
Curvelet-Wavelet Regularized Split Bregman Iteration for

Compressed Sensing

Gerlind Plonka 1, Jianwei Ma 2,3

1 Department of Mathematics, University of Duisburg-Essen, Campus Duisburg, 47048
Duisburg, Germany

2 School of Aerospace, Tsinghua University, Beijing 100084, China
3 Centre of Geoscience, Ecole des Mines de Paris, 35 rue Saint-Honore 77305,

Fontainebleau, France

Abstract

Compressed sensing is a new concept in signal processing. Assuming that a sig-
nal can be represented or approximated by only a few suitably chosen terms in a
frame expansion, compressed sensing allows to recover this signal from much fewer
samples than the Shannon-Nyquist theory requires. Many images can be sparsely
approximated in expansions of suitable frames as wavelets, curvelets, wave atoms
and others. Generally, wavelets represent point-like features while curvelets repre-
sent line-like features well. For a suitable recovery of images, we propose models
that contain weighted sparsity constraints in two different frames. Given the in-
complete measurements f = Φu + ǫ with the measurement matrix Φ ∈ R

K×N ,
K << N , we consider a jointly sparsity-constrained optimization problem of the form
argmin

u

{‖ΛcΨcu‖1 + ‖ΛwΨwu‖1 + 1

2
‖f − Φu‖2

2
}. Here Ψc and Ψw are the transform

matrices corresponding to the two frames, and the diagonal matrices Λc, Λw contain
the weights for the frame coefficients. We present efficient iteration methods to solve
the optimization problem, based on Alternating Split Bregman algorithms. The con-
vergence of the proposed iteration schemes will be proved by showing that they can
be understood as special cases of the Douglas-Rachford Split algorithm. Numerical
experiments for compressed sensing based Fourier-domain random imaging show good
performances of the proposed curvelet-wavelet regularized split Bregman (CWSpB)
methods, where we particularly use a combination of wavelet and curvelet coefficients
as sparsity constraints.

Keywords: Compressed sensing, compressive sampling, Alternating Split Bregman itera-
tion, Douglas-Rachford split algorithm, iterative shrinkage/thresholding (IST), curvelets,
remote sensing CS imaging

1 Introduction

1.1 Background

In many engineering fields, e.g., geophysical exploration, medical magnetic resonance imag-
ing (MRI) or remote sensing, we have to deal with problems on incomplete and inaccurate
measurements limited by physical constraints or extreme expenses. Compressed sensing
(CS), see [7, 8, 9, 21], is a new concept to solve these problems. The CS theory says that
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a compressible unknown signal can be recovered from a small number of random mea-
surements by sparsity-promoting nonlinear recovery algorithms. Instead of taking usual
samples, the measurements are inner products of signals with random vectors. The data
acquisition now depends on its sparsity rather than its bandwidth. Compressed sensing
might have an important impact for measurement mechanisms and design of devices in
various engineering fields.

Over the last few years, there have been increased interests in applications of the
compressed sensing in compressive optical imaging [23], medical MRI [35, 36], analog-to-
information conversion [26], DNA biosensing [48], seismic exploration [34], astronomy [4],
machine learning [54], surface metrology [38], and remote sensing [39, 40, 41], etc.

One crucial step for the CS is its nonlinear recovery, the so-called decoding. Dif-
ferent recovery algorithms have been proposed in the last couple of years, as e.g. linear
programming [7], reweighted linear programming [10], gradient projection sparse recon-
struction [27], orthogonal matching pursuit (OMP) [52], stagewise OMP [22], Bregman
iteration [55], fixed-point continuation [30], inverse scale space nonlinear diffusion [31, 37],
Bayesian statistical method [32], spectral projected gradient method [53], iterative shrink-
age/thresholding (IST) algorithms [18, 2, 3, 24, 45, 28, 40], model-based recovery algorithm
[1], and nonconvex ℓp-norm optimization with p ∈ (0, 1) [13, 46].

Among the existing methods, the iterative shrinkage methods are quite universal, ro-
bust and simple to implement by engineers. Another advantage is that existing transforms
can be incorporated easily into the IST framework. Therefore, it became one of the most
popular tools for solving of linear inverse problems.

In this paper, we propose a numerical algorithm based on the Alternating Split Breg-
man method. The Bregman iteration is a concept from functional analysis for finding
extrema of convex functionals. The splitting technique is used to decouple the ℓ1- and
ℓ2-components in the functional that we wish to minimize.

The split Bregman method was recently proposed by Goldstein and Osher [29]. It can
effectively solve general ℓ1-regularized optimization problems with multiple ℓ1-regularized
terms while the linearized Bregman algorithm [5, 55] and fixed point continuation methods
[30] fail. If the considered optimization problem is uniquely solvable, then the convergence
of the split Bregman iteration for one ℓ1-regularization term has been proved by Cai, Osher
and Shen [6]. Recently, Setzer [47] showed very close relations between the split Bregman
iteration, the augmented Lagrangian method, the Douglas-Rachford splitting and frame
shrinkage. Another advantage of the split Bregman method is that it has a relatively small
memory footprint and is easy to program by users [29, 6]. These properties are significant
for large scale problems.

In this paper, we propose a two-frame regularized alternating split Bregman algorithm
for compressed sensing, and prove its convergence. For the numerical examples, we apply
a wavelet basis [17] and the curvelet frame [11, 12]. Our paper is motivated by the observa-
tion that images consist of different components (point-like features and line-like features)
that can not be sparsely represented by one frame expansion equally well. Therefore, we
want to allow weighted sparsity constraints in two different frames. For example, wavelets
and curvelets are complementary well-suited for point-like features and line-like features,
respectively. Another motivation is to use the split Bregman method to accelerate pre-
vious iterative curvelet thresholding methods for real applications in large-scale remote
sensing.
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1.2 The model for compressed sensing and sparse frame expansions

Let us consider the compressed sensing problem with incomplete measurements [7, 8, 9, 21]

f = Φu + ǫ, (1.1)

where Φ ∈ R
K×N (K < N) is a given so-called CS measurement matrix or a lens-based

optical imaging architecture. The recovery of the signal u ∈ R
N from the observation

f ∈ R
K is an underdetermined linear system that leads to a seriously ill-posed problem

because there are much fewer rows than columns of Φ. However, let us assume that the
signal u possesses a sparse representation in a certain basis or a frame, i.e., there is a
transform matrix Ψ ∈ R

M×N (with M = N for a basis and M > N for a frame), such
that Ψu contains only a small set of significant entries. Further, let the measurement
matrix Φ not be correlated with Ψ. Usually, one assumes that Φ satisfies the so-called
Restricted Isometry Property (RIP), see [7, 9]. Then u can be reconstructed with high
accuracy from the incomplete measurements f . Frequently used measurement matrices Φ
are sparse binary random matrices, randomly downsampled Fourier matrices and Toeplitz
block matrices. Especially, pseudo-orthogonal measurement matrices Φ satisfying Φ ΦT =
IK , where IK denotes the identity matrix of size K, have been shown to result in faster
convergence in nonlinear decoding schemes, see e.g. [23] for single-pixel CS imaging.

Applying a transform Ψ to u, the CS-problem reads in coefficient domain

f = ΦΨ−1Ψu + ǫ = Φ̃ϑ + ǫ (1.2)

with ϑ = Ψu and Φ̃ = ΦΨ−1, where the matrix Ψ denotes a forward transform (e.g.,
a curvelet transform, a wavelet transform or a trigonometric transform) and Ψ−1 is its
inversion. (In the case of frames, Ψ−1 = Ψ† denotes the generalized inverse.)

One classical method to find a solution of the CS-problem (1.1) (resp.(1.2)) is the
sparsity-promoting basis pursuit denoising method which solves the convex optimization
problem

BPζ : argmin
u

{‖Ψu‖1 : ‖f − Φu‖ ≤ ζ} , (1.3)

where the positive parameter ζ is an estimate of the noise level. Alternatively, one considers
the unconstrained problem

QPλ : argmin
u

{

1

2
‖f − Φu‖2

2 + λ‖Ψu‖1

}

(1.4)

that can be solved by quadratic programming, and the Lasso (LS) method

LSξ : argmin
u

{

1

2
‖f − Φu‖2

2 : ‖Ψu‖1 < ξ

}

. (1.5)

It has been verified that these three problems (BPζ , QPλ, and LSξ) are closely related
by using appropriate parameters ζ, λ, and ξ, see e.g. [53]. These models are called “analysis
models” [25], where one seeks the u whose coefficients in a certain frame possess an ℓ1

minimum.
The above problems can be also solved in coefficient domain, replacing u by its frame

coefficients ϑ and the matrix Φ by ΦΨ−1, e.g.,

QPλ : argmin
ϑ

{

1

2
‖f − ΦΨ−1ϑ‖2

2 + λ‖ϑ‖1

}

. (1.6)
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This model is called “synthesis model” [25], where one directly seeks the ℓ1-minimization
coefficients.

