacobian J(&,n) of each of these mappings is different
from zero on T, the sides R{R, and R Ry are linearly mapped onto the straight
sides P, P, and PP, respectively, and the side R,R5 is mapped onto the arc P,P;.
The mappings (8), (9) as well as their inverse mappings are of class C% In addition,

(10) erhy £ |J(E n)| £ cuh%, ¢ = const > 0,
(11) Dix(gm) = O(hEY),  Diy(&n) = O(h), 1=]ef <q,
(12) D*é(x,y) = O(hgs'), D(x,y) = O(hs"), 1 =|d S q.

Proof. Except for (12), the proof is a slight modification of the proof of [10,
Th. 1]. Thus we omit it. To prove (12) let us differentiate the relations x = x(¢, #),
y = ¥, 1) with respect to x and y. Solving the equations obtained we find

) Fi ’
(13) g&-‘iz_]—l?l’ gﬁz_]"la_y’ %z_.]‘ia_x, 4_'7:J‘1aaﬁl
ox on Ox Y on Oy o0&
The relations (10), (11), (13) imply (12) in the case [oc[ = 1.

Let us suppose that we proved (12) for |« £ n. We shall prove (12) for o] = n +
+ 1 < g. Bach of the derivatives D*!(x, y), D*1(x, y) with |a| = n is a linear
combination of expressions of the type

(14) L& M  [D7J (& m]? [D(x, »)I [D72(&, m)]
where |o| < n, |B] < n,|y| £ nand{ = Eorp, z = xor y. It holds
[J(& )] ™" = 0(hz™), [D*J(E n)]P = O(h§™1D7),

[DP((x, )T = O(hz"), D'z(¢,n) = O(hE) .
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We can easily find

é%{[J(é: ml ™ = O(h;zk)’ éiw{[Dm'](f” NP} = 0(h<12+|‘,|,,,),

5] - o 0 .

—A{[DU(x, »)}} = O(hz"),  —{D'=(& n)} = O(hlY)

ow aw

where w = x or y. Thus the estimate of the first derivatives of (14) is the same as
the estimate of {14). This proves (12).

Remark 1. In [9], [10], [11], where the curved triangles were first introduced,
another local notation of vertices of Tis used: the curved side of Tis denoted there
by P P;. It should be noted that each of the possible local notations allow a construc-
tion of curved triangular C™-elements. However, if we use the same notation as in
Theorem 1 then the expressions defining C™-clements are less cumbersome than
in other cases.

Remark 2. The arithmetical mean of the right-hand sides of (8) and (9) gives
the transformation

(152) X = xy + 8+ Fan + [ Paa(n) + 0 P25(0)]

(15b) yo= v+ Fa + Fan + HEWaa(n) + 1 Vas(€)]

This is in another notation the transformation (3.5) of [6].

The transformations (8) and (9) (or the transformation (15)) do not allow to con-
struct curved finite C™-elements (m = 1). In order to obtain such a transformation
we must approximate the functions ¢(s), ¥/(s) by polynomials and change the defini-
tion of the functions @, ¥.

In what follows we restrict ourselves to the mapping (8). Let ¢*(r) and y*(z) be

polynomials of degree at most n which satisfy (cf. (6))

(16) o*(0) = x5, @*(1) = x5, Y*0) = ., ¥*(1) =ys,
P,(x3, ¥2), P3(x3, y3) being the end-points of the curved side of T. Then
(17) (1) = x5 + Xaot + (1 — 1) py(1),

(18) Y1) = yy + Faot + (1 — 1) po(1) .

The polynomials p,(f), p,(f) depend on the form of approximation of the curved
side of T. We restrict ourselves to the case n = 2r + 1 (r < ¢ + 1) and require
@*(t), y*(t) to be Hermite interpolation polynomials of the functions ¢(s, + §3,1),
¥(s, + 5351) uniquely determined by the function values and all derivatives up to
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order r inclusively at the points 7, = 0 and 73 = 1. This leads, with respect to (16),
to the following additional conditions for ¢*(t) and y*(¢):

(19) 5, 0%(s) = 0*®(1), k=1,....r; i=23(, =0 1,=1),

(20) S ®(s) =y *P(r), k=1,...,r; i=23

which form 2r conditions for the polynomials p,(r) and p,(t) of degree 2r — 1,

respectively.

If the curved side P,P; lies on a curve y = f(x) then the parametric equations
of PPy are x = X, + X351, y = f(xy + X35t), 1[0, 1]. In this case 535 = X3,
@*(t) = x, + X3,t and the conditions (19) are automatically satisfied.

It should be noted that the curve

(21) x = @*1t), y=y*1), te[0,1]

has the same derivatives d’y/dx/ (j = 1, ..., r) at the points P,, P, as the curve (1).

Let @3,(¢) and ¥3,(t) denote the functions obtained by replacing the functions
@(s5 + 33,1) and Y(s, + §5,1) in (4a) and (4b) by their interpolation polynomials
@*(t) and y*(1), respectively. With respect to (17) and (18), we can write

(22) ‘I’gz([) =1 Pl(t) > ljp’:!;z(t) = tpz(f) .

If we replace in (8) the functions @3,(1), ¥5,() by the functions (22) we obtain
the transformation

(23a) x

(23b) y

It

x*(&,n) = x, + X8 + X + Enps(n) s

viE ) =y, + T8+ I+ &y p2(n) -

Theorem 2. Let T* be a curved triangle with straight sides P, P,, PP, and a curved
side P,Py the parametric equations of which are given by (21). If (3) holds and hy
is sufficiently small then the transformation (23) maps T, one-to-one onto T*.
The Jacobian J*(&, 1) of the mapping (23) is different from zero on T, the sides
RiR, and R(R; are linearly mapped onto the straight sides P,P, and PP,
respectively, and the side R,R; is mapped onto the arc P,P5. In addition,

(24) e hy S I*(E n)| < b}, ¢; = const > 0,

(25) D*x*(¢&,n) = O(hE),  Dovx(& ) = o(h), |of =1,2,...
(26) D*EX(x, y) = O(hy '), Dn*(x,y) = O(h7'), Jof =12, ...
where

(27) &=, n=nxy

is the inverse mapping to the mapping (23).
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The proof is again omitted because it follows the same lines as the corresponding
considerations in [11].

2. CONSTRUCTION OF CURVED C™ELEMENTS

In this section we shall use the transformation (23) for constructing curved triangu-
lar finite C™-elements. The definition of a curved finite C™-element depends on the
choice of the C™-¢clement which is used on the interior triangles of the given triangula-
tion of Q. Let us decide to use the generalized Bell’s C™-element [5] on these triangles.

Let us substitute the curved triangles T of the triangulation of Q by the curved
triangles T* described in Section 1 and denote such a changed domain by Q. OQur aim
is to construct on the curved triangles T* functions which give, by piecing them
together with generalized Bell’s elements, functions from C™(,).

