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CURVED WAVEFRONT CORRECTIONS FOR PHOTOELECTRON SCATTERING 

ABSTRACT 

J.J. Barton and D.A. Shirley 

Materials and Molecular Research Division 
Lawrence Berkeley Laboratory 

and 
Department of Chemistry 
University of California 

Berkeley, California 94720 

We derive new, simplified formulas for the scattering of ~=1 

spherical waves from central potentials, as a basis for discussing 

curved wavefront corrections to single-scattering plane-wave models for 

Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) and 

Extended X-ray Absorption Fine Structure (EXAFS). A differential form 

for the expansion of the screened spherical wave replaces the usual 

Gaunt integral form to facilitate the summation over equivalent magnetic 

sublevels in the scattered wave. Spherical wave scattering factors are 

defined and interpreted as corrections to the plane-wave scattering 

factor. We argue and demonstrate by example that the remarkable success 

of 'plane-wave models does not result from reaching the spherical wave 

asymptotic limit; instead successive partial wave corrections cancel for 

backscattering at high energy. The new scattering formulas allow 

curved-wavefront numerical calculations to be performed with little more 

effort than plane-wave formulas. 
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I. INTRODUCTION 

Understanding the motion of unbound electrons in solids is an 

interesting problem with important implications for surface structure 

determination methods based on electron scattering. The energy range 

from 20-200 eV has been studied extensively as a basis for the analysis 

of Low Energy Electron Diffraction (LEED) data; 1-3 more recent work in 

the energy range 20-1000 eV has been inspired by the explosive growth in 

the number of Extended X-ray Absorpt,ion Fine Structure (EXAFS) 

4 
measurements. In the case of LEED, the incident electron plane wave is 

simply described, but it excites every atom in the surface region, 

leading to a complex scattering problem; in the case of EXAFS only a 

single chemical element Is excIted by the x-ray beam, but the entire x-

ray absorption process must be understood and the observed modulations 

, 5 
correspond to a specIal multiple scattering event. Thus we suggest 

6 
that an even more recent technIque, Angle-Resolved Photoemission 

Extended Fine Structure (ARPEFS) may be a more straIghtforward 

measurement for further understanding of electron scattering in the 50-

1000 eV range. ARPEFS measures partIal cross-section oscillations of 

photo1lectrons: only electrons from a single chemical element are 

measured and a 4n angular Integration is not necessary. This paper 

investigates one aspect of the theory of electron scattering in solids, 

the role of curved wave corrections to the plane-wave single-scattering 

of (1s) photoelectrons. 

A more practical motivation for this work is the interesting 

discrepancy between ARPEFS measurements and simple scattering theory 

results for the c(2x2)S/Ni(100) system. Experimentally, a relatively 

Simple Fourier transform spectrum led to the conclusion that only 
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nearest neighbor and backscattering non-neighboring atoms contributed 

6 
substantially to the observed spectrum. In other words, the number of 

important scattering atoms was small, permitting a simple interpretation 

of the Fourier spectrum. This conclusion has been recently challenged 

by Bullock, Fadley, and Orders
7 

on the basis of single-scattering, 

plane-wave theoretical calculations. They demonstrated that a great 

many ion-cores should contribute to the theoretical curve under these 

and certain other approximations and hence no simple assignment of the 

Fourier peaks should be possible. Unfortunately, the reproduction of 

the experimental oscillations by these theoretical calculations is very 

poor, and we are lead to question the conclusions drawn from them. 

To settle this issue, an improved theoretical calculation capable 

of matching the measured curves within experimental accuracy seems in 

order; if we know that the sum of the calculated scattering events is 

correct, then we can compare the relative intensity of these events with 

more confidence. The plane-wave single-scattering calculations may be 

improved by: 

i) a more accurate atomic-like photoemission wavefunction 

(unscattered, direct wave), 

ii) curved wave corrections, 

iii) multiple scattering, 

iv) improved elastic scattering phase shifts, and 

v) more accurate inelastic damping. 

These improvements are somewhat entwined, but in this paper we will 

concentrate on a single issue: when are curved wave (also called 

spherical wave) corrections important? 
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We will examine only the simplest case of spherical wave 

scattering: single scattering of photoelectrons excited from a (1s) core 

level. We derive new formulas for this scattering in section II, 

applicable to both ARPEFS and EXAFS experiments. These formulas 

facilitate a qualitative discussion of curved wave corrections which 

occupies section III. In section IV we evaluate individual terms in 

these formulae for the example of a Ni atom potential. Our discussion 

in section V centers on possible generalizations to higher angular 

momenta. Finally, we address the impact our results might have on 

calculation of extended fine structure. 

II. CURVED WAVE SCATTERING OF t~1 PHOTOELECTRONS 

Our scattering system consists of a photoemitting atom and an array 

of non-overlapping ion-core potentials. Zero-order calculation of the 

photoemission partial cross-section would ignore the ion-core array and 

only consider the atomic-like photoabsorption. Corrections caused by 

scattering from the ion core potentials gives the ARPEFS oscillations. 

Since we are only concerned with the oscillations, the details of zero-

order calculation are not relevant: we need only know the zero-order 

wave function. With dipole selection rules, polarized light, a (1s) 

core-level initial state, and complete metallic screening the zero-order 

wave function is proportional to: 

8 
Here ht(kr) is the spherical Hankel function of the first kind (we will 

omit the usual superscript (1) as in h(1)(kr) and we will not use 
t 
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spherical Hankel functions of the second kind), Ytm(r) is the spherical 

harmonic evaluated at the angles given by the unit vector, r, in the 

+ 
direction of r, and k is the electron's wavenumber far from the 

photoemitter. Notice that we have selected the polarization vector of 

the light for our z axis to simplify the zero-order wave function 

description. The first-order corrections to this wave function are 

generated by including scattered waves emanating from each nearby ion 

9 
core. The partial wave method for calculating these scattered waves 

has three steps: 

i) expand the incident wave as an angular momentum series 

about the ion-core position, 

ii) multiply each "partial wave" in this series by a (complex) 

scattering amplitude (which also shifts the wave phase), 

iii) sum the non-zero partial waves to give the full scattered 

wave. 