Whether to take a synthesis or an analysis based model depends on the real applica-
tions. The synthesis based approach is only applicable if Ψ ∈ R

M×N with M ≥ N possesses
a left inverse. If one uses an orthogonal transform Ψ, both models are equivalent. In this
paper we will focus on the analysis based approach.

1.3 Two-frame sparsity promoting models for compressed sensing

Images usually consist of different components, they may contain smooth structures and
textures. Therefore, while parts of the image can be represented in a highly sparse manner
by a wavelet-like transform, others do not. Within the last years, many sophisticated meth-
ods were developed to design efficient representations of two-dimensional data. Curvelets
[11, 12], contourlets [20] and wave atoms [19] are examples for non-adaptive function
frames with strong anisotropic directional selectivity. These transforms behave differently
for smooth parts and textures. For oriented textures, wave atoms lead to a significantly
sparser expansion than Garbor filters or tensor product wavelets. Therefore, we propose
to solve an optimization problem that involves two different basis/frame transforms of the
signal u. These transforms need to be chosen suitably using a priori information of the
signal u.

Let us consider two different transform matrices Ψc and Ψw, where we assume that
these matrices correspond to orthogonal bases or Parseval frames, i.e., let

Ψc ∈ R
N1×N , Ψw ∈ R

N2×N with ΨT
c Ψc = ΨT

wΨw = IN , N1 ≥ N, N2 ≥ N,

where IN denotes the identity matrix of size N , and ΨT is the transpose of Ψ.
In coefficient domain, we are interested in minimizing the ℓ1-norm of suitably scaled

(transform) coefficients. The scaling can be used for emphasizing (or reducing) of coef-
ficients in different levels or different regions of the image, and also for weighting of the
coefficients of the two different frames. Therefore, we allow diagonal matrices Λc and Λw,
and propose the following two models.

Denoising model. If the measurements f contain significant noise, we consider the
generalized optimization problem

argmin
u

{J(u) +
1

2
‖f − Φu‖2

2}, (1.7)

with a smoothing term of the form

J(u) = ‖ΛcΨcu‖1 + ‖ΛwΨwu‖1.

Observe that for a wavelet transform, the ℓ1-norm of (suitably scaled) wavelet coefficients
is equivalent with a Besov norm of u, while for other frames, we do not have such a direct
interpretation of the functional J(u).

The corresponding constrained problem that is equivalent with (1.7) reads

argmin
u,ϑc,ϑw

{‖Λcϑc‖1 + ‖Λwϑw‖1 +
1

2
‖f − Φu‖2

2} s.t. ϑc = Ψcu, ϑw = Ψwu. (1.8)
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Reconstruction model. If the measurements f contain only a negligible amount of
noise, we consider the optimization problem

argmin
u

{J(u)} s.t. Φu = f

with J(u) as above. The corresponding constrained problem in coefficient domain now
reads

argmin
ϑc,ϑw

{‖Λcϑc‖1 + ‖Λwϑw‖1}

s.t. there exists an u ∈ R
N with f = Φu, ϑc = Ψcu, ϑw = Ψwu.

(1.9)

In Section 2, we derive fast algorithms for the optimization problems (1.8) and (1.9),
respectively. For this purpose, we use the Alternating Split Bregman method that has
been recently proposed in [29]. In the framework of the Split Bregman method, the
variables ϑc, ϑw, and u are decoupled so that they can be found separately and flexibly.
In particular, in contrast to [6, 29], using a CS matrix Φ ∈ R

K×N that is obtained by
random downsampling of the rows of an orthogonal matrix, we need not to solve a linear
system of equations in each iteration step of the algorithm.

In Section 3, we prove the convergence of the proposed Alternating Split Bregman
algorithm for the denoising model. Using the observations in [47], our iteration method
is shown to be equivalent with the Douglas-Rachford splitting algorithm [33, 14]. In this
way we can guarantee its convergence. Finally, in Section 4, the methods are applied to
compressed sensing with a curvelet frame and a wavelet basis. Wavelets and curvelets are
complementary well-suited for point-like features and line-like features, respectively. A
short description of curvelets can be found in the Appendix.

Let us explicitly outline the difference of our paper from some related work. Our
method can be interpreted as an extension of Goldstein and Osher’s split Bregman iter-
ation [29], where the TV regularization and Haar wavelet regularization are considered.
Compared with [29], we use a more general scaling coefficient approach. Our method is
closely related to Cai et al’s work [6], where the framelets are considered. As in [6], we
apply the so-called analysis-based approach. But our proof of convergence for the derived
split Bregman iteration is completely different from that in [6]. In particular, we need not
to assume that the considered optimization problem is uniquely solvable. This assump-
tion is a key ingredient in the convergence proof in [6], but it will be hardly satisfied for
optimization problems in compressed sensing. Our proof is based on the observations by
Setzer [47], but it does not use the dual formulation of the optimization problem as in
[47].

Observe that our model is different from the models for image separation (see [50, 49]).
In [50], Starck et al. proposed a MCA (morphological component analysis) method for
image separation, in which a model argmin

uc,uw

{‖Ψcuc‖1 + ‖Ψwuw‖1 + 1
2‖f − uc − uw‖

2
2}

uses two frame ℓ1 sparsity constraints to decompose the image into cartoon and texture
components uc + uw. Our model is similar to [49], where Starck et al. used the curvelet
thresholding and wavelet thresholding repeatedly to gain the image deconvolution. In
contrast to [49], however, our method is implemented with Split Bregman iterations and
applied to compressed sensing.
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2 The Alternating Split Bregman method

In order to be able to solve the constrained optimization problems (1.8) and (1.9), we wish
to convert them into unconstrained optimization problems. This can be done using the
concept of “Bregman distance”.

Let H be a Hilbert space, and let E : H → R ∪ {∞} be a convex functional. The
Bregman distance associated with E at v ∈ H is defined by

Dp
E(u, v) := E(u) − E(v) − 〈p, u − v〉,

where 〈·, ·〉 denotes the scalar product in H, and where p is a subgradient of E at v, i.e.
p ∈ ∂E(v), see e.g. [44, 29]. The Bregman distance is usually not symmetric, but we have
Dp

E(u, v) ≥ 0 and Dp
E(u, v) ≥ Dp

E(w, v) if w = λu + (1 − λ)v with λ ∈ [0, 1]. This concept
will be used now to derive the new iteration methods.

2.1 The Denoising Model

The classical method to convert (1.8) into an unconstrained problem is to consider a
sequence of problems of the form

argmin
u,ϑc,ϑw

{

E(u, ϑc, ϑw) +
µk

2

(

‖Ψcu − ϑc‖
2
2 + ‖Ψwu − ϑw‖

2
2

)

}

, (2.1)

where

E(u, ϑc, ϑw) := ‖Λcϑc‖1 + ‖Λwϑw‖1 +
1

2
‖f − Φu‖2

2

and with an increasing sequence µ1 < µ2 < . . .. In contrast to this approach, Goldstein
and Osher [29] suggest to apply the Bregman distance in order to obtain an iterative
method to solve the unconstrained optimization problem. In our case, let

Dp
E((u, ϑc, ϑw), (uk, ϑk

c , ϑ
k
w)) := E(u, ϑc, ϑw) − E(uk, ϑk

c , ϑ
k
w)

−〈pk
u, u − uk〉 − 〈pk

c , ϑc − ϑk
c 〉 − 〈pk

w, ϑw − ϑk
w〉,

where (pk
u, pk

c , p
k
w) is the subgradient of E at (uk, ϑk

c , ϑ
k
w). Instead of (2.1), we consider the

iteration

(uk+1, ϑk+1
c , ϑk+1

w )

= argmin
u,ϑc,ϑw

{

Dp
E((u, ϑc, ϑw), (uk, ϑk

c , ϑ
k
w)) +

µ

2

(

‖Ψcu − ϑc‖
2
2 + ‖Ψwu − ϑw‖

2
2

)

}

= argmin
u,ϑc,ϑw

{

E(u, ϑc, ϑw) − 〈pk
u, u〉 − 〈pk

c , ϑc〉 − 〈pk
w, ϑw〉

+
µ

2

(

‖Ψcu − ϑc‖
2
2 + ‖Ψwu − ϑw‖

2
2

)

}

, (2.2)

where µ > 0 can be taken as a fixed parameter. This yields the necessary condition

0 ∈ ∂
[

E(uk+1, ϑk+1
c , ϑk+1

w ) − 〈pk
u, uk+1〉 − 〈pk

c , ϑ
k+1
c 〉 − 〈pk

w, ϑk+1
w 〉

+
µ

2

(

‖Ψcu
k+1 − ϑk+1

c ‖2
2 + ‖Ψwuk+1 − ϑk+1

w ‖2
2

)]

.
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Calculating this subdifferential we find by (pk+1
u , pk+1

c , pk+1
w ) ∈ ∂E(uk+1, ϑk+1

c , ϑk+1
w ) the

recursion relations










pk+1
u = pk

u − µ
(

ΨT
c (Ψcu

k+1 − ϑk+1
c ) + ΨT

w(Ψwuk+1 − ϑk+1
w )

)

,

pk+1
c = pk

c − µ
(

ϑk+1
c − Ψcu

k+1
)

,

pk+1
w = pk

w − µ
(

ϑk+1
w − Ψwuk+1

)

.