The generalized Bell’s element is a triangular element with a polynomial of degree
4m + 1 uniquely determined by the following parameters:

(28) Dw(P), |of£2m, i=1,23,
(29) D"W(Po) s |a| <m-—2

where P, P,, P, denote the vertices of the triangle in a local notation and P, is the
centre of gravity of the triangle. On the contrary to [12] no parameters are prescribed
on the sides of the triangle. These parameters are substituted by the requirement
that the k-th normal derivative 6*w/dn}; be a polynomial of degree 4m + 1 -- 2k
(k=1,...,m) along the side P,P; (i <j,i=1,2; j =2,3). Thus we want
to construct on T* a function w(x, y) with the following properties:

(a) The function w(x, y) is uniquely determined by the parameters (28) prescribed
at the vertices of T* and (if necessary) by some parameters prescribed in the interior
T* of T*.

(b) The function w and its k-th normal derivative " wlon; (k =1, ..., m) are
polynomials of degree 4m + 1 and 4m + 1 — 2k, respectively, in one variable
along the straight side P, P; (j = 2, 3). These polynomials are uniquely determined
on each straight side by the parameters prescribed at the end-points of this side.

(c) The function w*(&, ) given by the relation

(30) w*(&, n) = w(x*(& 1), y*(& n))

is a polynomial; here the functions x*(¢, 1), y*(¢, n) are defined by (23).

Let us suppose for a moment that there exists a function w(x, y) with properties
(a)—(c) and analyze the properties of the polynomial w*(¢, ). The basic result
of this analysis will be the relations (51), (57). We sketch how to obtain them.
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Let the set of normals in the triangulation 7, of 2, be given in such a way that
the unit normal vector n,; to each straight side P,P; of each curved triangle T*is
defined by

(31) ny =il —%hi) (=23
where 1, ; is the length of the segment P, P,. Let us define the functions

(32) fk(<)=<<ﬁzi—xz ) )(x £ 0), y*(&, 0)).

0x

A\ k
(33) giln) = ((J—’s 25, L) W) (x*(0, ), ¥*(0. 1))
ox ady

where k = 0, 1, ..., m. The expression on the right-hand side of (32) must be inter-
preted in the following way: First we apply the operator (¥, 6/éx — X, 8/dy)* on the
function w(x, y) and then we set x = x*(£,0) = x; + %,&, v = y*(&,0) = y, +
+ j,&. A similar rule holds for the right-hand side of (33). Using (31) we can express
1{(€) and g,(n) in the form

(’)w

(34) fl8) =By ———(x; + X8y, + 7,8), k=0,1,...,m,
6n12
ak

(35) 9(n) = 11;35-1(1 (xy + Xan, 0y + Fan), k=0.1,...,m.
nty

Owing to the requirement (b) the expressions (34), (35) show that the functions
1), gi(n) are polynomials of degree 4m + 1 — 2k (k = 0,1, ..., m). The para-
meters £7(0), f(1) and g{(0), g(1) (j = 0, 1, ..., 2m — k) uniquely determining
fi(¢) and gu(n), respectively, are linear combinations of the parameters (28). We
obtain them from (32), (33) by means of the rule of differentiation of a composite
function.

Let us define vectors

(36) (&) = (FE) SEE) - Sim () 1)
(37) g = (g(), g¥ V(). - - -, gi— () gulm)"

(38) ”k(f) = (“k.o(f)’ “k,x(é)’ R “k.k(i))r’
(39) Vk(’?) = (Uk,o('l)7 Uk,x('l), Cees Uk,k('l))T

where the superscript T'indicates transposition and where

(40) U (&) = T (x¥(E, 0), 142, 0)) ( k)

’)kJaJ
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G — (x*(0, 1), y*(0, 1)) (j=0,1, ..., k).

(41) v f(n) =

ax* oy
Then we can write, according to (32), (33),
(42) fi(&) = Du(d) (k=1,...,m),
(43) gn)=Gv(n) (k=1,...,m),

where D, and G, are square matrices with k + 1 columns. The entries of the matrix
D, are linear combinations of the monomials X375 (a + b = k), and the entries
of the matrix G, linear combinations of the monomials X334 (a + b = k). The
explicit expression for the matrices Dy, G, can be obtained from (32), (33) by means
of the rule of differentiation of a composite function. E.g.,

%255 5
D, =| x,5, 2 — X5 —%,7, |-
iS5, 0§
It holds
(44) DD, = (x5 + p2 by, (k=1,...,m),
(45) GG, = (X3 + 73 hyy (k=1,..,m)
where I, ; is the unit matrix with k + 1 columns.
Let us set
(46) M, = (52 +73)7 Dy, N = (55 + 73)“G,.
The relations {42} —-(46) then imply
(47) u &) = MfLE) (k=1,...,m),
(48) vidn) = Ngiln) (k=1,...,m).
Denoting
(49) 0 =555 +55), Bi=wlE + 7)) (1=23)

we see from (46) that the entries of the matrix M, are linear combinations of the
monomials a3B3 (a + b = k), e.g.,
i 2
| % 2, B;
|
M, =| a8, ﬁg - “; —o2f5 |,
/”; —20,8, % J
and the entries of the matrix N, are linear combinations of the monomials a5
(a + b = k).

Y
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Now we are able to express the derivative d*w*(¢, 0)/on* (1 £ s < m) in a form
suitable for our considerations. It follows from (30) that

(50)

>Fw*  OFw [Ox*\* ow o°y*
i) T i A
on’ ox* \ on dy on'

Considering (50) for the points (£,#1) = (&, 0) we can express the derivatives
o*wlox* 78y (j = 0,1, ..., k; k =1, ..., s) by means of (47). We obtain then

(51 £0)= ngk,(é)f"‘ e (=

k=1 j=0

IIA

m)

where the functions g4(£) are of the form

k+1

(52) stj(f) = iz,lo'kji(a:!: ﬁz) Tskji(é) .

Each a,;{«,, B,) is a linear combination of the monomials o33 (a + b = k) and each
74,;{&) a linear combination of the products

o (55 o () (o o) (o)

where

(54) =1, j,20, 2,21, p =20,
(59) ik Ay =k,
(6) By + oo i, + Ay + A =S

As the functions x*(&, ), y*(&, 1) depend on € only linearly (see (23)) the expression
for the s-th normal derivative on the side R, R is simpler:

" (0.) = ;@s,(n) g7 n) (1ss=m)

(57) -

where

(58 ) = 37t b 0.0 | [ 0.0

Each G,;/(«3, B3) is a linear combination of the monomials a3p5 (a + b = s).
Finally, the relations (30), (32), (33) imply

(59) WH(E, 0) = fo&), w0, 1) = goln) .
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It follows from (23), (51), (52), (55), (57), (58), (59) that 0*w*(Z, 0)/0n® is a polynomial
of degree 4m + 1 and &°w*(0, n)[d¢° a polynomial of degree 4m + 1 + (n — 2) s
where s =0, 1, ..., m and n = max (n,, n,), ny and n, being the degrees of the
polynomials x*(&, n) and y*(¢, ), respectively. Thus, if w*(¢, ) is a polynomial it
is at least of degree N*,

(60) Nt=dm+1+(n—1)m

We shall now construct a polynomial w*(&, ) of degree N* which satisfies the
relations (51), (57) and (59). This will be done by means of the following theorem
which is a consequence of the theorem introduced in [4], p. 31.