It is the first step which distinguishes plane wave from spherical wave 

scattering. 

A. PLANE WAVES 

As a basis for our discussion of the curved wave effects we repeat 

5 
the derivation of the plane wave ARPEFS model first presented by Lee, 

10 
but following more closely the method used by Lee and Pendry in their 

derivation of the EXAFS formula. 

In a plane wave apprOximation,5 the photoelectron wave is 

represented near the scattering center by the value of the wave at the 

center, times a plane wave: 
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(2) 

where e
Ea 

is the angle between the electric vector E and the bond vector 

+ 
a. Since we have already ignored wavefront curvature with this 

approximation, we replace the Hankel function by its asymptotic limit, 

and apply the well-known Bauer formula, 

+ + ~ 

e
ikor 

m I (Z1+1)i
1
j1(kr)P1(cos ekr ) 

l~O 

to expand the photoelectron wave around the scattering center: 

(4) 

Here j1(kr) is the incoming spherical Bessel function, P
1 

(cos e) is the 

+ + + 
Legendre polynomial, and r' - r - a. The scattering angle, ear" is 

defined as the angle between the propagation vector for the incident 

+ 
plane wave, ka, and the outgoing wave direction r'. 

To construct the scattered wave, we multiply each incoming partial 

wave by 

(6) 
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where 0t(k) is the partial wave phase shift. Summing the new outgoing 

wave gives 

3 1 /2 i ka tmax t 
lj/+(r') = (~'II'). cos e !:...- L (2t+1.)T o (kH hn(kr')Pn(cos e

ar
,)(7) 

a '+'11' e:a i ka 1=0 ~ ~ ~ 

The sum of t may be stopped at t
max 

when all higher partial waves have 

negligible amplitude, ITt(k)1 - 0, 1 > tmax~ At the angle resolved 

. + 
detector, located along R, we may replace the outgoing spherical waves 

by their asymptotic limit. Then a scattering factor is defined by 

(8) 

to give the scattered wave at the detector as 

(9) 

+ + 
The factor exp(ikIR-al) corrects for the different origin of the 

. 1+1 + + + IR+I + scattered wave and for R » lal we have IR-al - - lal cos eaR~ 

The direct wave at the detector is 

(10) 

and we calculate the ARPEFS oscillations due to a single atom as 



* (tPo+tPa ) (tPo+tPa ) 

tP (k) = ----=*---
tPOtPO 

cos 9 
e::a 

8 

( 11) 

where faR(k) Q IfaRI exp(i ~aR)~ This formula has been used to analyze 

experimental ARPEFS data in ref. 6. 

B. SPHERICAL WAVES 

For spherical waves, the angular momentum expansion in its usual 

11 
form is much more complex: . 

( 12) 

... ... ... 
where r' + a Q r. This formula is the basis for Lee and Pendry's curved 

10 
wave EXAFS formula.. To make physical arguments about the nature of 

curved wave corrections to the plane wave formula, we need a simpler 

form for this expansion, which we will refer to as an origin-shift 

addition theorem. 

An alternative expansion for spherical waves may be derived most 

12 
readily from Nozawa's original paper. which describes expansions of 

"Helmholtz's Solid Harmonics", his term for the product of spherical 

Bessel functions and spherical harmonics, which we will call "spherical 

waves". Nozawa demonstrated that the origin-shift addition theorem 

results when the raising operator for Helmholtz's Solid Harmonics, 13 .. 
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is applied to the origin-shift addition theorem for h (kr): 
o 

CD 

ho(kr) - L (21+1)i1j1(kr')11h1(ka)P1(cos ear') 
t ... o 

(14) 

Here pim)(-ia/kaZ) is the operator obtained by using (-ia/kaz) as the 

/ 

argument of the mth derivative of the Legendre polynomial of order 1. As 

we shall see, this differential form for the expansion eliminates the 

need for magnetic quantum numbers for the outgoing scattered wave and 

leaves explicit the angle dependence hidden within Go on " above. 
AomAo m . 

For our particular case the raising operator formula is 

14 
and the origin-shift addition theorem becomes 

We have introduced d
1
,,(ka) to represent the polynomial part of the 

spherical Hankel function: 

( 15) 

( 1 6) 



10 

Note that for large ka » '"('"+1), d,"(ka) = 1~0, and that d,(ka) may 

be calculated by recursion: d'+1 = d'_1 - d,(2'+1)/ika. 

As before, the scattered wave may be calculated by multiplying each 

incoming partial wave amplitude by T,(k) to generate an outgoing partial 

wave; each outgoing wave may be replaced by its asymptotic limit when 

-+ 
the amplitude is calculated at the detector, position R. 

We invent a generalized scattering factor based on our origin-shift 

formula as 

, n m 
1 max a d,"(ka) a p,"(cos eaR) 

fnm a - L (2'"+1 )To"(k) ----
aR ik 0"=0 ~ ~(ka)n ( )m ~ a a cos eaR 

( 18) 

and the scattered wave is then 

-i cos e f'O - -! f01 [cos e R-cOS e cos e R]}· 
ea aR -ka aR E Ea a 

( 19) 

If we label the factor within the braces F
SPH 

= IFlexp(i~SPH) we 

parallel the plane wave construction of X(k) to find 

(20) 

.. 
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Clearly, F h determines both the amplitude and phase of the 
sp 

oscillations we will measure. 
10 

As ka becomes large, the factors faR and 

01 00 
faR(ka) fall to zero, d

1
(ka) becomes 1.0, faR tends to faR' and we have 

(21) 

Thus by studying F
SPh 

compared to faR COS9
Ea 

we can learn when curved 

wave corrections will influence the single scattering of photoelectrons. 

An alternative derivation for this formula is outlined in Appendix 

A. 

The same method may also be applied to calculation of oscillations 

in the total absorption cross section, the Extended X-ray Absorption 

Fine Structure (EXAFS). Here the scattered wave must be projected back 

onto the direct wave at the absorbing atom: the oscillations are an 

interference at the photoemitter. The derivation for (1s) core levels 

and polarized light is given in Appendix B. If we call 

1 
max 

L (22) 

1"·0 

2 
2 d

1
,,(ka) 

- sin 9 [k ] Ea a 

then we compare 
2 

E
SPh 

to cos SEa faR(n) to examine curved wave 

corrections for EXAFS. 