(2.3)

Applying the simplification idea in [29], we obtain from (2.2)–(2.3) the split Bregman
iteration



























(uk+1, ϑk+1
c , ϑk+1

w ) = argmin
u,ϑc,ϑw

{

E(u, ϑc, ϑw) + µ
2‖ϑc − Ψcu − bk

c‖
2
2

+µ
2 ‖ϑw − Ψwu − bk

w‖
2
2

}

,

bk+1
c = bk

c + Ψcu
k+1 − ϑk+1

c ,

bk+1
w = bk

w + Ψwuk+1 − ϑk+1
w ,

(2.4)

where we can choose an arbitrary start vector (u0, ϑ0
c , ϑ

0
w) and (b0

c , b
0
w) = (0, 0). We show

that the iteration in (2.4) indeed coincides with the previous algorithm.

Theorem 2.1 The sequence {(uk+1, ϑk+1
c , ϑk+1

w )}k≥0 obtained by the iteration rules (2.2)–
(2.3) with an arbitrary fixed starting vector (u0, ϑ0

c , ϑ
0
w) and with (p0

u, p0
c , p

0
w) = (0, 0, 0)

coincides with the corresponding sequence {(uk+1, ϑk+1
c , ϑk+1

w )}k≥0 obtained by (2.4) with
(b0

c , b
0
w) = (0, 0).

Proof. We apply the iteration rules (2.2)–(2.3) and determine the sequences {bk
c}k≥0

and {bk
w}k≥0 by

bk
c :=

1

µ
pk

c , bk
w :=

1

µ
pk

w. (2.5)

Then from (p0
u, p0

c , p
0
w) = (0, 0, 0) we find (b0

c , b
0
w) = (0, 0), and for k = 0, we simply observe

that equation (2.2) and the first equation in (2.4) coincide. Further, bk
c and bk

w in (2.5)
satisfy by (2.3) the recursion formulas

bk+1
c =

1

µ
pk+1

c =
1

µ
pk

c − ϑk+1
c + Ψcu

k+1 = bk
c + Ψcu

k+1 − ϑk+1
c ,

and analogously, bk+1
w = bk

w + Ψwuk+1 − ϑk+1
w . Using these recursions for bk

c and bk
w, we

find

µ

2
‖ϑc − Ψcu − bk

c‖
2
2 =

µ

2
‖ϑc − Ψcu‖

2
2 − µ〈ϑc − Ψcu, bk

c 〉 +
µ

2
‖bk

c‖
2
2

=
µ

2
‖ϑc − Ψcu‖

2
2 − 〈ϑc − Ψcu, pk

c 〉 +
µ

2
‖bk

c‖
2
2,

and
µ

2
‖ϑw − Ψwu − bk

w‖
2
2 =

µ

2
‖ϑw − Ψwu‖2

2 − 〈ϑw − Ψwu, pk
w〉 +

µ

2
‖bk

w‖
2
2.

Hence (2.2) can be rewritten as

(uk+1, ϑk+1
c , ϑk+1

w ) = argmin
u,ϑc,ϑw

{

E(u, ϑc, ϑw) +
µ

2

(

‖Ψcu − ϑc − bk
c‖

2
2 + ‖Ψwu − ϑw − bk

w‖
2
2

)

−〈pk
c ,Ψcu〉 − 〈pk

w,Ψwu〉 − 〈pk
u, u〉

}

.
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This relation is equal to the first equation in (2.4) since from (2.3) we observe that

pk+1
u − pk

u = −ΨT
c (pk+1

c − pk
c ) − ΨT

w(pk+1
w − pk

w),

and iterative application yields pk+1
u + ΨT

c pk+1
c + ΨT

wpk+1
w = p0

u + ΨT
c p0

c + ΨT
wp0

w = 0 for all
k ≥ 0. �

In order to solve the minimization problem (2.4), an Alternating Split Bregman algo-
rithm is applied. We finally obtain the following scheme.

Alternating Split Bregman Algorithm for the Denoising Model.







































uk+1 = argmin
u

{

1
2‖f − Φu‖2

2 + µ
2

(

‖ϑk
c − Ψcu − bk

c‖
2
2 + ‖ϑk

w − Ψwu − bk
w‖

2
2

)}

,

ϑk+1
c = argmin

ϑc

{

‖Λcϑc‖1 + µ
2 ‖ϑc − Ψcu

k+1 − bk
c‖

2
2

}

,

ϑk+1
w = argmin

ϑw

{

‖Λwϑw‖1 + µ
2‖ϑw − Ψwuk+1 − bk

w‖
2
2

}

,

bk+1
c = bk

c + Ψcu
k+1 − ϑk+1

c ,

bk+1
w = bk

w + Ψwuk+1 − ϑk+1
w .

(2.6)

At the end of this subsection, we will show that a fixed point of this iteration process
indeed solves the original optimization problem (1.8). The convergence proof is given in
Section 3.

Let us now turn to the numerical treatment of the iteration rules in (2.6). The second
and the third equation can be simply solved by a componentwise shrinkage. Indeed, with
Λc = diag ((λc,l)

N1−1
l=0 ) we have for the l-th component of ϑk+1

c ,

ϑk+1
c,l = argmin

ϑc,l

{

|λc,l ϑc,l| +
µ

2
|ϑc,l − (Ψcu

k+1)l − bk
c,l|

2
}

,

i.e.,

0 ∈ |λc,l|
ϑk+1

c,l

|ϑk+1

c,l
|
+ µ

(

ϑk+1
c,l − (Ψcu

k+1)l − bk
c,l

)

, (2.7)

where
ϑk+1

c,l

|ϑk+1

c,l
|
denotes the set [−1, 1] for ϑk+1

c,l = 0. Hence we find a solution by soft shrinkage,

i.e., for l = 0, . . . , N1 − 1,

ϑk+1
c,l =



















(Ψcu
k+1)l + bk

c,l −
|λc,l|

µ if (Ψcu
k+1)l + bk

c,l ≥
|λc,l|

µ ,

(Ψcu
k+1)l + bk

c,l +
|λc,l|

µ if (Ψcu
k+1)l + bk

c,l ≤ −
|λc,l|

µ ,

0 if |(Ψcu
k+1)l + bk

c,l| <
|λc,l|

µ .

Analogously, we compute ϑk+1
w by a componentwise shrinkage procedure. In vector form,

we write this shrinkage shortly as

ϑk+1
c = Tµ−1|Λc|(Ψcu

k+1 + bk
c ), ϑk+1

w = Tµ−1|Λw|(Ψwuk+1 + bk
w), (2.8)

where |Λc| := diag (|λc,l|)
N1−1
l=0 , |Λw| := diag (|λw,l|)

N1−1
l=0 have only nonnegative entries at

the diagonal. Using the last two equations in (2.6), the results for ϑk+1
c and ϑk+1

w in (2.8)
directly imply that

bk+1
c,l ∈

[

−
|λc,l|

µ ,
|λc,l|

µ

]

, bk+1
w,l ∈

[

−
|λw,l|

µ ,
|λw,l|

µ

]

. (2.9)
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The functional in the first equation of (2.6) is differentiable. We find

ΦT (Φuk+1 − f) − µΨT
c (ϑk

c − Ψcu
k+1 − bk

c ) − µΨT
w(ϑk

w − Ψwuk+1 − bk
w) = 0, (2.10)

and with

Φtemp := ΦTΦ + µ (ΨT
c Ψc + ΨT

wΨw)

ftemp := ΦTf + µ
(

ΨT
c (ϑk

c − bk
c ) + ΨT

w(ϑk
w − bk

w)
)

it follows that
Φtemp uk+1 = ftemp.

Remember that ΨT
c Ψc = ΨT

wΨw = IN , such that Φtemp = ΦTΦ + 2µ IN is positive
definite for any µ > 0. Further, since Φ ∈ R

K×N (K < N) is assumed to be obtained by
random downsampling of the rows of an orthogonal N × N -matrix, we have ΦΦT = IK .
Therefore, we obtain (ΦT Φ + 2µIN )−1 = 1

2µ(IN − 1
2µ+1ΦT Φ) since

1
2µ(IN − 1

2µ+1ΦT Φ)(ΦT Φ + 2µIN ) = 1
2µ(ΦT Φ + 2µIN − 1

2µ+1ΦT Φ − 2µ
2µ+1ΦTΦ)

= IN .

Hence, by 1
2µ(IN − 1

2µ+1ΦT Φ)ΦTf = 1
2µ(ΦT f − 1

2µ+1ΦT f) = 1
2µ+1ΦT f we obtain

uk+1 = 1
2µ+1ΦTf + 1

2(IN − 1
2µ+1ΦT Φ)(ΨT

c (ϑk
c − bk

c ) + ΨT
w(ϑk

w − bk
w)).