Theorem 3. A polynomial w*(&,n) of degree 4m + 1 + (n — Y)m is uniquely
determined by the following parameters:

(61) D*w*(R;), |af £2m; i=1,2,3

(62) w¥(Roj), Jj=12,...,M; M= mn(mn ~ 1))2

(63)

0" (Q(”’ i=1,2; j=2,3;; i<j: r=1,....5

s=n—1)m+k; k=0,1,...,m

where R; (i = 1,2, 3) are the vertices of the triangle Ty, d[0v; the derivative in the
direction of the normal to the side R;R;, Q(l’s) . Q(’ *) the points dividing the
side R;R; into s + 1 equal parts and Ry; (J =1, M) points lying in the interior
To of Ty and ordered in the same way as M integers in the Pascal triangle.

As w*(&, 1) is connected with the function w(x, y) by the relation (30) we can
express the parameters (61) in the form of a linear combination of the prescribed
parameters (28).

To get the parameters (62) let us prescribe in the interior T* of T* the parameters
(64) W(POj)5 j=1)9M

where P is the image of the point R,; obtained by the mapping (23). Then, accord-
ing to (30), w¥(Ro;) = w(Py;).

As the parameters uniquely determining the polynomials f,(&), g.(n) (k = 0, 1,

., m) are known (see the text following (34), (35)) we can express fi(&) and g,(n)
explicitly. The explicit expression for 0*w*(&, 0)/on* and d*w*(0, n)[o&* (k = 0, ..., m)
can be then easily obtained by means of (51), (57) and (59). Using these expressions
we find the parameters (63) on the sides R;R, and R,R;. Each of these parameters
is a linear combination of the parameters (28).

As to the parameters (63) on the side R,R; we are allowed to prescribe them
quite arbitrarily. Let us prescribe them in such a way that they are linear combina-
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tions of the parameters (28). This means that we require the function &w*(1 — 7, n)/
J8vhs to be a polynomial of degree 4m + 1 — 2k (k =0, 1, ..., m).

Let us order the parameters (28), (64) in a d-dimensional column vector 4, d =
=3(m + 1)(2m + 1) + mn(mn — 1)[2, and the parameters (61), (62), (63) in
a d*-dimensional column vector A% d* =[4m + 2+ (n — 1)m][4m + 3 +
+ (n — 1) m]/2. The preceding considerations imply

(65) A% =LA,

where the (d* x d)-matrix L depends on the co-ordinates of the vertices P; of T*,
on the values of the polynomials p (1), p,(#7) and their derivatives at some discrete
points and on the ordering of the parameters in the vectors 4*, 4 only.

Theorem 4. Let a vector 4 be given and let w*(¢, n) be the polynomial of degree
dm + 1 + (n ~ 1)m uniquely determined by the components of the vector (65),
Then the function

(66) w(x, y) = wHE(x, »), n¥*(x, ¥))
has the properties (a)—(c).

Proof. To prove (a) let us set 4 = 0. Then, according to (65), 4* = 0 which
implies w*(&, n7) = 0. The relation (66) then gives w(x, y) = 0.

The property (c) follows immediately from (66) and from the fact that the mapping
(23) maps T;, one-to-one onto T*.

To prove (b) let us set

) 2@ = (50 - = o) w) 0 0) G

Il

0,1,...,m),

0,1, ...,m).

il

@ 6= (52 - 5 2 ) oo G

The considerations introduced in (36)—(58) hold even if fi(&), gi(n) are not poly-
nomials (they do not depend on the form of the functions fy(&), gx(n)). Thus it holds

o w* A k= J)
(69) = (60) =¥ Y oad&) FFT(E),

on k=1 j=0

>Fw*

(70) —(0,n) = jgoésj(n) G (n) -

1t follows from (66), (67), (68) and from the linearity of the transformation (23)
along the sides R, R,, R{R; that

Fo(é) = fo(ﬁ)) Go('l) = go(’?)'
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., m and compare the obtained

If we set now in (69), (70) successively s = 1,2, ..
1 ..., mwe get

2
relations with the relations (51), (57) for s ,2,

FA&) =14¢), G =g, j=12..,m

i

which was to be proved.

3. INTERPOLATION THEOREM

Let T be a curved triangle the geometry of which is described in Theorem 2 (we
omit the star in this section). We say that a function w(x, y) is the C"(T)-interpolate
of a sufficiently smooth function u(x, y)if

(71) Dw(P;) = D°u(P)), |of Z2m, i=1,2,3
(72) w(Po;) =u(Po;), Jj=1,...,M; M= mn(mn— 1)J2

and if the function w is constructed according to (66) and the assumption of Theorem 4.
It should be noted that the definition of the C"(T)- interpolate includes the assump-
tion that hy is sufficiently small.

Theorem 5. Let u(x, y) e HYT) where 2m + 2 < k < 3m + 2. Let w(x, y) be the
C™(T)-interpolate of the function u(x,y). Then, for 0 < s = k and sufficiently
small hp,

(73) lu = wlor = Chrfufir
where the constant C does not depend on the triangle T and the function u(x, y).

Proof. The proof (as well as the formulation of Theorem 5) is a modification
and generalization of the proof of [I, Th. 2].

a) Let us set
(74) wi (& n) = u(x*(& ), ¥ m) .
Then the relations (71), (72) imply
(75) D*w¥R;) = Du*(R;)), |a|<2m; i=1,23
(76) w*(Ro;) = u*(Ry;), j=12,.... M
where the function w*(¢, n) is defined by (30). Let us consider the linear functional
) F(u*) = (u* — w*, v) 1,
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where (-, +),.r, means the scalar product in H¥(T;) and v is an arbitrary function
from H¥(T,). We shall prove

(78) F(u*) =0, VYu*eP(k — 1)

where P(k — 1) denotes the set of all polynomials of degree at most k — 1.
The following relations are obtained in the same way as the relations (69), (70)

Ju*
O X $onle) e o { F 58, +y2z:>]
p=1j=0
Or *® ¥ . dr«j Aj _ ~
S (0,m) = X 8n) Ha [L,u' (x) + %, vy + }’3'1):|
=0 dy ony,

(80)

where g,,,(¢) and ¢,(n7) are given by (52) and (58), respectively, and where r = 1, ...

., m. Let u*e P(k — 1). Then the left-hand sides of (79), (80) are polynomials
of degree at most k — r — 1. The linearity of the transformation (23) along the side
R(R; (j = 2,3) implies that u(x; + X,{, y; + y,{)is a polynomial of degree at most
k — 1, where{ = £if j = 2and { = nif j = 3. Setting successivelyr = 1, ..., min
(79) and (80) we find that (0"u/dnT;) (x, + X,¢, ¥, + §;{) is a polynomial of degree
atmostk —r— 1 (r=1,...,m).