We might proceed directly to numerical applications of these 

formulae, but the qualitative success of the plane wave approximation 
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suggests that some insight into electron scattering may be gained by 

examining the individual terms in these spherical wave formulas compared 

to results from a plane-wave model. We take up this topic in the next 

section. 

III. NATURE OF THE CURVED WAVE CORRECTIONS 

In this section we examine the formulas derived in the previous 

section for the exact single scattering of t = 1 spherical waves. We 

know that the plane wave scattering model is substantially correct so we 

concentrate on differences caused by allowing for wavefront curvature. 

We begin this section with a brief examination of the mathematical 

reduction of the spherical wave formulas to their plane wave limit. 

This provides one method for studying curved wave effects, but to be 

more specific we might inquire about the importance of the fundamental 

spherical nature of the waves which is independent of angular momentum -

embodied in exp(ikr)/ikr - compared to additional curved wave 

corrections due to the particular incident angular momentum. We will 

demonstrate that each term in the differential form, eqn 19. corresponds 

to specific curved wave corrections. The first term gives the basic 

correction common to all angular momenta, the second term corrects for 

additional radial structure specific to the incident angular momentum, 

while the third term corresponds to additional angular character 

specific to angular momentum. 

Our curved wave formulas approach the plane wave results whenever 

the spherical Hankel functions can be replaced by their asymptotic 

limits (eqn. 3). In our notation this is equivalent to replacing the 

.. 
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polynomial part of the spherical Hankel function, d
1

(ka) by 1.0 in our 

formulas: 

1(1+1) 
d

1
(ka) ~ [1 - 2ika + ••• ] - 1.0 (23) 

Thus we must first discuss the size of 1(1+1)/(2ika). Notice that the 

angular momentum in this formula is the scattered wave angular momentum, 

not the dipole selection rule momentum from the photoabsorption. 

The contribution of each partial wave to the final scattered wave 

is dictated by the partial wave amplitude (eqn. 6). For every 

wavenumber, k, there will be some angular momentum 1max beyond which all 

partial wave amplitudes may be neglected. With some criterion for this 

cutoff we can define an equivalent range, r
o

' for the scattering 

. 15 
potential: _ 

2 
1 (1 + 1) - (kr

O
) • 

max max (24) 

In other words, the largest significant partial wave climbs in 

proportion to k. The asymptotic criterion then reads 

for the last significant partial wave. By this analysis we conclude 

that the spherical Hankel function can be replaced by its limit only for 

large a » ro; higher energy actually leads us away from the limit. Of 

course, as the number of partial waves increases, the impact of the 
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largest angular momentum on the value of the scattering factor 

decreases. To properly assess this effect we should consider in detail 

the weight of each partial wave, but for a crude estimate assume equal 

weights. Then the contribution of the largest angular momentum 

decreases roughly like (1/1 ), giving an asymptotic criterion for the 
max 

sum as 

r 
1 (....2.) « 1 
2 a 

+ 
We expect ro to be ~ 1A and for lal equal to the nearest neighbor 

(26) 

distance, r 12a ~ 0.2. Under these assumptions the curved wave effects 
o 

are not too small; we turn to study the curved wave formulas for ARPEFS 

and EXAFS. 

For photoelectron scattering we have 

cos e R-cOS e cos e 
_ i f 01 [ € €a aR] 

aR ka 

The first term, 

d
1

(ka)cos e faa 
€a aR 

cos e 
.. [1 + !-] €a 

ka ik 

1 
max 

L (21+1)T
1

(k)d
1

(ka)P1(cos eaR) 
1 .. 0 

(28) 



.. 

15 

is the only one which survives in the asymptotic limit, ka » t(t+1). 

By examining the origin-shift addition theorem for h (kr) (eqn 14) we 
o 

can show that this first term corresponds to the single scattering of an 

t~O wave - the fOO factor - multiplied by the t=1 wave components--the 
aR 

00 
The scattering factor, faR' differs from the plane 

wave counterpart, faR' only by including a weighting on partial waves, 

dt(ka), dependent on ka. Since hO(ka) = exp(ika)/ika, we can see that 

this weighting corrects the plane-wave scattering factor for the 

variation in the spherical wave over the finite size of the ion core 

potential due to (1/ika). 

The second term, 

-i cos e 
_ i cos e f 1 0 ~ _~:-:--_e:_a 

e:a aR ik 

t 
max 

L 
1 .. 0 

(29) 

contains the derivative of the polynomial part of the spherical Hankel 

function. The expansion of d
1 

in equation (23) gives the leading term 

in the derivative as 

t( 1+1) 
Ika 2ika 

Since ka - 10 in the ARPEFS energy range we can anticipate this 

(30) 

spherical wave correction being much smaller than the difference between 

f~ and faR: the factor 1(1+1)/2ika represents the leading correction to 

the plane wave form and faR 1s smaller by 1/ka~ This term 1s literally 

the radial variation of f~: it corrects the S wave origin shi.(t, given 
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00 
by faR' for the variation in h,(ka) over the potential not already 

00 
contained in faR. 

The third term, 

(cos e R-cOS e cos e ) E Ea aR 
-i (ka)(ik) 

1 
max 

L 
1=0 

contains both an unusual angular factor and a derivative with respect to 

cos eaR~ This term accounts for the variation in the spherical wave 

amplitude laterally across the width of the potential. We can use 

spherical trigonometry to rewrite this term in an instructive fashion. 

If we place three unit vectors in the directions of E, the polarization 

+ + 
vector, R, the emission vector, and a, the bond vector, at a common 

origin, then the vector tips will define a spherical triangle on a unit 

sphere with sides eER , eEa' and eaR: Observing this triangle along the 

+ 
vector a we see that 

+ + + 
where ~ R is the dihedral angle between E and R through a. Since the Ea 

associated Legendre polynomials are defined 

.. 
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we can write 

(cos 6ER-COS 6EaCOS eaR) f 01 
-i ka aR (34) 

sin e cos,.. 
Ea "'EaR 
ik 

Thus this correction to 

scattering potential is 

1 
max 

L 
1=0 

the plane wave 

located in the 

form reaches its maximum when the 

nodal plane (cos eEa = 0; sin eEa 

- 1) of the outgoing spherical wave. The maximum size of 
1 

P
1 

(cos eaR) 

is (1+1)/2 but all of the partial waves do not reach this maximum for 

the same angle. Nevertheless we can roughly say that this third term 

will peak near eaR - 20°, giving a curved wave correction approximately 

1(1+1)/2ka smaller than the first term. 