We outline the obtained Alternating Split Bregman algorithm for two frames (e.g., curvelets
and wavelets) in Table 1.

Input: (u0, ϑ0
w, ϑ0

c , b
0
c , b

0
w) = (0, 0, 0, 0, 0).

While a stop criterion is not satisfied
1) uk+1 = 1

2µ+1ΦTf + 1
2(IN − 1

2µ+1ΦTΦ)(ΨT
c (ϑk

c − bk
c ) + ΨT

w(ϑk
w − bk

w))

2) ϑk+1
c = Tµ−1|Λc|(Ψcu

k+1 + bk
c )

ϑk+1
w = Tµ−1|Λw|(Ψwuk+1 + bk

w)

3) bk+1
c = bk

c + Ψcu
k+1 − ϑk+1

c

bk+1
w = bk

w + Ψwuk+1 − ϑk+1
w

end

Table 1: Alternating Split Bregman algorithm for two frames for solving (1.8).

Observe that the obtained algorithm is much simpler than the split Bregman algorithms
proposed in [29] and [6] (for image restoration), since we need not to solve a linear system
of equations in the first step but can compute uk+1 directly.

Let us remark that if the measurement matrix Φ is orthogonal, i.e., ΦT Φ = IN , we
obtain Φtemp = (2µ + 1)IN and hence

uk+1 = 1
2µ+1ftemp.

This special case may occur if f is a vector of noisy measurements of a rotated image u.
In the algorithm in Table 1, steps 2 and 3 are carried out in coefficient domain.

9



Input: (u0, u0
w, u0

c , b̃
0
c , b̃

0
w) = (0, 0, 0, 0, 0).

While a stop criterion is not satisfied

1) uk+1 = 1
2µ+1ΦT f + 1

2(IN − 1
2µ+1ΦT Φ)((uk

c − b̃k
c ) + (uk

w − b̃k
w))

2) uk+1
c = Sµ−1|Λc|(u

k+1 + b̃k
c )

uk+1
w = Sµ−1|Λw|(u

k+1 + b̃k
w)

3) b̃k+1
c = b̃k

c + uk+1 − uk+1
c

b̃k+1
w = b̃k

w + uk+1 − uk+1
w

end

Table 2: Alternating Split Bregman algorithm in spatial domain for two frames.

Alternatively, one can derive a similar algorithm directly in spatial domain (purely
analysis-based approach). Observe that, by assumption ΨT

c Ψc = ΨT
wΨw = IN , i.e., the

matrices ΨT
c and ΨT

w are the (generalized) inverse transform matrices. Let now

uk
c := ΨT

c ϑk
c , uk

w := ΨT
wϑk

w, b̃k
c = ΨT

c bk
c , b̃k

w = ΨT
wbk

w.

Then we obtain the algorithm in spatial domain in Table 2.
Step 2 now contains a frame shrinkage procedure (e.g. a curvelet and a wavelet shrink-

age), i.e.,

Sµ−1|Λc|(u
k+1 + b̃k

c ) := ΨT
c Tµ−1|Λc|(Ψc(u

k+1 − b̃k
c )),

Sµ−1|Λw|(u
k+1 + b̃k

w) := ΨT
wTµ−1|Λw|(Ψw(uk+1 − b̃k

w)),

with the shrinkage operator Tµ−1|Λ| defined in (2.8). Note that this frame shrinkage pro-

cedure is only equivalent with step 2 in Table 1, if Ψc ΨT
c = Ψw ΨT

w = IN , i.e., if we apply
orthonormal bases and no frames.

We prefer to use the analysis-based method in Table 2, since, due to the redundancy
of curvelet transform, the number of curvelet coefficients is much higher than the number
of pixels, so that the analysis-based method can reduce the computational cost to some
extent. Further, it has been observed in numerical experiments that the analysis-based
method is often superior over the synthesis-based algorithm (see e.g. [25, 10] for some
descriptions and insights).

It should be noted that the algorithm given in Table 1 is not a rigorous synthesis-
based model. However, using the constraints in (1.8), we can take for example u =
1
2

(

ΨT
c ϑc + ΨT

wϑw

)

, and a purely synthesis-based optimization model then reads

argmin
ϑc,ϑw

{‖Λcϑc‖1 + ‖Λwϑw‖1 + 1
2‖f − 1

2Φ(ΨT
c ϑc + ΨT

wϑw)‖2
2}.

The matrix (ΨT
c ,ΨT

w)T denotes a combination of wavelet and curvelet transform and has
also been used by Starck et al. in [50].

We show in the next theorem that any fixed point of the Alternating Split Bregman
algorithm in (2.6) is indeed a minimizer of the original constrained problem (1.8). The
convergence of this algorithm will be studied in Section 3.

Theorem 2.2 Assume that (u∗, ϑ∗
c , ϑ

∗
w, b∗c , b

∗
w) is a fixed point of the Alternating Split

Bregman iteration (2.6). Then (u∗, ϑ∗
c , ϑ

∗
w) solves the constrained optimization problem

(1.8).
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Proof. From b∗c = b∗c +Ψcu
∗−ϑ∗

c and b∗w = b∗w+Ψwu∗−ϑ∗
w it follows that the constraints

ϑ∗
c = Ψcu

∗ and ϑ∗
w = Ψwu∗ are satisfied. Let now

Λ :=

(

Λc 0
0 Λw

)

, ϑ :=

(

ϑc

ϑw

)

, Ψ :=

(

Ψc

Ψw

)

.

Then from ϑ = Ψu it follows that ΨTϑ = ΨT Ψu = 2u, and the functional from (1.8) can
be written as

E(ϑ, u) = ‖Λϑ‖1 + 1
2‖f − Φu‖2

2 = ‖Λϑ‖1 + 1
2‖f − 1

2ΦΨTϑ‖2
2 = E(ϑ)

= ‖ΛΨu‖1 + 1
2‖f − Φu‖2

2 = E(u).

In particular, this convex functional is minimized by u∗ = 1
2ΨT ϑ∗ if 0 ∈ ΨT (∂E(ϑ∗)), i.e.,

if

0 ∈ ΨT

[

|Λ|
(

ϑ∗

l

|ϑ∗

l
|

)N1+N2−1

l=0
− 1

2Ψ ΦT (f − 1
2ΦΨT ϑ∗)

]

= ψT |Λ|
(

ϑ∗

l

|ϑ∗

l
|

)N1+N2−1

l=0
−ΦT (f−Φu∗)

(2.11)

with |Λ| = diag (|Λc|, |Λw|), and where ϑ∗ = (ϑ∗
l )

N1+N2−1
l=0 , and as before,

ϑ∗

l

|ϑ∗

l
| denotes the

set [−1, 1] for ϑ∗
l = 0. But from the second and third formula in (2.6) it follows by (2.7)

and ϑ∗ = Ψu∗ that

0 ∈ |Λ|
(

ϑ∗

l

|ϑ∗

l
|

)N1+N2−1

l=0
+ µ (ϑ∗ − Ψu∗ − b∗) ,

and hence

0 ∈ ΨT |Λ|

(

ϑ∗
l

|ϑ∗
l |

)N1+N2−1

l=0

− µΨT b∗. (2.12)

Furthermore, the first formula in (2.6) yields by (2.10)

ΦT (Φu∗ − f) − µΨT (−b∗) = ΦT (Φu∗ − f) + µΨT b∗ = 0,

i.e., µΨT b∗ = ΦT (f −Φu∗), and hence the functional E is indeed minimized by (u∗, ϑ∗) =
(u∗, ϑ∗

c , ϑ
∗
w). By (2.12), a fixpoint of the spatial domain algorithm in Table 2 is also a

solution of (1.8). �

2.2 The Reconstruction Model

Let us now consider the constrained problem in (1.9). We shortly derive the Alternating
Split Bregman Algorithm also for this model using a similar procedure as in Subsection
2.1. Let now

E(ϑc, ϑw) := ‖Λcϑc‖1 + ‖Λwϑw‖1.

Instead of (2.2), we consider the minimization problem

(uk+1, ϑk+1
c , ϑk+1

w )

= argmin
u,ϑc,ϑw

{

Dp
E((ϑc, ϑw), (ϑk

c , ϑk
w)) + 1

2‖Φu − f‖2
2 + µ

2

(

‖Ψcu − ϑc‖
2
2 + ‖Ψwu − ϑw‖

2
2

)}

= argmin
u,ϑc,ϑw

{

E(ϑc, ϑw) − 〈pk
c , ϑc〉 − 〈pk

w, ϑw〉 + 1
2‖Φu − f‖2

2

+µ
2

(

‖Ψcu − ϑc‖
2
2 + ‖Ψwu − ϑw‖

2
2

)}

,
(2.13)
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where (pk
c , p

k
w) is a subgradient of E at (ϑk

c , ϑ
k
w). Using that (pk+1

c , pk+1
w ) ∈ ∂E(ϑk+1

c , ϑk+1
w ),

we obtain the necessary conditions

pk+1
c = pk

c − µ(ϑk+1
c − Ψcu

k+1),

pk+1
w = pk

w − µ(ϑk+1
w − Ψwuk+1),

(2.14)

and

ΦT (Φuk+1 − f) + µ
(

ΨT
c (Ψcu

k+1 − ϑk+1
c ) + ΨT

w(Ψwuk+1 − ϑk+1
w )

)

= 0. (2.15)

The simplified split Bregman iteration now reads



































(uk+1, ϑk+1
c , ϑk+1

w ) = argmin
u,ϑc,ϑw

{

E(ϑc, ϑw) + 1
2‖Φu − fk‖2

2

+µ
2

(

‖ϑc − Ψcu − bk
c‖

2
2 + ‖ϑw − Ψwu − bk

w‖
2
2

)}

,

bk+1
c = bk

c + Ψcu
k+1 − ϑk+1

c ,

bk+1
w = bk

w + Ψwuk+1 − ϑk+1
w ,

fk+1 = fk + f − Φuk+1.
(2.16)

Observe that there is an essential difference to formula (2.4) in the denoising model, namely
the feedback step for fk, where fk replaces f in the first equation.