It holds k = 3m + 2. Thus (@ufon’))(x; + X, vy, +7,0) (r = 0,1, ..., m) is
a polynomial of degree at most 3m + 1 —r =4m + 1 — (m + r). As r < m we
see that 8"u/0n' ;is on P, P; a polynomial of degree at most4m + 1 — 2r(r = 0, 1,

., m). This polynomial is uniquely determined by the parameters (71) prescribed
at the points Py, P;. Thus

(81) U T o PP, (r=00, . m =23
ony;  ony;

The relations (51), (57), (79), (80), (81) imply for r = 0, I,

du* orw* o"u* 8" *
82 e 0)= e 0), S =
(52 o0 - D0, S0 -

(0, 7).

To derive a similar relation on the side R,Rj;, i.e. the relation

(83)

o
n) = OV: (L=nmn (r=01...,m),

V23 Va3

is simpler: According to the definition (see the text following Theorem 3), the right-
hand side of (83) is a polynomial of degree 4m + 1 — 2r. Ask <3m + 2, r=m
the left-hand side of (83) is a polynomial of degree at most 4m + 1 — 2r. Thus (83)
follows from (75).
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The relations {75), (76), (82), (83) and Theorem 3 imply u* = w*. Since F(u*)
is of the form (77}, the relation (78) holds.
b) It follows from (77) that

(84) [F@*)] = [olero (10 fero + [9*ero) -

We estimate now |[w*|[, 7, by means of [u*||; 1. It holds

a*
(55 w(En) = 3 s ()
where a,, ..., a;« are the parameters uniquely determining the polynomial w*(¢, n)

of degree N* (see Theorem 3) and r(&, 1) (i = 1, ..., d*) are the basis functions.
As the polynomials (¢, ) are defined on the fixed triangle T, they are bounded
together with their partial derivatives by absolute constants. Thus it holds

d‘ dt
(56 el 5 Slal [l 5 € Lo

As k 2 2m + 2 and the relations (75), (76) hold we get for the parameters a; prescri-
bed at the vertices R,, R,, R; and in the interior T, of T, the following estimate
by means of the Sobolev lemma:

(87) lajl = Clu*fr, -

In (86), (87) and in the following text we denote by C an absolute constant not
necessarily the same in any two places.

The estimate (87) holds also for all parameters which are linear combinations of the
parameters {75), i.e. for the function values on all three sides R;R; and for all normal
derivatives on the side R,R;. It remains to estim: te the normal derivatives on the
sides RyR; (j = 2, 3).

According to (51), it holds

(88) T @053 Sl el

, p=1 =

First we estimate [g,,;(¢)]- The assumption (3) together with the sine theorem gives
(%7 + 7)'2 = hpsin9y. As X; = O(hy), 7; = O(hy) we obtain from (49) «; =
= O(h7"), p; = O(h7'). Thus o,;(a;, B,) = O(hz"). Using (25) and (56) we find
7,,:/(€) = O(h%). Hence

(89) o (O S ChyP = C

because r = p and hy is sufficiently small. The estimates (88) and (89) give

[orw*
(90 o
l r’

(¢, 0‘)! = CP; _ioljjp’f’(ﬁ)l (r=1,....m).
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In the same way we can obtain from (57) the estimate

o1

: awr (0, n) 1 = C_:iolg&'"‘”(n)( (r=1,...,m).

As the functions f4(£) and go(n) are Hermite interpolation polynomials of degree
4m + 1 uniquely determined by linear combinations of the parameters (75) it holds,
according to the Sobolev lemma,

(92) O] € Clu*er,, ¢el0.1], j=1,...,m,
(93) [98°()| < Cllu*|ir, nel0 1], j=1,...,m.

According to {b) and (32), /() is an Hermite interpolation polynomial of degree
4m — 1. In order to estimate ]f}"’(é)[ where ¢e[0,1] and j=0,...,m — 1, it
suffices to estimate |f{?(0)] and |f{°(1)| (i = 0,1, ..., 2m — 1). We have, according
to (32) and (71),

. . aj«}lu . aj-flu )
(94)  19(0) = %57, P (P)+ ... - %57, ——(P), j<2m~1.

If we express the derivatives D*u(Py)(|e| = j + 1) by means of the derivatives
D" u*(R,) (1 £ |o| £/ + 1), ie.if we use relations of the type

iy a}+1u* il aE* jH1-i
m‘m (Py) = :7:1“ )( (P)>< (P)) + o4

du* A
- R T L, P
+ an ( 1) axzay1+l—x( 1)

we obtain from (94), according to (26)and X; = O(hy),7; = O(h7),

. Jjrroooo
(95) [FPO)] = C{E 78 3 |D*u*(R)[}
i=1 la|=i
wherej = 0, ..., 2m — 1. In the same way we obtain
(96) [£9(0)| = ¢ Zh’*l’ *Z DRy}, 0=js2m—p.

As hy is sufficiently small we get from (96) by means of the Sobolev lemma
©7) 172°0) = Clu*|er,» (G=0,1,....2m = p).
In the same way we can estimate

(98) [fO)] = Clu*lere, G=0,1,....,2m — p).
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The relations (97), (98) give for the polynomial f,(¢) of degree 4m + 1 — 2p and
its derivatives the following estimate:

(99) lf9@) = Clu*|ig,. €€[0,1], j=0,1,...,2m — p,

p=1...,m.

The estimates (90), (92) and (99) imply

: [griv*
(100) }—F (&0 = Clu*iry, ce[01]; r=1 ..., m.
Y
Similarly,
arw*
(101) EéT 0, n)| = Clu*|ere, mel01]; r=1,...,m.

It follows from (100) and (101) that the estimate (87) holds also for the normal
derivatives on the sides Ry R; (j = 2, 3). The estimates (84), (86), (87) then imply

(102) [F@*)| = Clolar, Ju*lr, -

¢) Now we use the Bramble-Hilbert lemma which we formulate for the purpose
of this paper as follows (cf. [3, Ch. 8, Th. 3]):

Lemma 1. Let Q be an open subset of E, with a Lipschitz-continuous boundary.
Let f be a continuous linear functional on the space W¥(Q) (1 £ p £ o) with the
property

flv) =0, VYveP(k —1).
Then there exists a constant C(Q) such that

'f(v)l = C(Q) ”f“:p!? Mkm,ﬂ » Yve thk)(Q)

where ||*||¥ ,.q is the norm in the dual space of wo(Q).

According to (102), the linear functional F(u*) is continuous with the norm equal
to or less than C|v||, 1,. As (78) holds Lemma 1 gives

(103) [F(u*)| £ C|lo)s.zo [u*]x,7> Yu*e HNT,).
Choosing v = u* — w* we get from (77) and (103)
(104) Hu* - W*”s,’ro < C|u*lk,To .
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The theorem on transformation of multiple integrals and Theorem 2 imply the
estimates

(105) Ju = wlox

(106) ‘u*lk.To = ChI;"“IH““k,T'

IIA

Ch}_sNu* — W*“s,ro ,

IA

Combining the inequalities (104), (105), (106) we obtain the estimate (73). Theorem 5
is proved.