To recap our assignment of the terms in the differential spherical 

wave formula to specific curved wave corrections, we associate the first 

00 
term - containing faR - with the fundamental, angular-momentum-

independent nature of the incident wave, the second term - containing 

flO - with radial corrections dependent on angular momentum, and the 
aR 

0' 
third term - containing faR - with angular corrections dependent on 

angular momentum. From this assignment, we can expect significant 

curved wave corrections to the single-scattering ARPEFS formula when 

i) the scattering potential is near a node in the incident 

wave angular distribution, 

ii) the scattering angle is near 0° (forward scattering), or 

iii) the scattering factor is near resonance. 

We now consider these cases in more detail. 
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When the center of a scattering potential lies in a nodal surface 

of the incident wave, the plane wave model, eqn 11, predicts no 

scattering. For t=1 incident waves, this geometry means 9Ea=900 and 

cos 9 -0. Thus only the third term of the differential formula is non
Ea 

zero and thus this third term represents the entire curved wave 

correction for this geometry. It is interesting to note that the usual 

experimental geometries
6 

for ARPEFS prevent this third term from 

producing its maximum effect. To maximize the measured photocurrent, 

+ 
the electron detector in the direction R, is usually placed nearly 

+ 
parallel to E (9

ER 
- 0°). If an atom has 9 - 90° so that sin 9 - 1, 

Ea Ea 

then the scattering angle, 9
aR

, must also be - 90° for the scattered 

wave to enter the detector: for this experimental geometry the condition 

(9 - 90° 9 - 20°) will never be satisfied. Ea 'aR 

Just the opPOsite must be true for the unusual experimental 

geometry adopted by Sinkovic et al., in a recent Azimuthal Photoelectron 

16 
Diffraction experiment • They selected 9ER - 72° and measured 

electrons emitted 10° from the surface: many of the important forward 

scattering atoms would have sin 9Ea > .5, cos ~EaR = 1, and 9aR - 20°. 

Thus their observation that plane-wave calculations gave poor agreement 

with experiment may reflect the neglected variation in wave amplitude 

across the scattering potential rather than multiple scattering effects. 

When the scattering angle is near 0° we can get large curved-wave 

corrections strictly from the difference between the first term 

00 . 
containing faR and the plane wave limit. To demons tate this we expand 

dt(ka) according to equation 23, and subtract the asymptotic plane-wave 

part: 
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1 
max 

L 
1=0 

The maximum difference will occur for forward scattering since P1(1) = 1 

and all the partial wave corrections add. Conversely the minimum curved 

wave corrections should be expected for backscattering since P
1
(-1) 

(_1)1 and successive partial waves tend to cancel. This overall 

description should be most accurate for higher energies where the 

partial wave amplitudes, T
1

(k), have little structure. 

When the full scattering factor approaches zero near a Generalized 

Ramsauer Townsend resonance
17 

we can expect the third case for large 

curved wave corrections. For special values of electron wavevector, k, 

and scattering angle, eaR' the partial wave sum will be zero due to 

exact cancellation of all partial wave components. The particular pair 

of values (k,e
aR

) at which the scattering factor becomes zero will 

differ between the plane-wave and spherical-wave models as they weight 

the individual partial waves differently. Thus analysis of scattering 

resonance data with a' plane-wave model will give incorrect scattering 

angles and the observed,resonance energy position will not be correctly 

given by plane wave calculations. While the first two circumstances 

leading curved wave effects discussed above involve only one or another 

of the terms in the formula, the resonance calculation will depend in 

detail on all three terms. 

Curved wave corrections to the EXAFS formula are directly analogous 

to the corrections for photoelectron diffraction. Since the "detector" 

for EXAFS is the photoemlttlng atom, the curved wave effects are 
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squared: our detector is not asymptotically far from the scattering 

atom. The first term of the spherical wave scattering factor 

2 
cos e 

e:a 
ik 

has the s~e angular dependence as the plane wave model. This term 

(36) 

contains both the basic radial correction for 1/ika--the first factor 

inside the brackets--and the radial derivative correction. As discussed 

above, the radial derivative factor is usually much smaller than the 

s-wave origin-shift. 

The second term of_the EXAFS spherical wave amplitude factor has 

the opposite angular dependence compared to a plane wave model: 

2 
sin e 

e:a 
ik 

(37) 

This term corrects for variation in the incident wave amplitude across 

the potential, primarily due to the node in the p wave angular 

distribution. Thus for atoms along the nodal plane perpendicular to the 

electric vector, this term represents the error made by neglecting the 

angular structure in the photoelectron wave. 

Typically EXAFS analysis is not concerned with relative scattering 

amplitude of individual atoms. Most of the measurable signal comes from 

nearest neighbor atoms, all of which contribute oscillations of the same 

frequency. The overall EXAFS amplitude is not simply given by the 

- 18 19 
magnitude of the scattering amplitude ' and hence the spherical wave 

.. 
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corrections to the magnitude are of little consequence. Rather it is 

the phase of the scattering factor that is central to the EXAFS.analysis 

and high precision should require spherical wave correction; the weight 

of the individual partial waves in the scattering factor sum will 

otherwise be incorrect. Of course, practical EXAFS analysis does not 

rely on the accuracy of the theoretical scattering factor: empirical 

phase shifts are nearly always derived from known model compounds. 

An important EXAFS technique which does rely on relative scattering 

amplitudes is the polarization dependence employed to determine 

20 
structures on surfaces. Here the overall amplitude for nearest 

neighbors is measured for several orientations of the polarization 

vector with respect to the crystalline sample axis. The results are 

usually fitted to the angular distribution predicted by a plane wave 

2 
model--cos e --and ignores spherical wave effects. We would expect the Ea 

largest curved wave correction when ka is small, i.e. low Z elements 

having short bond lengths and in the lower energy region, and when we 

2 
need accurate angular distribution calculations for small cos eEa. 

