Curves and Surfaces

Sebastián Montiel Antonio Ros

Translated by Sebastián Montiel

Graduate Studies in Mathematics Volume 69

American Mathematical Society Real Sociedad Matemática Española

Contents

Preface to the English Edition	
Preface	xiii
Chapter 1. Plane and Space Curves	
§1.1. Historical notes	1
§1.2. Curves. Arc length	2
§1.3. Regular curves and curves parametrized by arc length	8
§1.4. Local theory of plane curves	9
§1.5. Local theory of space curves	14
Exercises	20
Hints for solving the exercises	24
Chapter 2. Surfaces in Euclidean Space	31
§2.1. Historical notes	31
§2.2. Definition of surface	32
§2.3. Change of parameters	38
§2.4. Differentiable functions	40
§2.5. The tangent plane	44
§2.6. Differential of a differentiable map	46
Exercises	55
Hints for solving the exercises	58
Chapter 3. The Second Fundamental Form	67
§3.1. Introduction and historical notes	67

vii

§3.2.	Normal fields. Orientation	69
§3.3.	Gauss map and the second fundamental form	76
§3.4.	Normal sections	81
§3.5.	Height function and the second fundamental form	85
§3.6.	Continuity of the curvatures	88
Exerci		94
	for solving the exercises	97
Chapter	4. Separation and Orientability	107
§4.1.	Introduction	107
§4.2.	Local separation	108
§4.3.	Surfaces, straight lines, and planes	111
§4.4.	The Jordan-Brower separation theorem	116
$\S4.5.$	Tubular neighbourhoods	120
Exerc	ises	125
Hints	for solving the exercises	126
§4.6.	Appendix: Proof of Sard's theorem	131
Chapter	5. Integration on Surfaces	135
$\S{5.1.}$	Introduction	135
$\S{5.2.}$	Integrable functions and integration on $S \times \mathbb{R}$	136
$\S{5.3.}$	Integrable functions and integration on surfaces	139
$\S{5.4.}$	Formula for the change of variables	144
§5.5.	The Fubini theorem and other properties	145
§5.6.	Area formula	151
§5.7.	The divergence theorem	157
$\S{5.8.}$	Brower fixed point theorem	161
Exerc	ises	163
Hints	for solving the exercises	165
Chapter	6. Global Extrinsic Geometry	171
§6.1.	Introduction and historical notes	171
§6.2.	Positively curved surfaces	173
§6.3.	Minkowski formulas and ovaloids	182
§6.4.	The Alexandrov theorem	186
$\S6.5.$	The isoperimetric inequality	188
Exerc	ises	195

ŗ

1

;

Hints for solving the exercises	198
Chapter 7. Intrinsic Geometry of Surfaces	203
§7.1. Introduction	203
§7.2. Rigid motions and isometries	206
${ m S7.3.}$ Gauss's Theorema Egregium	210
§7.4. Rigidity of ovaloids	214
§7.5. Geodesics	219
${}_{0}$ §7.6. The exponential map	229
Exercises	
Hints for solving the exercises	
§7.7. Appendix: Other results of an intrinsic type	252
Chapter 8. The Gauss-Bonnet Theorem	275
§8.1. Introduction	275
§8.2. Degree of maps between compact surfaces	276
§8.3. Degree and surfaces bounding the same domain	284
§8.4. Index of a field at an isolated zero	289
§8.5. The Gauss-Bonnet formula	295
§8.6. Exercise: The Euler characteristic is even	304
Exercises: Steps of the proof	
Chapter 9. Global Geometry of Curves	309
§9.1. Introduction and historical notes	309
§9.2. Parametrized curves and simple curves	313
9.3. Results already shown on surfaces	319
§9.4. Rotation index of plane curves	329
§9.5. Periodic space curves	338
§9.6. The four-vertices theorem	346
Exercises	350
Hints for solving the exercises	
9.7. Appendix: The one-dimensional degree theory	365
Bibliography	
Index	373