4. THE MODEL PROBLEM. V,-INTERPOLATES

In this section we use essentially the approach of Ciarlet and Raviart [2] and
Ciarlet [3] which we generalize to the case of elliptic equations of order 2(m + 1).
We shall consider as a mode] problem the Dirichlet problem

(107) Au = (=1y""' Y D¥a,Dlu)=f in Q,
fal;[Bl=m+1

(108) Dulp =0, |of =m
where I is a smooth boundary of 2 and a.s{= ag,), / are sufficiently smooth functions

(the smoothness will be specified later). The weak solution of the problem (107), (108)
is a functionu eV = H§"'(Q) = Wé"’“’(!)) satisfying

(109) a(u, v) = I(v), VeeV
where

(110) a(u, v) = ]a],|ﬁ§|:=m+1 J-Law(pau) (D*v)dx dy,

v

(111) I(v) = Jf fodxdy.
o)
We assume that there exists a constant g > 0 such that the inequality

(112) Y ayxy)&&za Y &
lal,|Bf=m+1 laf=m+1
holds for arbitrary (x, y)e @ and for arbitrary values of &, Using the Friedrichs
inequality, we see from (110) and (112) that the form a(u, v) is V-elliptic.
Piecing together in the triangulation 7, of Q, the generalized Bell’s C™-elements
and the curved C"-elements described in Section 2 let us construct a finite dimensional
space V, which satisfies

(113) V, = H3 (@)
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The natural way of defining the discrete problem associated with the space ¥}, consists
in finding a function i, € V}, such that

(“4) dh(ahs Uh) = Zh(vh) , Vo, el,
with

(115) a,(v, W) = J‘J- Y d,g(D) (D'w) dx dy,
oy lalliT=m+1

(116) 1(v) =Ughfvdx dy

where the functions 4,; and f are extensions of the functions a,pand f to the domain
Q,, when Q, ¢ Q. In other words, we are actually approximating the solution of the
problem

(117) Au = (=1 Y DHG,D'u)=J in Q,

lal,18]=m+1

(118) Dul, =0, !a[ <m

where Iy is the boundary of Q,.

As we shall consider a family of discrete problems, with the defining parameter h
approaching zero in the limit, we shall make a natural assumption that there exists
a bounded domain € such that

(119) Qc 8 and Q,< 8 forallh.

By the Tietze-Urysohn theorem the functions a,, and f have (non unique) conti-
nuous extension to E,. The extension f of f will be defined by (131). As to d,, we shall
use in (115) those of the extensions of a,, which extend also the validity of (112) to
a domain Q' > Q (the reason will be explained in Section 5, Corollary 1). It is irre-
levant that these extensions are not unique because the results will not depend upon
them. (This will be a consequence of using approximate integration with integration
points lying in ©.) So let us assume that a certain choice of the extensions @,y has
has been made once for all. Then the bilinear form 4,(v, w) defined over H"*'(Q,) x
x H™*1(Q,) by (115) is continuous and moreover, by (119) there exists a constant
M depending on @ only such that

(120) [au(u, V)] £ M[uflpe 1,00 [V me1.00> Vi vE H™F(Q,) .

If , ¢ Q we do not know the values of d,p, fin Q, — €. In this case it is impossible
to evaluate the integrals in (115) and (116). To avoid this difficulty we use numerical
integration and make the basic assumption that for all k the integration points B,
lie in the set &. Then

(121) ) ay(B;) = a,(B), J(B)=/(B).
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Let us have at our disposal a numerical quadrature scheme over the unit triangle
T, (e.g., some of the conical product formulas which are known for arbitrary degree
of precision [8])

(122) j j oEn) dEdn ~ 3 0T o (BY)

where w} are the coefficients and B the integration points of the formula. According
to the theorem on the transformation of multiple integrals, we have

(123) ﬁTw(x, y)dx dy = U P(*(E, 1), ¥*(E, n) |J#(&, )| d€ dy =

i

) HT o*(& ) (& | dgdn .

o

The relations (122) and (123) imply

s [[ e pasa ~ ot
with
(125) W; 7 = w:"].l*(B’,")[ . Bip = (x*(Bf), y*(BY)).

Let us approximate the bilinear form (115) and the linear form (116) by means
of (124), i.e., let us define a bilinear form a,(v, w) and a linear form I,(v) by

(126) ayv, w) =3, Izra),-,T Y (a.;D*vDw) (B; 1),

Tetp i=1 fel,|B[=m+1

It

(127) h(o) = X ¥ oialfo) (Bir) -

Tety i=

In (126) and (127) we use (121) and write a,; and f instead of @, and , respectively.
The symbol [ expresses that we may use different numerical quadrature schemes
(124) on different triangles T t,. (For more details see Section 5.)

We replace now the discrete problem (114) by the following discrete problem:
Find u, € V, such that

(128) ay(uy, 0,) = I{(v,), Vo,eV,.
In applications we always solve the problem (128). As all integration points B; r

belong to @ the discrete problem (128) is independent of the choice of the extensions
d,p, J. Now we are ready to formulate an abstract error theorem.
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Theorem 6. Let a family of discrete problems (128) be given. We assume that
(119) holds and that there exists a constant y > O independent of h such that

(129) ah(Uln Uh) = YHU;.“,%H, 1,00 Vvh € Vh , Vh.

Then the unique solution u, of the discrete problem (128) satisfies the inequality

(130) |6 = sy 0 < C [Sup |, wi) = Dwa)|

wheVn ” Wh ”m +1,0

+

+ inf {”a ~ Ogllms 1,00 + SUP | @(0n> wa) — ai(vns Wh)l}:l

vheVp wheVh ” Wy “m 1,9

where i is any function in H"‘“(Q\, and C is a constant independent of i and h.

We omit the proof because it follows the same lines as the proof of [2, Th. 1] and
[3, Ch. 11, Th. 1]. We make now some comments to Theorem 6.

The assumption (129) is a “uniform” ellipticity assumption (i.e. independent
of h) made upon the discrete problems. A sufficient condition for (129) will be given
in Section 5.

When Q, = Q(and thus @ = Q) weset ii = u where u is the solution of the problem
(107), (108). When &, ¢ Q a natural candidate for the function & of Theorem 6 will
be any extension if € H™*!({2) of the function u. Notice that in this case

(131) Ag=f in Q

so that A, is an extension of f to ,. This fact enables us to explain the meaning
of the first term on the right-hand side of (130): It represents the contribution to the
error of the numerical integration used on the right-hand side of (128). To prove
it let us write, according to (116), (117) and (131),

(132) Tymy) = j f (A,) wp dx dy = ﬂ (=1 Y DaD'a)].
Qp O lal 18] =m+1
.wydxdy.
Let w, € V}. Then, using Green’s theorem and the relation @,; = dg,, We can write
(132) in the form

(133) Lw) = @@, w,) (whe V).
Thus
(134) a(it, wy) — Li(wy) = Ti(wa) — (wy)

which was to be proved.

The second term on the right-hand side of (130), i.e. inf [|fi — v,|, is a generaliza-
tion of the usual term of the approximation theory:if Q = Q,,#i = u and no numerical
integration is used we obtain the well-known upper bound for the error.