Looking back at the EXAFS formula we also find some insight into 

the success of the plane wave model. The leading correction to the 

plane wave amplitude is 

fPlane()] 1 
aR W - Ik (38) 

This term is just twice the correction for backscattering ARPEFS, and, 

as we argued above, the successive terms tend to cancel. Furthermore, 

we can make a crude argument that the k dependence--and hence the 
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frequency shift--of this correction will be very small. The factor 

1(1+1)/ika strongly favors high angular momentum waves. If we define an 

impact parameter b = 11k, we can take a semiclassical approximation for 

21 
the phase shift: 

Z(b) 
oo(k) '" -

,.. krO 

Here, Z(b) is the unscreened nuclear charge within a sphere of radius b 

around the scattering atom. For large 1 we assume small phase shifts to 

write 

(40) 

and since 1 » 1 we have 

6 - (41) 

To get a series whose limit does not depend on k we invent a sampling 

radius 

r 
n 

~ 
max-n 

k 

which coincides with g,max ~ kro for g,max »1. Then 

(42) 



2. 
max 

I 
n=O 

2. -n 
Z(r )(-1) max 

n 

23 

Since the r are constants of the potential, this spherical wave 
n 

correction is roughly independent of k. Note that this argument 

requires the low angular momentum to be insignificant and we may not 

conclude that f~~ or faR are roughly independent of k by similar steps. 

IV. CURVED WAVE CORRECTIONS TO THE SCATTERING FROM Ni ATOMS 

Now we turn to some specific examples of curved wave effects in the 

scattering of electrons from Ni atoms. We will begin by examining the 

-1 -1 
angle dependence of the scattering factors at 5A (95 eV) and at 10A 

(381 eV), followed by their k and r dependences. For each case we will 

00 
compare faR to the plane-wave limit, faR. As the last example we 

calculate the effect of curved wave corrections to the polarization 

~ 

dependence in surface EXAFS. In all these examples we take lal = 2.23A. 

Figure compares the amplitudes 
00 

of f aR and f aR for scattering 

angles from 0-180° at a wavenumber of 
-1 

5A (see eqn. 28). The general 

trend confirms our qualitative discussion in the previous section: the 

largest corrections are in the forward scattering directions. Figure 2 

gives the amplitude of f~ (eqn. 29); note the dramatic reduction in 

magnitude. The angular structure of f~ is rather similar to f~~. 

The angular spherical wave correction, eqn. 31, is plotted in 

01 
figure 3 as Isin eaR faR I to emphasize the fact that this correction is 

zero for forward (eaR = 0°) and exactly backscattering (eaR = 180°). 

The overall scale is 20 percent of the scale in figure 7, but recall 
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that two additional angle factors, sin g
ea 

and cos ~eaR reduce this 

correction unless the scattering geometry is special. 

We have constructed figures 4, 5, and 6 to parallel figures 1, 2, 

-1 
and 3, respectively, except k = lOA for these new figures. All three 

comparisons demonstrate that the curved wave corrections are not much 

smaller at "this higher energy, but the cancellation of successive 

t 
angular momenta due to Pt(COS9)=(-1) is much more effective. Thus all 

the large scattering-angie (e>900) amplitudes are quite accurate (5 

percent) in the plane wave model, while the amplitude for scattering 

through 32° is too high by more than a factor of 2. 

We can also compare the scattering factor phase by plotting the 

argument of the complex ratio f~/faR' i.e~ their phase difference, as 

in Figure 7. 
-1 

For k = 5A ,the phase difference is roughly +0.5 

radians; note that the two angles where the phase difference is not near 

+0.5 radians correspond to scattering angles with small scattering 

amplitudes, see figure 1. 
-1 

The curve for k = lOA has the same behavior 

although the shift is about half as large. 

The k dependence of these scattering factors is illustrated for 9
aR 

~ 173° in figure 8, 9
aR 

= 0° in figure 9, and 9
aR 

= 127° in figure 10. 

The backscattering geometry, figure 8, is the most important one for 

ARPEFS and, fortunately, the plane wave model is rather accurate. As we 

noted above, the angular curved wave correction is eliminated by sin 9
aR 

- 0 for backscattering, and figure 8 shows that f:~ is very much smaller 

00 00 
than faR. Thus faR by itself characterizes the backscattering of t=l 

waves. Notice also that the plane wave amplitude error approaches a 

constant not equal to zero, tor large k. This is explained in the same 

manner as the EXAFS discussion in the previous section. 
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The greatest curved wave corrections occur in the forward 

directions; figure 9 gives the example of eaR = 0°. The plane wave 

amplitude is roughly .2A too small over the entire range in k. Without 

the alternating sign of Pt(-l) characteristic of backscattering, we see 

no approach to the plane wave limit at large k. Again f~ is very 

00 ·01 
small, at least a factor of 20 below faR; faR cannot contribute to 

forward scattering as long as eAR < - 10°. The phase difference (not 

Plotted) between fOO and fPlane is - .7 radians. 
aR . 

Finally, we consider scattering through 127°, the position of a 

Generalized Ramsauer Townsend resonance in Ni. The resonance is a 

crOSSing of the origin in the complex plane by the complete scattering 

factor. The resonance position in energy and angle depends crucially on 

the cancellation of many partial waves and hence cannot be correctly 

predicted wi th a plane wave calculation. Figure 10 displays the 

scattering factors for eaR a 127°. The factors If~~1 and If plane I are 

-1 
reasonably close except in the resonance region near 8A • The angular 

curved wave correction is now significant, especially since it conspires 

with f~~ to make the overall scattering amplitude zero at k 
-1 

7.5A . 

The (f:~ has not been plotted; it is very small for eaR = 127°). 

difference between exact single-scattering and plane-wave calculations 

is more dramatic in the phase of the scattering factor. Calculations 

done for values of ka corresponding to recent experimental 

17 
measurements are shown in figure 11. The phase jump at resonance is 

not correctly placed in angle or energy in the plane wave limit. 