As before, assuming that (p0
c , p

0
w) = (0, 0) in (2.14), and (b0

c , b
0
w) = (0, 0) as well as

f0 = f in (2.16), we can verify that the iteration rules in (2.13)-(2.14) and in (2.16)
provide the same sequence (uk+1, ϑk+1

c , ϑk+1
w )k≥0:

With bk
c := 1

µpk
c and bk

w := 1
µpk

w, the recursions for bk+1
c and bk+1

w in (2.16) follow from
(2.14). Further, with

µ

2
‖ϑc − Ψcu − bk

c‖
2
2 =

µ

2
‖ϑc − Ψcu‖

2
2 − µ〈ϑc − Ψcu, bk

c 〉 +
µ

2
‖bk

c‖
2
2,

µ

2
‖ϑw − Ψwu − bk

w‖
2
2 =

µ

2
‖ϑw − Ψwu‖2

2 − µ〈ϑw − Ψwu, bk
w〉 +

µ

2
‖bk

w‖
2
2,

1

2
‖Φu − fk‖2

2 =
1

2
‖Φu − f‖2

2 + 〈Φu − f, f − fk〉 +
1

2
‖f − fk‖2

2,

the optimization problem (2.13) can be rewritten as

(uk+1, ϑk+1
c , ϑk+1

w ) = argmin
u,ϑc,ϑw

{

E(ϑc, ϑw) + 1
2‖Φu − fk‖2

2 + µ
2 ‖ϑc − Ψcu − bk

c‖
2
2

+µ
2‖ϑw − Ψwu − bk

w‖
2
2 − µ〈Ψcu, bk

c 〉 − µ〈Ψwu, bk
w〉 − 〈Φu, f − fk〉

}

and is equivalent with the first equation in (2.16) if

〈Φu, f − fk〉 + µ〈Ψcu, bk
c 〉 + µ〈Ψwu, bk

w〉 = 〈u,ΦT (f − fk)〉 + 〈u,ΨT
c pk

c 〉 + 〈u,ΨT
wpk

w〉 = 0.

Using (2.14), (2.15) and the iteration fk = fk−1 + f − Φuk, it follows indeed that

ΦT (f − fk) + ΨT
c pk

c + ΨT
wpk

w

= ΦT (f − fk−1 − f + Φuk) + ΨT
c (pk−1

c − µϑk
c + µΨcu

k) + ΨT
w(pk−1

w − µϑk
w + µΨwuk)

= ΦT (Φuk − f) + µΨT
c (Ψuk − ϑk

c ) + µΨT
w(Ψwuk − ϑk

w)

+ΦT (f − fk−1) + ΨT
c pk−1

c + ΨT
wpk−1

w

= ΦT (f − fk−1) + ΨT
c pk−1

c + ΨT
wpk−1

w = . . . = ΦT (f − f0) + ΨT
c p0

c + ΨT
wp0

w = 0.
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Iterative minimization now yields the following scheme
Alternating Split Bregman Algorithm for the Reconstruction Model.



















































uk+1= argmin
u

{

1
2‖Φu − fk‖2

2 + µ
2

(

‖ϑk
c − Ψcu − bk

c‖
2
2 + ‖ϑk

w − Ψwu − bk
w‖

2
2

)}

,

ϑk+1
c = argmin

ϑc

{

‖Λcϑc‖1 + µ
2 ‖ϑc − Ψcu

k+1 − bk
c‖

2
2

}

,

ϑk+1
w = argmin

ϑw

{

‖Λwϑw‖1 + µ
2‖ϑw − Ψwuk+1 − bk

w‖
2
2

}

,

bk+1
c = bk

c + Ψcu
k+1 − ϑk+1

c ,

bk+1
w = bk

w + Ψwuk+1 − ϑk+1
w ,

fk+1= fk + f − Φuk+1.

(2.17)

Further, analogously as in Theorem 2.2, it can be shown that for a fixed point (u∗, ϑ∗
c ,

ϑ∗
w, b∗c , b

∗
w, f∗) of the Alternating Split Bregman iteration (2.17) the vector (ϑ∗

c , ϑ
∗
w) solves

the constrained optimization problem (1.9).
We now summarize the numerical algorithm in Table 3, using the same abbreviations

as in Subsection 2.1. Optionally, as suggested in [29], one can also internally apply two or
three iterations from step 1 to step 3 of the algorithm, i.e., one may execute step 4 not in
each iteration step. As for the denoising model, we can derive the analysis-based method
(spatial domain), similarly as in Table 2, but using fk in step 1 and adding the “residual
feedback” step fk+1 = fk + f − Φuk+1.

Input: (u0, ϑ0
w, ϑ0

c , b
0
c , b

0
w) = (0, 0, 0, 0, 0) and f0 = f .

While a stop criterion is not satisfied

1) uk+1 = 1
2µ+1ΦTfk + 1

2 (IN − 1
2µ+1ΦT Φ)((uk

c − b̃k
c ) + (uk

w − b̃k
w))

2) uk+1
c = Sµ−1|Λc|(u

k+1 + b̃k
c )

uk+1
w = Sµ−1|Λw|(u

k+1 + b̃k
w)

3) b̃k+1
c = b̃k

c + uk+1 − uk+1
c

b̃k+1
w = b̃k

w + uk+1 − uk+1
w

4) fk+1 = fk + f − Φuk+1

end

Table 3: Alternating Split Bregman algorithm for two frames for solving (1.9).

3 Convergence of the Alternating Split Bregman method

In this section we study the convergence of the new algorithms for two frames proposed
in Section 2. We focus here on the denoising model in (2.6). The reconstruction model
can be treated similarly.

Our considerations may be even interesting for the simple case with only one frame,
i.e., if one considers

argmin
u,ϑc

{‖Λcϑc‖1 +
1

2
‖f − Φu‖2

2} s.t. ϑc = Ψcu

instead of (1.8). Observe that Goldstein and Osher did not consider the convergence
of their algorithm in [29]. In [47], Setzer showed that the Alternating Split Bregman

13



algorithm for a similar optimization problem can be understood as a special case of the so-
called Douglas-Rachford splitting algorithm, whose convergence has been provided (under
suitable assumptions) in [33] and in [14]. In Subsection 3.1, we shortly summarize the
convergence result for the Douglas-Rachford splitting method. Afterwards, we follow the
idea of [47] and apply this result to our alternating split Bregman algorithm by showing
that the two algorithms coincide for suitably chosen operators.

3.1 The Douglas-Rachford splitting

Let H be a real Hilbert space, and let A : H → 2H and B : H → 2H be two set-
valued mappings. We assume that A and B are maximal monotone, i.e., their resolvents
JA := (Id + A)−1 and JB := (Id + B)−1 exist and are firmly nonexpansive. Here, an
operator JA : H → H is called firmly nonexpansive, if for all x ∈ H and y ∈ H the
condition

‖JAx − JAy‖ ≤ ‖x − y‖

is satisfied. In case of linear or affine operators, this relation is satisfied if the spectral
radius of JA is bounded by one, i.e., ρ(JA) := limn→∞ ‖Jn

A‖
1/n ≤ 1.

We are interested in solving the inclusion

0 ∈ A(r̂) + B(r̂). (3.1)

Let r̂ be a solution of (3.1), i.e., assume that there are vectors σ1 ∈ A(r̂) and σ2 ∈ B(r̂)
such that σ1 + σ2 = 0. The inclusion in (3.1) can with µ > 0 be rewritten as

r̂ − µσ2 = r̂ + µσ1 ∈ (Id + µA)(r̂),

i.e., r̂ = (Id + µA)−1(r̂ − µσ2) = JµA(r̂ − µσ2). Addition of µσ2 gives

r̂ + µσ2 = JµA(r̂ − µσ2) + µσ2 ∈ (Id + µB)(r̂),

and finally
r̂ = JµB (JµA(r̂ − µσ2) + µσ2) . (3.2)

This fixed point equation can be solved iteratively using the Douglas-Rachford split algo-
rithm

{

sk+1 = JµA(2rk − sk) + sk − rk,

rk+1 = JµBsk+1.
(3.3)

Indeed, if (s∗, r∗) is a fixed point of this iteration, then we obtain from r∗ = JµBs∗ that
σ2 = 1

µ(s∗ − r∗) ∈ B(r∗), and hence

r∗ = JµB(JµA(2r∗ − s∗) + s∗ − r∗)

= JµB(JµA(r∗ − µσ2) + µσ2),

i.e., r∗ satisfies the equation (3.2). We wish to apply the following result that has been
shown in [16], Corollary 5.2.