.
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The third term on the right-hand side of (130) represents the contribution to the
error of the numerical integration used on the left-hand side of (128).

All three terms on the right-hand side of (130) will be estimated in Section 5.
At the end of this section we mention the so called Vj-interpolates which will play
an important role in Section 5.

The function w(x, y)is called a C™(£;)-interpolate of the function u(x, y)if w(x, y) e
€ C"(Q,) and is pieced together from the generalized Bell’s C"-elements and curved
C™-elements which on each triangle of 7, interpolate the function u(x, y).

The function w(x, y) is called a Vj-interpolate of the function u(x, y) if w(x, y)
belongs to ¥, and is a C™(R,)-interpolate of u(x, y).

We want to know how to construct the domain , (or the finite dimensional
space V}) to be sure that every function satisfying the boundary conditions (108)
and being sufficiently smooth has a Vj-interpolate. To this end let us consider an
arbitrary boundary triangle T of the triangulation 7 of Q. As usual, we denote its
curved side by P,P;. If follows from (108) that

(135) Du(p(s), Y(s)) = 0, |af < m, sels,ss].
The relations (135) imply
!
(136) ad_; Dup(s), ¥(s) = 0, la| =m; k=1,....m.
s

E.g., in the case m = 1 the relations (136) have the form

) T2 0l ¥+ ¥0) e () 00 = 0.

, 0%u , 0%u A
9'(s) ———(0(s), ¥(s)) + ¥'(s) — ((s), ¥(s)) = 0.
Ox 0y dy
It should be noted that owing to (135) the relations
k
dizD“u((p(s),lp(s)) =0, |¢xl <m:; k=1,..., 2m— [a],
s

where |a| + k > m, are linear combinations of the relations (136).
Let r 2 min (19), (20). Let us set s = s; (i = 2, 3) in (135), (136) and use the rela-
tions (19), (20) and the fact that w(x, y), the C™(Q,)-interpolate of u(x, ), satisfies

(137) D*w(P;) = Du(P}), |a] £2m (i=23).
Then we obtain

(138) D'w(P) =0, |e|]Sm, i=23

(139) 0w 0 Dy = 00 el =, k=1,
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E.g., in the case m = 1 the relations (139) have the form

o’w *w
*(t) — (P;) + ¥*'(t;)——(P,) =0, (i=2,3),
o) () + (1) (P =0, (=23

0?w L 0w
(1) —— (P}) + W*(1; P)=0, (i=23).
(p()ax[?y() //()ayz() ( )

The relations (138), (139) imply

JFtiw*
(140) ———(R) =0, k=0,....2m—j; j=0,...,m; i=2]3

at* v,
where /01 is the derivative in the direction R,R;. (Details are even in the case m = 1
cumbersome and we do not introduce them.) As ¢/w*[0v} is a polynomial of degree
4m + 1 — 2j on RyR; (j = 0,1, ..., m) it follows from (140) that ¢/w*|ov}; = 0
on RyR; (j = 0,1, ..., m)and thus

(141) D'w¥(&,n) =0, |of £m on R,R,.

Using Theorem 2 we obtain from (141) that D*w(x, y) = 0, || < m on the curved
side P,P; of the triangle T* which has the same vertices as the triangle T. Thus we
have obtained

Lemma 2. Let n = 2m + 1, i.e. let r = m in the relations (19), (20). Let a function
u(x, y) belong to C*"(Q) and satisfy the boundary conditions (108). Then the
C™(Qy)-interpolate of u(x, y) is the Vj-interpolate of u(x, y).

5. THE EFFECT OF NUMERICAL INTEGRATION

First we define the error functionals by

(142) ET(Q’) = JI ‘(p(x, y) dxdy — iiziwi,r QO(B;',T) >

(143) E*(p¥) = ” @*(&, 1) d¢ dn —iiw}" P*(BY).

According to (122)—(125), it holds

(144) E(p) = E*(o*J*).
Taking into account (115), (121), (126) and (142), we can write
(145) o G wy) — o we) = L Ef( Y d,uDwD'w,).
Tet lal,[B{=m+1
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We have with respect to (144)

(146) Ei( Y apDwDlw,) =EX Y an(DUu)* (Dhw,)* J¥).
laf,|B]=m+1 laf,|pl=m+1

Our aim is now to express (D*)* by means of D’v*. According to the rule of differen-

tiation of a composite function we have

@y tazy, otz ok £\ %1 *\ 22 Dk g% taz, ok
(147) o _ o w <Q§—) (66 ) TR LA S

Ox* 0y*? oEMTE \ ox cy o ox™ ay™:

or in a more concise form

(148) Dw(x, y) = Y bu(x, ) D'wHE ), o] =m 4+ 1

LS|y Em+1
where the explicit expressions for b,,(x, y) can be obtained by comparing the right-
hand sides of (147) and (148). If we express the derivatives D*¢*(x, y), D*n*(x, y)
in the same way as we did in the proof of Theorem 1 (see (13) etc.) we can transform

the functions b,(x, y) to the functions by(Z, ). Then we obtain from (148):

(149) (Dw)y* = Y bEDW*, Jof =m+ 1.

1=]y[Em+1
Inserting (149) into (146) we have

(150) Ei Y  a@uD%w,D'w,) =

la],[Bl=m+1

= EX( Y agbrbrJ*DoiDwy).
1

laf 1B =m+1
=hvllefsm+1
Lemma 3. It holds
(151) DH(bE by, *) = O(h3~ V1= leltinly

The relation (151) is a generalization of the relation (5.9) of [6] and can be proved
by means of (24), (25) and (26). The following Lemma 4 is proved in [3, Ch. 8] and
Lemma 5 in [11].

Lemma 4. Let ¢ € W(T), we WE(T). Then the function @we W(T) satisfies
K
(152) oWl qr < CZOI‘Plk-j,q.T [W]5,00,
i~

where C is a constant depending only upon the integers k and q.
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Lemma 5. Let k be a given integer. There exists a constant C independent of
v* € P(k) such that

(153) IU*|J',T0

(]54) Iv*,i,oo,To = Clv*ljsTo 4 ] 20, Yot e P(k) >

Clo*ire, 0=iZj, Yo*eP(k),

liA

IA

P(k) being the space of all polynomials of degree not greater than k.
The proofs of the following two theorems are generalizations of the proof of 3, Ch.
11, Th. 4].

Theorem 7. Let
(155) E¥@*) =0, Yo*e PQN* —2(m + 1))

where N* =4m + 1 + (n — )m for the curved elements (cf. (60)) and N* =
= 4m + 1 for the interior elements. Then

(156) [Ex( Y duDnDw,)| = Che( 3 | @y

le|,|8l=m+1 al,|Bl=m+1

N*-m,», T/ *

. th”m+l,T”wh”m+l,T

where C is a constant independent of hy, v, and w,,.