-+ 
To estimate the distance, lal, beyond which we can safely use the 

. 00 
plane wave formula, we plot in figure 12 the radius at WhICh IfaR -

fPlanel ~ 0.06A, for two energies, k = 5A- 1 and k = 10A-
1 

This 
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criterion for the allowable error in scattering factor was chosen to be 

- 10 percent of the backscattering (SaR = 180°) amplitude for Ni. We 

see from this figure that plane wave calculations are never adequate by 

this criterion for forward scattering at any energy or any practical 

radius. For angles greater than 45°, most scattering atoms within 10A 

of the photoemitter would require curved wave corrections in the lower 

energy region, while perhaps only the nearest neighbors require these 

-1 
extra calculations for k .. 10A .• 

To discuss an example calculation for the curved wave EXAFS 

formula, we adopt the second form for X(k) given in Appendix B, eqn. 

(B13). Figure 13 compares fiSO to its asymptotic limit fPlane(~) and to 

iso 00 
We see a close analogy between f for EXAFS and faR for ARPEFS, 

but the curved wave corrections are larger for EXAFS (compare figure 8) 

since the "detector" is not asymptotically far from the scattering atom. 

Once again the large k region approaches a non-zero constant plane-wave 

error. Perhaps most 
an 

interesting, If I is seen to be nearly two orders 

of magnitude smaller 
iso 

than If I in this energy range. Thus, at least 

iso plane 
for Ni atoms, the standard EXAFS formula with f replacing f (~) 

would give 1 percent accurate curved wave results. Furthermore, since 

the polarization dependence technique relies only on the assumption that 

2 
the oscillations are proportional to cos SEa' curved wave corrections to 

the calculated amplitude ratios are entirely inSignificant. 

v. DISCUSSION 

We have derived new formulae and given examples for the curved wave 

scattering of 2, .. 1 spherical waves. What can we expect for more general 

spherical waves? We offer some qualitative ideas in this section. 
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We envision two important cases: i) photoabsorption by p, d, and f 

core levels giving spherical waves with higher angular momenta and 

magnetic sublevel occupations; and ii) multiple scattering preceded 

either by photoelectron scattering or plane wave scattering typical for 

the LEED experiment. Both of these problems can be approached by the 

method we use here for ~=1 waves. That is, the origin-shift addition 

theorem summed over magnetic sublevels can be differentiated to higher 

and higher order. The resulting expressions will be formidable so we 

will be content with estimates for now. 

First we consider higher ~ waves populated by photoemission. For 

core orbital initial states with p, d, or f orbital angular momentum, 

two partial waves with ~±1 will be created. Each partial wave may be 

treated by the method of section II. We should always get a first term 

00 
like d~(ka)Y~m(a)faR' the amplitude of the ~ spherical wave times the 

scattering factor for ~.O waves. This is the only curved wave factor 

which survives the asymptotic limit and hence will always be the most 

important. Our discussion for ~.1 virtually ignores d~(ka) as being 

close to 1.0, but for higher angular momenta this factor may be 

important. Otherwise, this first term will follow the trends discussed 

in the previous section. 

We should also always get curved wave corrections due to 

differences between the (l/ikr) dependence of ho(kr) and the angular-

momentum-dependent radial wave character through the potential region -

10 
corrections analogous to faR~ For higher angular momenta, the 

difference between the radial character of the incident spherical wave 

and the radial character of ho(ka) already included in the first term 

will increase. We might conclude from our Ni example calculations that 
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these radial variations are negligible for i=1 waves; for some higher i 

we will be forced to include this term. 

For all i, the radial variations should be less than the angular 

variations simply because spherical waves (except i=O) have stronger 

01 . 
angle dependence. Thus curved wave corrections analogous to faR wlll be 

increasingly important for higher angular momenta. These angular 

corrections are always greatest near nodes in the incoming wave, where 

the wave amplitude is changing most rapidly. The nodal regions has the 

least amplitude and the finite extent of the potential is anyway 

averaging opposite phase waves across the nodal surface, smoothing out 

the nodal structure. Hence, on the average, even these angular 

corrections will not be large. The phrase "on the average" is connected 

wi th the additional angular vectors like sin e sin e R cos ¢ R which 
£a a £a 

multiply the curved wave angular correction. 

In addition to more significant curved wave corrections of the same 

type as the i=1 wave, higher angular momenta waves should also have 

corrections corresponding to higher order deri vati ves. Thus the second 

derivatives of the incoming wave across the extent of the potential will 

become important for some high i. Actual calculations are necessary to 

determine how important these corrections will be. 

This leads us to the second important case, multiple scattering. 

While photoabsorption can populate only dipole allowed angular momenta, 

an outgoing scattered wave contains all angular momenta up to i -
max 

kro • To apply the method of this paper to the exact multiple scattering 

of spherical waves would--as a practical matter--require automation of . 

the derivative calculations, a dubious improvement over the Gaunt 

integral summation formula, equation 12. On the other hand, the 
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outgoing scattered wave is no more than a spherical wave with an angular 

dependence and phase determined by scattering rather than by 

photoabsorption. Thus, approximate multiple scattering could be 

calculated by starting with f~ times the single scattered wave 

amplitude at the second scattering center and adding curved wave 

corrections by numerical differentiation of the single-scattered 

wavefunction. 

VI. CONCLUSION 

To summarize our work, we have 

i) derived new curved wave formulae for single scattering of 

(1s) core level photoelectrons, appropriate for ARPEFS and 

EXAFS experiments, 

ii) interpreted the individual scattering factors in this 

formula as different types of curved-wave corrections, 

allowing some guidelines to be devised to predict which 

scattering problems require curved-wave formulas, 

iii) given some idea of the size of these factors for Ni atom 

scattering, and 

iv) discussed the possible generalization to higher angular 

momenta core levels. 