Theorem 3.1 Let A, B : H → 2H two maximal monotone operators on a Hilbert space
H, and let µ ∈ (0, ∞). Assume that a solution of (3.1) exists. Then for any initial
elements s0 and r0, the Douglas-Rachford split algorithm in (3.3) converges weakly to
(ŝ, r̂), and we have 0 ∈ A(r̂) + B(r̂).

Note that for a finite-dimensional space H, it follows convergence of (rk)k≥0 to r̂.
Recent applications of the Douglas-Rachford splitting method for image denoising can be
found in [15, 51].
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3.2 Convergence of the Alternating Split Bregman algorithm

Using the above results we can show the following theorem.

Theorem 3.2 The Alternating Split Bregman algorithm in (2.6) for the denoising model
converges with arbitrary starting point (u0, ϑ0

c , ϑ
0
w, b0

c , b
0
w) to a fixed point (u∗, ϑ∗

c , ϑ
∗
w, b∗c , b

∗
w)

of this iteration, and the obtained vector (u∗, ϑ∗
c , ϑ

∗
w) solves the constrained optimization

problem (1.8).

Proof. We show that the iteration scheme in (2.6) coincides with the Douglas-Rachford
split algorithm in (3.3) with suitably chosen operators A and B. The convergence of the
scheme then follows from Theorem 3.1, and the remaining assertion is a consequence of
Theorem 2.2.

1. We start with the first equation in (2.6),

uk+1 = argmin
u

{

1

2
‖f − Φu‖2

2 +
µ

2

(

‖ϑk
c − Ψcu − bk

c‖
2
2 + ‖ϑk

w − Ψwu − bk
w‖

2
2

)

}

,

which is equivalent to

0 ∈ ΦT (Φuk+1 − f) + µ
[

−ΨT
c (ϑk

c − Ψcu
k+1 − bk

c ) − ΨT
w(ϑk

w − Ψwuk+1 − bk
w)

]

.

The functional is strictly convex, and we find

uk+1 = (ΦT Φ)†
[

ΦT f − µ(ΨT
c Ψc + ΨT

wΨw)uk+1 + µΨT
c (ϑk

c − bk
c )

+ µΨT
w(ϑk

w − bk
w)

]

,

where (ΦT Φ)† denotes the generalized inverse of ΦT Φ. Let now

Ψ :=

(

Ψc

Ψw

)

∈ R
(N1+N2)×N , ϑk :=

(

ϑk
c

ϑk
w

)

∈ R
N1+N2, bk :=

(

bk
c

bk
w

)

∈ R
N1+N2.

Then we obtain by multiplication with −µΨ

−µΨuk+1 = −µΨ(ΦTΦ)†
[

ΦTf − µΨTΨuk+1 + µΨT (ϑk − bk)
]

,

and choosing f̃ with ΦTf = ΨT f̃ , it follows that

−µΨuk+1 = µΨ(ΦT Φ)†ΨT
[

−f̃ + µΨuk+1 − µ(ϑk − bk)
]

.

Addition of −f̃ + µΨuk+1 − µ(ϑk − bk) yields

−f̃ − µ(ϑk − bk) = (I + µΨ(ΦT Φ)†ΨT )
[

−f̃ + µΨuk+1 − µ(ϑk − bk)
]

, (3.4)

where I is the identity matrix of size N1+N2. Let now the operator A : R
N1+N2 → R

N1+N2

be given by
A(y) := Ψ(ΦT Φ)†ΨT (y − f̃) = Ψ(ΦT Φ)†(ΨT y − ΦT f).

Then from z = (I + µA)(y) = (I + µΨ(ΦT Φ)†ΨT )(y − f̃) + f̃ , it follows for the resolvent

JµAz = (I + µA)−1z = (I + µΨ(ΦTΦ)†ΨT )−1(z − f̃) + f̃ .
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For µ > 0, the matrix (I + µΨ(ΦT Φ)†ΨT )−1 is obviously positive definite, and by

‖JµAx − JµAy‖2 ≤ ‖(I + µΨ(ΦTΦ)†ΨT )−1‖2 ‖x − y‖2 x, y ∈ R
N1+N2 ,

the resolvent JµA is firmly nonexpansive for all µ > 0 since the spectral norm of (I +
µΨ(ΦT Φ)†ΨT )−1 is bounded by 1. We obtain from (3.4)

(I + µΨ(ΦTΦ)†ΨT )−1(−f̃ − µ(ϑk − bk)) = −f̃ + µΨuk+1 − µ(ϑk − bk),

i.e.,

µ(Ψuk+1 + bk) = (I + µΨ(ΦT Φ)†ΨT )−1(−f̃ − µ(ϑk − bk)) + f̃ + µϑk

= JµA(−µ(ϑk − bk)) + µϑk. (3.5)

Let now rk := µ bk and sk := µ(ϑk + bk). Then (3.5) is of the form

µ(Ψuk+1 + bk) = JµA(2rk − sk) + (sk − rk).

This is the first equation in the Douglas-Rachford iteration, since by definition of bk+1 in
the last two equations of (2.6), we have bk+1 = bk + Ψuk+1 − ϑk+1 and hence

sk+1 = µ(bk+1 + ϑk+1) = µ(Ψuk+1 + bk) = JµA(2rk − sk) + (sk − rk).

2. It remains to show that rk+1 = µbk+1 satisfies the second relation in (3.3) with a
suitably chosen operator B. For that purpose we consider the second and third equation
in (2.6),

ϑk+1
c = argmin

ϑc

{

‖Λcϑc‖1 +
µ

2
‖ϑc − Ψcu

k+1 − bk
c‖

2
2

}

,

ϑk+1
w = argmin

ϑw

{

‖Λwϑw‖1 +
µ

2
‖ϑw − Ψwuk+1 − bk

w‖
2
2

}

,

yielding

0 ∈ |Λc|(sign ϑk+1
c ) + µ(ϑk+1

c − Ψcu
k+1 − bk

c ),

0 ∈ |Λw|(sign ϑk+1
w ) + µ(ϑk+1

w − Ψwuk+1 − bk
w),

where |Λc| := diag (|λc,l|)
N1−1
l=0 , |Λw| := diag (|λw,l|)

N1−1
l=0 have only nonnegative entries at

the diagonal, and where sign is a set-valued operator,

sign ϑk+1
c := (sign ϑk+1

c,l )N1−1
l=0 with sign ϑk+1

c,l =











1 ϑk+1
c,l > 0,

−1 ϑk+1
c,l > 0,

[−1, 1] ϑk+1
c,l = 0.

Analogously the operator sign ϑk+1
w is defined. Then, with

|Λ| :=

(

|Λc| 0
0 |Λw|

)

we have
0 ∈ (|Λ| sign)(ϑk+1) + µ(ϑk+1 − Ψuk+1 − bk).
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We now define B := (|Λ| sign)−1, i.e., B is a set-valued mapping with

B(y) = B
(

(yl)
N1+N2−1
l=0

)

= (zl)
N1+N2−1
l=0 with zl :=







0 |yl| < |λl|,
[0,∞) yl = |λl|,
(−∞, 0] yl = −|λl|,

where |λl| is the l-th diagonal entry in |Λ|. Observe that B(y) is only defined for |yl| ≤ |λl|,
l = 0, . . . , N1 + N2 − 1. It follows that

ϑk+1 ∈ B
(

µ(−ϑk+1 + Ψuk+1 + bk)
)

= B(µbk+1),

and by (2.9), this inclusion is well-defined. It is equivalent with

µϑk+1 ∈ µB
(

µ(−ϑk+1 + Ψuk+1 + bk)
)

= (I + µB)
(

µ(−ϑk+1 + Ψuk+1 + bk)
)

+ µ(ϑk+1 − Ψuk+1 − bk),

and addition of µ(−ϑk+1 + Ψuk+1 + bk) = µbk+1 yields

µ(Ψuk+1 + bk) ∈ (I + µB) (µbk+1).