Theorem 8. Let r = m + | be a given integer and let
(157) E*(y*) =0, Yy*e P(r + N* — (m + 2))
where N* is the same as in Theorem 7. Then

(158) IET( Z dpg D70, D”w,,)l =
jel,1Bl=m+1

= Ch’r( 2 Hﬁa,/!”r,co,T)Huh”r+m+l.T Hwh”mﬂ,r
la[,[Bl=m+1

where C is a constant independent of hy, v, and w,.

Proof of Theorems 7 and 8. A typical term on the right-hand side of (150) is
of the form

(159) E*(c*D7vy D’wy)

with ]y] = ](5| = m + 1 for the interior elements and with 1 < M, Ié‘ <m+1
for the boundary elements. The function ¢* is given by

(160) o* = ayblbyJ*.
As vy, wy € P(N*) it holds Doy € P(N* — |y]), D’wy e P(N* — [d]).
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Let us consider the form
(161) E*(p*u%), o*e WT), u*e P(N* - |o])
where in the case of Theorem 7
(162) s =N*+ (5| —2m — 1
and in the case of Theorem 8
(163) s=r+ 6| —m—1.
It holds, according to (143) and (161),
(164) [E*(0*u*)] < Clo*o,«, 10 [4*]0.c0.0 -
Using (154) and the inequality [0*|o .70 £ [0*[s,c0,7, We get from (164)
(165) % (0%u?)] £ Clo* e o 8%,
For a given u* € P(N* — [8]) let us define a linear form f(¢*) on WS(T,) by
(166) flo*) = Ex(p*u*), Yo*e WI(T,).

The linear functional f(¢*) is continuous with the norm less than or equal to Clu*[o.r,
on the one hand, and vanishes over P(s — 1) on the other hand, by virtue of the
assumptions (155), (157) and the expressions (162), (163). Therefore, using Lemma |

we obtain
(167) [E*(@*u*)] = Clo*sm.10 [4*o.7,
Vo* e WSAT,), Vu*e P(N* —|5]).
Let us set o* = g*p* with g* € WS(T,), p* € P(N* — [y|) and use Lemma 4 and
Lemma 5. We obtain

(168) ,¢*'s,m,ro = C‘Zolg*‘s—j,oo,To 'P*,j,'ro .
j=

Let us set g* = c*, p* = D'y, u* = D’wy. Then, according to (167) and (168),

(169) [E*(c* D' DPwy)| < C( Zolc*ls—j,w,ro (o8 ]+ 1.0) (Wi jor,ms -
=

It holds

(170) Wil ro = ClWalme .10 S CHT|Wilms sz -

The first inequality (170) follows in the case of boundary elements from (108) and
the Friedrichs inequality; in the case of interior elements we have 3| = m + [,
The second inequality (170) follows from (106).
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Now we estimate |¢*|,_; , ro. It holds, according to (160) and lemmas 4 and 3,

s—j
(171) lc*ls—j.m,To =C Zolﬁaﬁ‘ri—i.w.m lb:‘yb:«f‘j*‘i,wﬂ‘o =
i

s—J
2y~ {3l +i| o
< C) hy |02 s 1= im0 -
i=0

The estimates (25) imply

(172) [@ls- i iw.ro = Chy 77|y

|
|s—j—i,00,T *

Combining the inequalities (171) and (172) we obtain

(1) oo S ORI
The inequalities (169), (170) and (173) give

(174) B D D) =

s
= Oy W g s 0 2 ha o] e -
=

In the proof of Theorem 7 we shall distinguish two cases:

(i) If |y] = [6] = m + 1 then |vy|sspy = |oF
obtain, using (153) and (106),

yes+1 = 0, according to (162), and we

(175) 2 h okl e e £ CHF onflms 11 -

i=o
Taking into account (150), (159) and (160), we see that the inequalities (174), (175)
imply (156).

(ii) The situation |y| + |8| < 2m + 1 occurs only in the case of boundary elements.
In this case we can use, besides (153) and (106), the Friedrichs inequality and obtain

m+1,T

(176) Zoh;jlvflﬂlvl,n < Chy[u
=

The inequalities (174), (176) imply (156) because in this case s £ N* — m. Theorem 7
is proved.

Now we prove Theorem 8. According to (106) we have
(177) ok oo = CH o] ja e = CHET oyl 1

Inserting (177) into (174) and using (163) we get (158) because in this case s < r.
Theorem 8 is proved.
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Corollary 1. Let d,5e W' "™ (@) (|a], [B| = m -+ 1) where N* is given by (60).
Let the inequality (112) hold for arbitrary (x,y)e @ and for arbitrary values
of &, and let the assumption (155) be satisfied. Then the inequality (129) holds for
sufficiently small h.

Proof. Let {Q} be the set of domains of the following properties: @ = @; there
exists a constant fi > 0 (depending on Q) such that the inequality

(178) Y dyly)&gza Y &
faf |8l =m+ 1 fa} =m+1
holds for arbitrary (x, y)e Q and for arbitrary values of ¢,. The functions dup are
continuous extensions of the functions a,; to the domain Q. The existence of such
domains Q follows from the assumptions of Corollary 1.
If by > Ois sufficiently small we can find Q' € {Q} such that

(179) QcQ =0'nG, Yh <h,.

Let S = {(x, y) : |x| < a, |y| < a} be such a square that Q' = S. Then, according
to (179) and [7, pp. 13— 14], it holds

(180) |v]a 0, < 4a%[v|f 0., Vve Hy(Q,), Yh <h;.

In Section 4 the extensions d,; were chosen in such a way that &,; = 4,4 in Q'. Thus
(115), (178) and (180) imply

(181) a0, 0) =2 K|o|is1.0,» Yoe H3 (@), Yh <h

where the constant K > 0 is independent of v, Q, and h.
For the sake of brevity, let us set

(182) B, = Z Hﬁaﬂ”N‘-—m,oc,!)‘ :

lat (Bl =m+1
The inequality (156) then gives
(189 IET(I ! |/i|Z 15°'”Dav"Dﬂvh)l < CBhrfoalmes
ajl, =m+

which implies

(184) ~YE( Y DDz —CBvrlms i

Tery laf,|Bl=m+1

The relations (145), (181) and (184) give
(185) ay(vy, v4) = (K — CByh) HU},H,%,+1,S);‘ .

Let us choose h, = K/2CB,. Then the inequality (129) is satisfied with y = K2
for h < min (hy, h,). Corollary 1 is proved.
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Corollary 2. Let a,; € W) and let the extension @i of the solution of the problem
(107), (108) belong to Hrm+4(B) where m + 1 < r £ 2m + 1 is a given integer.
Let (157) hold and n 2 2m + 1. Then

(186) inf {Sup |@(vn wa) — an(vns wa)| +
S D 4 ¥l 1 20
i e S OO B
where
(187) By= 3 ]

lal,|Bl=m+1

Proof. Let [1,4 be the V,-interpolate of the function # which exists according to
Lemma 2. Theorem 5 and a similar theorem for generalized Bell’s elements [ 1, p. 819]
imply

(185) I - 1y

m+ 1,92, é Chrna|lr+m+1,ﬁ .