The significance of these results is partly formal and partly 

practical. The remarkable accuracy of the plane wave model has been 

. 4 22 
widely recognlzed,' but often attributed to the asymptotic limit of 

the spheric~l wave. Our new formulas more clearly demonstrate the 

origin of this convenience: the improved cancellation of partial waves 
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at large k. Thus the accuracy of the plane wave model does not improve 

for large k in forward scattering directions. This point may also be 

made by a semi-classical argument. As figure 14 illustrates, forward 

21 
scattering corresponds to large classical impact parameters; 

backscattering corresponds to low enough impact parameter to sample the 

strong attractive center region of the potential. The wavefront 

curvature corrections are thus much larger for forward scattering 

directions which sample the extreme edges of the potential. 

On the practical side, our new curved-wave formulas are scarcely 

more complicated than the plane-wave versions. Some advantage may also 

be made of the different angle dependences of each scattering factor, to 

minimize numerical computations. Hopefully, our qualitative discussion 

and numerical example will serve as some guide to estimate when curved 

wave effects may be important. Finally, we have demonstrated that 

curved wave EXAFS calculations can be quite accurate with only a minor 

modification of the plane-wave formula, a result which extends the 

23 24 
recent work of Schaich and of Gurman, et al. 

Unfortunately, it is also clear from our results that curved wave 

effects cannot explain the difference between ARPEFS experiments and the 

single-scattering plane-wave calculations of Bullock, Fadley, and 

Orders.
7 

The curved wave corrections are typically - 20 percent and 

only that large in the forward directions. Thus while we have reduced 

the computational barrier to using curved wave calculation for ARPEFS, 

we can also conclude that the major discrepancies between theory and 

experiment are not due to curved wave corrections at least for single 

backscattering. 
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We can characterize the disagreement between model calculations and 

ARPEFS measurement by noting that scatterings from nearest neighbors and 

backscatterings from non- nearest neighbors appear to be much more 

dominant than predicted theoretically. Wavefront curvature increases 

scattering for some angles. decreases it for others and generally has 

less effect for backscattering. Therefore. while curved wave formulas 

may be important for accurate calculation. there are larger errors 

elsewhere in the theory. Multiple scattering must be part of the 

answer: as figure 4 illustrates. forward scattering is large in the 

ARPEFS energy range and should not be neglected. Our results here 

predict that this forward scattering cannot be calculated within the 

plane wave formulation. There may also be errors in the inelastic 

scattering and thermal averaging. We must investigate these questions 

in further work. 
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APPENDIX A: ALTERNATE DERIVATION FOR DIFFERENTIAL FORM OF ORIGIN-SHIFT 

ADDITION THEOREM 

We may arrive at the results of section II by an entirely different 

route. We will use a series of well known formulas conveniently 

1 
tabulated in Pendry, his appendix A. 

We begin with the origin-shift addition theorem for (I,m) = (1,0), 

equation 12. Using the definition of Y10 and the recursion relation for 

Y2.m we find 

(Al) 

In other words, since Y
10 

is proportional to cos(S), the product Y
lO

Y*2." 

m" becomes the recursion relation for Y 2."m" ~ The factor 

is related to the ratios of the normalizing coefficients of spherical 

harmoni cs. The remaining integrals in G 10, 2."m" are the orthonormal i ty 

conditions for spherical harmonies; 

( A3) 

and the sum on l',m' simplifies to 
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3
1

/
2 

0 .t"+1 * 
G1 0, t"m" = (41T) 41T{A t +1 ,_m,,1 ht "+1 (ka)Y t"+1 ,m" (a) (A4) 

The factor inside the braces is the result of a differential operation 

1" * 12 
on i ht"(ka)Yt,,,m"~ Rewriting Nozawa's equation 3.8 in terms of 

normalized spherical harmonics shows that 

(A5) 

Thus 

(A6) 

with 

a a 
sin e 

(kaZ) =cos e 
€a a 

(A7) 
€a k(aa) ka ae€a 

a 
(cos e€R-cos e cos eaR) a 

e€a 
€a 

- cos k(aa) (ka) a(cos eaR) 

The addition theorem for spherical harmonics then leads to the results 

in equation (19). We can avoid the derivative operation altogether by 
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applying the recursion formulas for hR." and Y R."m'" but this approach is 

tedious. 

.. 
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APPENDIX B. APPLICATION TO EXAFS 

We apply the approach of section II to the spherical-wave single

. 23 
scattering Extended X-ray Absorption Fine Structure. Schalch and 

24 
Gurman, et ale recently derived simplified, exact EXAFS formulas for 

cubic or polycrystalline environments. Here we consider only (1s) core-

level excitation and linearly polarized light, but we allow a general 

environment. With the z axis along the polarization vector, the dipole 

selection rules reduce Schaich's equation (3) for the x-ray absorption 

coefficient to 

(B1) 

Our X
1 

corresponds to Schaich's (i + X1l). We are interested only in 

-
the OSCillations, Xl; we refer to Schaich for the radial matrix elements 

MOl and constants in A4• Transcribing Schaich's equation (5) into our 

notation gives 

L L 

(B2) 

10' 
The factor e i is the absorber atom phase shift which cancels in 

the photoelectron diffraction experiment and hence was dropped from the 

formulas of section II. 

To apply the differential form from appendix A, note that 
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(B3) 

This is a consequence of the conjugation property of spherical harmonics 

With the differential forms for the origin-shift addition theorem 

coefficients, we have 

x, (k) 

, 
i20, 

3e I 
~" 

(' a.) (' a) \' 
ik az' ik az L mIt 

The primes distinguish outgoing and backscattered waves until the 

(B4) 

derivatives are complete. The addition theorem for spherical harmonics 

simplifies this expression, and we employ our separation of spherical 

waves into asymptotic and polynomial parts to write 

, 
i20, 

3e . 

where cos e ,will ultimately be -,. The first deri vati ve becomes aa . 

(B5) 



.. 

.. 

37 

+ 

(86) 

The first term in this expression is a consequence of the 

derivative as a lifting operator. After the second derivative we may 

90 
set a' = a, P9o(cos Saa') = (-1) , and [cos SEa'-cos SEa cos Saa,J = O. 