Now, the definition of B implies for its resolvent

JµB(z) = (I + µB)−1
(

(zl)
N1+N2−1
l=0

)

= (yl)
N1+N2−1
l=0 with yl =







|λl| zl > |λl|,
−|λl| zl < −|λl|,
zl |zl| < |λl|,

and hence JµB : R
N1+N2 → R

N1+N2 is a single-valued, firmly nonexpansive operator.
Thus,

µbk+1 = (I + µB)−1 (µ(Ψuk+1 + bk)),

and by sk+1 = µ(Ψuk+1 + bk) and rk+1 = µbk+1, it follows the second equation,

rk+1 = JµB(sk+1),

of the Douglas-Rachford iteration (3.3). Hence, the Alternating Split Bregman algorithm
in (2.6) coincides with the Douglas-Rachford algorithm, and its convergence is ensured by
Theorem 3.1, since the operators A and B, defined in the proof, are maximal monotone.
�

Remark. The convergence of the Alternating Split Bregman algorithm can be shown
in a similar manner if the parameter µ > 0 is not fixed but changes in the different iteration
steps.

4 Numerical experiments

In this section, we consider pseudo-random Fourier-domain CS imaging using 30% mea-
surements. The pseudo-random downsampling is a polynomial variable density random
sampling, which obeys a probability density function with dense sampling in low-frequency
components and spare sampling in high-frequency components. One can find more details
about the pseudo-random Fourier downsampling in [35]. Figure 2 (a) displays the sam-
pling pattern with 30% measurements that will be used for the CS measurement matrix
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in our numerical experiments. Here, the white points denote the sampling points. In
Figure 2 (b), we show the 2D probability density function (upper subfigure) and its 1D
center crossed profile for the sampling pattern. In CS imaging, we obtain the vector f
with K = 3N/10 measurements at the same time by using an encoded random mask for
Fourier coefficients of objects u.

In the first test, we show the performance of the proposed curvelet-wavelet regularized
split Bregman (CWSpB) method (reconstruction model) for a standard Lena image of size
256× 256, in comparison with iterative wavelet thresholding (IWT) and iterative curvelet
thresholding (ICT) methods. The computational parameters are provided as follows. We
take Daubechies’ DB6 wavelet transform with a 4-level decomposition as one basis in
our model, and the discrete curvelet transform as the second frame. The DB6 wavelet
transform is also taken for the IWT. The soft shrinkage function is used for all iterative
thresholding methods. For the proposed reconstruction model, we choose the increasing
regularization parameters µ = µ0(1 + k/Nnumb)

4 with an initial value µ0 = 0.2, where
Nnumb = 20 is the number of total iterations, and k denotes the iteration index. In
particular, we use decreasing thresholds σ = 0.02 1

µ for both iterative wavelet thresholding
and curvelet thresholding. Further, supposing that we have no apriori information about
the image to recover, we simply use the matrices Λc = 0.02 IN1

and Λw = 0.02 IN as
weighted identity matrices.

Figure 3 (a) shows the original unknown image. Figure 3 (b) shows the decoded result
by zero-filling recovery u = ΦT f . Observe that there exist serious noise-like artifacts.
In the next rows, we display the decoding results (left column) and their recovery errors
(right column) by using IWT, ICT and the proposed CWSpB method, respectively. We
notice that our new method can recover especially texture-like feature more effectively.

In Figure 5 (a), we display the changes of the signal-to-noise ratio (SNR) values when
the number of iterations increases. It can be seen that our proposed method converges
much faster than the IWT and ICT methods. The CWSpB method combines the advan-
tages of curvelets and wavelets to some extent, so that it achieves a higher SNR value.
Figure 5 (b) shows the so-called pseudo-Pareto curves [53], i.e., the residual ‖f − Φuk‖2

2

(vertical coordinate) versus the norm ‖uk‖1 (horizontal coordinate).
In Figure 4, we apply the proposed method to a real scene of the moon surface. Figure

4 (a) is the original scene. Figure 4 (b) is the direct u = ΦT f reconstruction. Figures 4
(c) - (e) are obtained by the IWT, the wavelet-total variation (TV) regularization [35],
and the ICT, respectively. We notice that the TV regularization makes the results more
smooth. Figure 4 (f) is the result obtained by the new proposed CWSpB method. In
this example, we have tested the decay threshold values σ = σ0(1 − k/Nnumb) with an
initial value σ0 = 0.06 for all iterative methods. In Figure 6 (a) we show the changes of
SNR values obtained respectively by IWT, ICT, and CWSpB methods, if the number of
iterations increases. Figure 6 (b) shows their pseudo-Pareto curves. Again, we find that
the new CWSpB algorithm, based on Bregman split technique obtains a good recovery
result already after 5−7 iterations and converges much faster than the iterative threshold
methods.

Finally, Figure 7 shows the performance of the proposed CWSpB method for a real
cloud scene by remote sensing. The proposed method achieves higher SNR values indeed.

18



5 Conclusions

In this paper, we have proposed two new models for CS remote sensing using the alter-
nating split Bregman algorithm. The new iteration schemes have been shown to solve
suitable optimization problems, where two different frames are allowed for regularization.
These frames can be chosen according to possible a-priori knowledge on the data that have
to be recovered. We have proved the convergence of the derived algorithms by showing
equivalence with the Douglas-Rachford algorithm. In particular, we presented this con-
nection by a concrete description of the operators A and B that have to be taken in the
Douglas-Rachford iteration.

In our numerical experiments we have used an orthogonal wavelet basis and the curvelet
frame, since these function families can present point-like and line-like features of images
differently well. It comes out that the used split Bregman technique converges very fast.
Without assuming any a-priori knowledge about the images, the weight matrices Λc and
Λw for scaling of wavelet and curvelet coefficients have been chosen as (scaled) identity
matrices. We have found that our method is quite sensitive to the regularization parameter
µ. One may allow also different parameters µc and µw (instead of µ) for the terms
ΨT

c (ϑk
c − bk

c ) and ΨT
w(ϑk

w − bk
w) in the first step of the algorithms. An optimal choice of

these parameters as well as of the matrices Λc and Λw will be subject of further research.
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A Appendix: Curvelets and Iterative Curvelet Threshold-

ing

The curvelets [11, 12] constitute a directional frame of L2(R2), which has anisotropic
needle-shaped elements and allows an optimal sparse representation of objects with dis-
continuities along smooth curves. Unlike wavelets, curvelets are indexed by three param-
eters: a scale 2−j , j ∈ N0; an equispaced sequence of rotation angles θj,l = 2πl · 2−⌊j/2⌋,

0 ≤ l ≤ 2⌊j/2⌋ − 1; and a position x
(j,l)
k = R−1

θj,l
(k1 2−j , k2 2−⌊j/2⌋)T , (k1, k2) ∈ Z

2, where

Rθj,l
denotes the rotation matrix with angle θj,l. The curvelet elements are defined by

Ψj,l,k(x) := Ψj(Rθj,l
(x − x

(j,l)
k )), x = (x1, x2) ∈ R

2, (1.6)

where Ψj are smooth functions with compact support on wedges in Fourier domain. For a
smooth object f with discontinuities along C2-continuous curves, the best m-term approx-
imation f̃m by curvelet thresholding obeys ‖f − f̃m‖2

2 ≤ Cm−2 (log m)3, while for wavelets
the decay rate is only m−1 and for the Fourier transform the rate is m−1/2. Unlike the
isotropic elements of wavelet bases, the needle-shaped elements of this transform possess
very high directional sensitivity and anisotropy (see Figure 1). Such elements are very
efficient in representing line-like edges.
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The family of curvelet functions forms a tight frame of L2(R
2). That means, each

function f ∈ L2(R
2) has a representation

f =
∑

j,l,k

〈f,Ψj,l,k〉Ψj,l,k

where 〈f,Ψj,l,k〉 denotes the L2-scalar product of f and Ψj,l,k. The coefficients 〈f, Ψj,l,k〉
are called curvelet coefficients of function f . The algorithm of the second-generation
curvelet transform by Candes, Donoho, Demanet and Ying [12], used in this paper, can
be found in www.curvelet.org. For more details on curvelets and recent applications we
refer to [42, 43].

The simple iterative curvelet thresholding (see e.g., [34, 40, 41]) can be written as
follows

uk+1 = Sσ,T (uk + ΦT (f − Φuk)). (1.7)

Here the shrinkage operator Sσ,T is given by

Sσ,T (f) =
∑

j,l,k

Tσ(〈f,Ψj,l,k〉)Ψj,l,k, (1.8)

where Tσ can e.g. be taken as a soft shrinkage function defined by a fixed threshold σ > 0,

Ts,σ(x) =







x − σ, x ≥ σ,
0, |x| < σ,

x + σ x ≤ −σ,

or a hard shrinkage function

Th,σ(x) =

{

x, |x| ≥ σ,
0, |x| < σ.

The iterative curvelet/wavelet thresholding has been used in the numerical experiments
in Section 4 for comparisons.

References

[1] R. Baraniuk, V. Cevher, M. Duarte, C. Hegde, Model-based compressive sensing,
IEEE Trans. Information Theory, submitted, 2008.

[2] J. Bioucas-Dias, M. Figueiredo, A new TwIST: two step iterative shrinkage/threshol-
ding algorithms for image restoration, IEEE Trans. Image Process. 16 (12), 2992-3004
(2007).

[3] T. Blumensath, M. Davies, Iterative thresholding for sparse approximations, J.
Fourier Anal. Appl. 14 (5), 629-654 (2008).