Next, according to (145), (187) and Theorem 8, it holds for all w, e ¥,
(189) [dh(nha’ Wh) - ah(nhﬁ’ Wh)l = CBzhrTZ |‘nha”r+m+l,T ”Whan.T-

Using Theorem S for s = k = r + m + 1 we get

(190) “nhﬁ”ﬂmﬂm = Ha“r+m+l,T + Hﬁ - Hha

cimira S Clla

r+m+ (T

According to (190) and the Schwarz inequality, it holds

(191) 12 tha||r+m+1.1' Hwh mil,T = C|‘ﬁur+m+x,ﬂ ”WhHrrH-l,Qh -
€Ty

As I1,ii € V, the relations (188), (189) and (191) imply (186). Corollary 2 is proved.
The following theorem is a slight modification and generalization of [3, Ch. 11,
Th. 6]. The proof is therefore omitted.

Theorem 9. Let the assumptions of Theorem 8 be satisfied. Then

(192) NE(Fwn)| = Chz|Fler [wnlms s

where C is a constant independent of hy, f and w,,.
The main result of the paper is formulated in the following theorem where the
results of this section are summarized.

Theorem 10. Let the inequality (112) hold for arbitrary (x, y) e @ and for arbi-
trary values of ¢,. Let the extensions @ and d,5 of u, the solution of the problem
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(107), (108), and the coefficients a.g, respectively, to the domain Q' = Q'  Q
satisfy

(193) ie H"2(Q'),
(194) Ay WE™HIEDQY) | o, [Bl = m + 1,
(195) fa = (-1)"*" Y DYa,D’i)e H*™ (Q").

fal,[Bl=m+1

Let the degree n of arcs from which I', consists be equal to 2m + 1. Let the numerical

quadrature schemes over the unit triangle T, preserve polynomials of degree
2(n + 2) m,

(196) E*(p*) =0, Yo*e P(2(n + 2)m)

with n = 1 for generalized Bell’s C™-elements and n = 2m + 1 for curved triangular
C™-elements. Then for sufficiently small h the solution u, of the discrete problem
(128) exists and is unique and the following estimate holds:

(197) 17 = s 1,0, = CRP" || 2s 1 00 +

+asmiz(t + Y [dugllzmet.0.00)]
fa], Bl =m+1

where C is a constant independent of h, @i and d,g.

Proof. According to (60), it holds 2N* — 2(m + 1) = 2(n + 2) m 'and N* —
—m=(n+2)m+1=2m*+ 3m + 1. Thus, according to Corollary 1 the
assumptions (194), (196) together with (112) imply for sufficiently small h the ine-
quality (129). Thus the solution u, of (128) exists and is unique.

As P(2(n + 2) m) > P(r + N* — m — 2) for r £ N* — m the assumption (157)
holds with r = 2m + 1. Using (116) with f = Aa, (127), (131), (134), (142) and
Theorem 9 with r = 2m + 1 we obtain

(198) la(i1, wy) — L(wy)| gTZ |E-(Aiiw,)|

ety

IIA

< Ch*mt! Z ” ~aH2m+I,T |]wh|.m+1.T =

E€Th

= ChZ"'H”/Tﬁ“zmH,Q‘ Hwh“m+l,!2;. .

Inspecting the proof of Corollary 2 we see that Corollary 2 remains true if we replace
Q by Q' in it. Thus the estimate (197) follows from Theorem 6, the estimate (198)
and Corollary 2 with r = 2m + 1. Theorem 10 is proved.

Remark. There is a disproportion between the assumptions (155) and (157)
which increases with m. This disproportion does not arise in two cases: (1) if Qis
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a polygonal domain and we use triangular C™-elements with full polynomials of an
arbitrary degree N = 4m + 1 (for their definition see [12]), (ii) if m = 0 and we
use full polynomials of an arbitrary degree N on the interior triangles, while the
curved boundary C®-elements are of the same accuracy (cf. [3, Ch. 11]). In both
cases the order of accuracy is »r = N — m and N* = N where N* is the degree of the
corresponding polynomial on T,. Thus 2N* — 2(m + 1} = r + N* — (m + 2).
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Souhrn

ZAKRIVENE TROJUHELNIKOVE KONECNE C"-PRVKY
ALEXANDER ZENfSEK

V prvni &dsti ldnku (odst. 1 a 2) je uvedena konstrukce funkei w(x, y) s t&mito
vlastnostmi:

(a) Funkce w(x, y) je jednoznaéné uréena parametry (28) a (64).
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(b) Na pfimce P, P, (j = 2, 3) je funkce &*w/[on’; polynomem stupné 4m + 1 — 2k

=0,1,...,m) jedné proménné uvaZované ve sméru P,P; (8/on,; je derivace
k=01 jedné promenné uvaZzované gru PP, (2)om; je d
podle normély k P, P;).

(c) Funkce w*(&, n) = w(x*(& n), y*(£& 1)) je polynomem stupné N* = 4m +
+1+(n—1)m

Pritom x*(&, ), y*(, n) jsou polynomy stupné& n (viz (23)) a x = x*(&, 1), y =
= y*(&, n) je vzdjemn& jednoznatné zobrazeni trojihelnika T s vrcholy R,(0, 0),
Ry(1,0), R5(0, 1), ktery lezi v roving &, n, na zakfiveny trojuhelnik T*, jehoZ strany
P,P,, P, Py jsou piimé a P,P; oblouk stupn& n dany rovnicemi (21).

Zaktiveny trojuhelnik T* spolu s funkei w(x, y) tvofi tedy C™-prvek, ktery je moZno
napojit na zobecnény Belltiv C™-prvek stupné N = 4m + 1.

V druhé &isti ¢ldnku (odst. 3) je uveden interpolagni teorém pro zak¥ivenéC™-prvky.
Pfesnost aproximace je stejnd jako v pfipadé€ zobecnénych Bellovych C™-prvku, tj.
O(1*™*27%) v normé& prostoru HY(T*).

V tfeti &dsti Cldnku (odst. 4 a 5) jsou zakfivené trojihelnikové C™-prvky aplikovany
na feSeni Dirichletova problému (107), (108) eliptické rovnice ¥ddu 2(m + 1).
Hranice I" oblasti Q je aproximovdna kfivkou I}, kterd je sjednocenim stran zakfive-
nych trojihelnikovych C™-prvkd. KFivé strany téchto trojihelniki jsou oblouky
stupné n = 2m + 1, které maji v uzlovych bodech triangulace tytéZ derivace az do
fddu m jako kiivka I'. To stadi k tomu, aby interpolant funkce, kterd spliuje
okrajové podminky (108), splitoval okrajové podminky (118).

Bilinedrni a linedrni forma diskrétniho problému (128) jsou definovdny pomoci
kvadraturnich formuli. Je-li stupefi ptesnosti téchto formuli 2N — 2(m + 1) pro zobe-
becnéné Bellovy C™-prvky a 2N* — 2(m + 1) pro zak¥ivené C™-prvky, potom existuje
prave jedno Fe¥eni diskrétniho problému (128) a rychlost konvergence k pfesnému
feSeni problému (107), (108) je O(h*™*') v normé& prostoru H™*!(Q,).
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