We also need the value of dP9o(X)/dX for x = (-1); it is equal to 

(- 1)90+1 90 (90+1)/2. Thus we have 

+ + 
a( .. O) 

, 
i20, 

3e . 
i2ka 

e 

ka2 IT 

90 
max . 90 
L (29o+1)T

9o
(k)(-1) 

90=0 

2 
sin S 

Ea 

(ka)2 

This form most clearly displays the origin of the curved wave 

corrections, but to compare to the work of Schaich, note that 

which--together with the recursion relation for d9o(ka)- -shows that 

(87) 

(88) 

(89) 
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The square of this factor may be reduced with the help of the square of 

the recursion relation for d~ to give 

[ ~+1 d ~ J2 [~+1 d2 
2~+1 ~+1 + 2~+1 d~_1 = 2~+1 ~+1 

Then we can define 

~ 
max 
'\ ~ ~+1 2 
L. (2~+1)T~(k)(-1) [2~+1 d~+1 + 
~=O 

~ 2 
2I+T d~_1J 

and 

to write 

X (k) .. 1m {-

~ 
max 

L 
~=O 

fan 2 
-2 sin 9 J e:a 

In an isotropic or cubic environment, 2 cos
2 

9e:a .. sin
2 

9e:a and the 

anisotropic scattering factor cancels out to give the same formula 

23 
derived by Schaich and by Gurman et 1

24 
a • Notice that our result 

(B10) 

(B 11 ) 

(B12) . 

demonstrates that the simplification achieved by these authors is not a 

consequence of symmetry--the general formula is scarcely more 

complicated than the high symmetry version--but rather is a result of 

summing over the equivalent magnetic sublevels of the scattered wave. 

.. 
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FIGURE CAPTIONS 

Figure 1. 

Figure 2. 

Figure 3. 

Figure 4. 

Figure 5. 

Figure 6. 

Scattering factor amplitude in A for Ni atom potential at k 

-1 () IfaR00I, = 5A. 95 eV. solid line is the ~=O spherical wave 

scattering factor; dashed line, plane wave limit 2ka » 

~(~+1). Right hand panel gives cartesian plots of factor 

magnitude versus scattering angle. BaR in degrees; left hand 

panel is a polar plot with BaR = 0° running up the figure. 

10 . 
Radial derivative scattering factor amplitude, IfaRI ln A 

-1 
for Ni atom potential at k = 5A (95 eV). Format described 

in Figure 1. Note the scale of this figure is 1/20th of 

Figure 1. 

01 
Angular derivative scattering factor amplitude IfaRI times 

sine of the scattering angle, eaR' in A for Ni potential at 

k a 5A-
1 

(95 eV). Format described in Figure 1. This 

scattering factor cannot contribute in near forward or near 

backscattering directions.' 

-1 
Identical to Figure 1, except k '" 10A . (381 eV). Note the 

improved accuracy of the plane wave limit for backscattering 

angles. The figure has the same scale as figure 1 to 

emphasize backscattering angles. 

Identical to Figure 2 except for k '" 1 OA-
1 

(381 eV) • 

Identical to Figure 3. except for k '" 10A 
-1 

(381 eV) • Note 

that shift of the main peak to lower angles; its amplitude 

is similar to the amplitude of the main peak 
-1 

at k = 5A , 

but the correction for backscattering is very much smaller 

now. 
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Figure 7. 

Figure 8. 

Figure 9. 
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Difference in phase (in radlans) between spherical and 

plane-wave models versus scattering angle eaR in degrees, 

for scattering from Ni atom potentials at k = 5A-
1 

• 

Scattering factor amplitudes in A versus electron wavenumber 

-1 
(A .) for near backscattering (eaR = 173°) from Ni atom 

potentials. Solid line, basic spherical scattering factor 

f
OO . I I . . f aR; C1rc es, pane-wave lim1t scatter1ng actor faR; 

triangles, radial derivative scattering factor f~~~ The 

plane-wave factor is rather close to the spherical wave f~~ 

and the other spherical wave corrections are very small at 

all energies; notice also that plane wave error approaches a 

non-zero constant. 

Scattering factor amplitude in A versus electron wavenumber 

-1 
(A .) for forward scattering (0

aR
=00). Solid line, basic 

00 
spherical scattering factor faR; circles, plane-wave limit 

scattering factor faR; triangles, radial derivative 

scattering factor f~. Note the nearly constant plane-wave 

error; the radial deri vati ve correction beCOmes almost 10 

percent at low energies. 

Figure 10. Scattering factor amplitudes in A versus electron wavenumber 

-1 
(A ) for scattering through eaR = 127°, the position of a 

Generalized Ramsauer Townsend resonance. Solid line, basic 

h i I f t f OO . 1 I l' ·t fPlane sp er ca wave ac or aR; C1rc es, pane-wave 1m1 ; 

01 
crosses, angular derivative faR. The radial derivative is 

negligible at this angle for all energies. 

Figure 11. Phase shifts for scattering from Ni. The dashed line shows 

-

the phase shift function ~j calculated with plane-wave 
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theory for 6=127°. The dotted line is the phase shift from 

the experimental curve. The zero crossing jump in phase 

occurs too high in wavenumber in the plane-wave limit. 

Solid lines are curved-wave calculations of the phase shift 

function for the indi cated scattering angles. 

Figure 12. Radius for acceptable results from plane wave calculations 

-1 -1 
versus bond angle for k = 5A (solid line) and k = 10A 

(line with circles). The radii were selected so that all 

If
OO_fPlanel distances greater than the plotted lines have aR aR < 

0.06A. 

Figure 13. Scattering factors for (1s) EXAFS. Solid line is f
iSO

, the 

curved wave scattering amplitude defined by eqn. B13. Line 

with circles is the plane wave limit which has a similar 

iso an 
shape to f • Line with triangles is f ,eqn. (B13) 

multiplied by a factor of 50. 

Figure 14. Schematic semiclassical orbits for an attractive potential. 

If the circle represents the effective radius of a screened 

nuclear charge, then particles with large impact parameters 

will sample only the weak outer region of the potential and 

scatter through small (forward) angles. Particles with 

small impact parameters orbit the strong nuclear attraction 

and exit at large (backscattering) angles. The connection 

to wave scattering is made through b = ilk where b is the 

impact parameter: large i partial waves contribute to 

forward scattering and small i waves dominate for 

backscattering. 
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