[4] J. Bobin, J. Starck, R. Ottensamer, Compressed Sensing in Astronomy, IEEE J.
Selected Topics in Signal Process. 2 (5), 718-726 (2008).

[5] J. Cai, S. Osher, Z. Shen, Linear Bregman iteration for compressed sensing, Math.
Comput. 78, 1515-1536 (2009).

[6] J. Cai, S. Osher, Z. Shen, Split Bregman methods and frame based image restoration,
submitted, 2009.

[7] E. Candès, T. Tao, Decoding by linear programming, IEEE Trans. Infor. Theory 51

(12), 4203-4215 (2005).

20



[8] E. Candès, J. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate
measurements, Commun. Pure Appl. Math. 59, 1207-1223 (2006).

[9] E. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal recon-
struction from highly incomplete frequency information, IEEE Trans. Inform. Theory
52 (2), 489-590 (2006).

[10] E. Candès, M. Wakin, S. Boyd, Enhancing sparsity by reweighted ℓ1 minimization,
J. Fourier Anal. Appl. 14 (5), 877-905 (2008).

[11] E. Candès, D. Donoho, New tight frames of curvelets and optimal representations of
objects with piecewise singularities, Commun. Pure Appl. Math. 57, 219-266 (2004).

[12] E. Candès, L. Demanet, D. Donoho, L. Ying, Fast discrete curvelet transforms, Mul-
tiscale Model. Simul. 5 (3), 861-889 (2006).

[13] R. Chartrand, Exact reconstructions of sparse signals via nonconvex minimization,
IEEE Signal Process. Lett. 14, 707-710 (2007).

[14] P. Combettes, Solving monotone inclusions via compositions of nonexpansive aver-
aged operators, Optimization 53 (5-6), 475-504 (2004).

[15] P. Combettes, J. Pesquet, A Douglas-Rachford splitting approach to nonsmooth con-
vex variational signal recovery, IEEE J. Selected Topics in Signal Processing 1 (4),
564-574 (2007).

[16] P. Combettes, V. Wajs, Signal recovery by proximal forward-backward splitting, Mul-
tiscale Model. Simul. 4, 1168-1200 (2005).

[17] I. Daubechies, Ten lectures on wavelets, Philadelphia, PA: SIAM, 1992.

[18] I. Daubechies, M. Defrise, C. De Mol, An iterative thresholding algorithm for linear
inverse problems with a sparsity constraint, Commun. Pure Appl. Math. 57 (11),
1413-1457 (2004).

[19] L. Demanet, L. Ying, Wave atoms and sparsity of oscillatory patterns, Appl. Comput.
Harmon. Anal. 23 (3), 368-387 (2007).

[20] M. Do, M. Vetterli, The contourlet transform: an efficient directional multiresolution
image representation, IEEE Trans. Image Process. 14 (12), 2091-2106 (2005).

[21] D. Donoho, Compressed sensing, IEEE Trans. Inform. Theory 52 (4), 1289-1306
(2006).

[22] D. Donoho, Y. Tsaig, I. Drori, J. Starck, Sparse solution of underdetermined linear
equations by stagewise Orthogonal Matching Pursuit, submitted, 2008.

[23] M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, R. Baraniuk,
Single-pixel imaging via compressive sampling, IEEE Signal Process. Mag. 25 (2),
83-91 (2008).

[24] M. Elad, B. Matalon, J. Shtok, M. Zibulevsky, A wide-angle view at iterated shrinkage
algorithms, Proc. of SPIE, vol. 6701, pp. 670102: 1-19, 2007.

[25] M. Elad, P. Milanfar, R. Rubinstein, Analysis versus synthesis in signal priors, Inverse
Problems 23, 947-968 (2007).

[26] Y. Eldar, Compressed sensing of analog signals in shift-invariant spaces, IEEE Trans.
Signal Process., 2009, to appear.

[27] M. Figueiredo, R. Nowak, S. Wright, Gradient projection for sparse reconstruction:
application to compressed sensing and other inverse problems, IEEE J. Select Topic
in Signal Process. 1 (4), 586-597 (2007).

[28] M. Fornasier, H. Rauhut, Iterative thresholding algorithms, Appl. Comput. Harmon.
Anal. 25 (2), 187-208 (2008).

[29] T. Goldstein, S. Osher, The split Bregman method for ℓ1 regularized problems, SIAM
J. Imaging Sci. 2 (2), 323-343 (2009).

21



[30] E. Hale, W. Yin, Y. Zhang, Fixed-point continuation for ℓ1-minimization: methodo-
logy and convergence, SIAM J. Optimization 19 (3), 1107-1130 (2008).

[31] L. He, T. Chang, S. Osher, T. Fang, P. Speier, MR image reconstruction by using the
iterative refinement method and nonlinear inverse scale space methods, UCLA CAM
Report 06-35, 2006.

[32] S. Ji, Y. Xue, L. Carin, Bayesian compressive sensing, IEEE Trans. Signal Process.
56 (6), 2346-2356 (2008).

[33] P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear opera-
tors, SIAM J. Numer. Anal. 16 (6), 964-979 (1979).

[34] T. Lin, F. J. Herrmann, Compressed wavefield extrapolation, Geophysics 72 (5),
SM77-SM93 (2007).

[35] M. Lustig, D. Donoho, J. Pauly, Sparse MRI: the application of compressed sensing
for rapid MR imaging, Magnetic Resonance in Medicine 58 (6), 1182-1195 (2007).

[36] M. Lustig, D. Donoho, J. Santos, J. Pauly, Compressed sensing MRI, IEEE Signal
Processing Magazine 25 (2), 72-82 (2008).

[37] J. Ma, Compressed sensing by inverse scale space and curvelet thresholding, Appl.
Math. Comput. 206, 980-988 (2008).

[38] J. Ma, Compressed sensing for surface characterization and metrology, IEEE Trans.
Instrument and Measurement, 2009, to appear.

[39] J. Ma, Single-pixel remote sensing, IEEE Geosci. Remote Sensing Lett. 6 (2), 199-203
(2009).

[40] J. Ma, F.-X Le Dimet, Deblurring from highly incomplete measurements for remote
sensing, IEEE Trans. Geosci. Remote Sensing 47 (3), 792-802 (2009).

[41] J. Ma, A single-pixel imaging system for remote sensing by two-step iterative curvelet
thresholding, IEEE Geosci. Remote Sensing Lett., 2009, to appear.

[42] J. Ma, G. Plonka, Combined curvelet shrinkage and nonlinear anisotropic diffusion,
IEEE Trans. Image Process. 16 (9), 2198-2206 (2007).

[43] J. Ma, G. Plonka, A review of curvelets and recent applications, IEEE Signal Pro-
cessing Magazine, 2010, to appear.

[44] S. Osher, M. Burger, D. Goldfarb, J. Xu, W. Yin, An iterative regularization method
for total variation-based image restoration, Multiscale Model. Simul. 4, 460-489
(2005).
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Figure 1: Element functions of curvelets at different spatial locations, directions, and
scales.
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Figure 2: Pseudo-random Fourier-domain downsampling is used as a CS measurement
matrix. (a) Sampling pattern in Fourier domain. (b) 2D probability density function and
its 1D center crossed profile.
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SNR = 33.99 dB

(a) (b)
SNR = 41.00 dB

(c) (d)
SNR = 40.81 dB

(e) (f)
SNR = 44.64 dB

(g) (h)

Figure 3: Fourier-domain imaging for the standard Lena image. (a) Original Lena image.
(b) Directly zero-filling recovery u = ΦT f . (c) and (d) IWT recovery and its recovery
error. (e) and (f) ICT recovery and error. (g) and (h) CWSpB recovery and error.
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SNR = 31.21 dB

(a) (b)

SNR = 37.84 dB SNR = 34.51 dB

(c) (d)

SNR = 38.10 dB SNR = 39.16 dB

(e) (f)

Figure 4: CS imaging for a moon surface. (a) Original unknown scene. (b) Recovery by
u = ΦT f . (c) IWT. (d) Wavelet-TV. (e) ICT. (f) CWSpB.
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Figure 5: (a) SNR-to-iteration curves for the Lena image in Figure 3. (b) Pseudo-Pareto
curves for the Lena image. Solid lines (with squares), dot-dashed lines (with circles), and
dashed lines (with crosses) denote CWSpB, ICT, and IWT, respectively.
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Figure 6: (a) SNR-to-iteration curves for the moon image in Figure 4. (b) Pseudo-Pareto
curves for the moon image. Solid line with squares, dot-dashed line with circles, and
dashed line with crosses denote CWSpB, ICT, and IWT, respectively.
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SNR = 28.11 dB

(a) (b)

SNR = 37.84 dB SNR = 39.73 dB

(c) (d)

Figure 7: Performance of the proposed CWSpB method for a cloud scene. (a) Original
cloud scene. (b) Recovery by u = ΦT f (SNR=28.11 dB). (c) IWT (SNR=37.84 dB). (d)
CWSpB (SNR=39.73 dB).
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