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CURVES OF CONSTANT BREADTH 
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(Received January 17, 1972) 

We shall leave out the history of curves of constant breadth in the plane; an 
informative survey can be found in [3] and also in Z. NÂDENÎK'S work [8]. In 1914 
M. FunwARA [4] made an attempt to generalize the results to closed curves in 
Euclidean space £3. He requires the closed curve to have the following property: 
each normal hyperplane has with the curve only two common points, the distance 
of them being constant. W. BLASCHKE [2] completed Fujiwara's conclusions by 
proving the existence of such a curve. A fundamental turn was made by Z. Nâdenîk's 
works [8] and [9] which disclose a much closer connection with the plane case. Z. 
Nadenik dealt with closed curves in spaces of even dimensions whose spherical image 
of last normals is the hypercircle Г, i.e., a curve with all curvatures constant. When 
considering a centrally symmetrical hypercircle Г, Z. Nâdenik defined opposite 
points of the curve (see p. 447) and then the breadth of the curve as the distance В 
of hyperosculating hyperplanes at the opposite points. For certain two types of the 
hypercircle Г, the curve always lies on one side of its each hyperosculating hyper-
plane and the breadth in the direction of the vector of the last normal is always 
positive; these properties are completely analogous to those of oval curves in the 
plane. Conclusions reached by Z. Nâdenik for curves of constant breadth В also 
show a very close connection with the simpler case in the plane. The generaHzation 
of Segre's theorem given by Z. Nâdenik in [7] was of great importance for this study. 

In this article we shall consider closed space curves ^^ as defined in [11] (p. 75); 
all notations and starting assumptions — except the assumption (d) — will remain 
unchanged. However, we shall strenghthen the assumption concerning the class p 
of the curve ^^ by requiring p ^ 2n — 1. It was shown in the proof of Theorem V 
[11] that curves ^^ can exist only in spaces of even dimensions; in the same paper 
also some relations important for our further study were estabhshed. Let us recall 
in particular that for a curve ^^ the following relations hold (a being the arc on the 
spherical image ^ * of tangent vectors or the curve ^^): 

(1) n(a + ia ) = - n ( a ) , e^(a + ^a) = - e , ( a ) (v = 1, ..., n - 2 ) , 

(2) Xj{a + ia) = }ij{ci) (; = 2 , . . . , n - 1) . 
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The curve ^^ can be represented parametrically by means of vectors from the 
moving Frenet's n-hedron 

(3) x(a) = ho{oc) t(a) - //i(a) e,{a) - ... - /î„_2(a) e„_2(a) - h{oc) n{a) . 

The function h{a) = — x(a) . n(a) is called the supporting function of the curve ^^ 
and the function В(а) = /î(a) + /г(а + ^a) the breadth of the curve ^^. Denoting 
further Bo{(x) = /io(a) + ho{(x + ^a), B^((x) = h^{oi) + /iv(ô  + ia) (v = 1, . . . , n - 2), 
then it follows from (1) and (3) that the position of the radius-vectors at any pair of 
opposite points of the curve ^^ is given by the relation 

(4) x(a) - x(a + ia) = Bo{ot) t(a) - Bi{a) ei(a) - ... 

. . . - Б „ _ 2 ( а ) е „ - 2 ( а ) - Б ( а ) п ( а ) . 

When a is taken for the parameter, Frenet's formulae read as follows: 

(5) t'(a) = e,(a) , 

e;(a) = - t ( a ) + X2(a) e2(a), 

^li^) = -^2(a) ei(a) + Хз(а) ез(а) , 

<-2(a) = ~^п-2(ос) е„_з(а) + x„_i(a) n(a) , 

n'(cc) = -^„ - i (a )e„_2(a) . 

Differentiating (4) with respect to a, modifying the righthand side by means of (5) 
and comparing both sides, we obtain the following system of conditions: 

(6) r{a) + r(a + ^d) - Бо(а) = ^^(a) , 

B[{cc) = Bo{a) + %2(a) ^2(a) , 

Bjicc) = -X2{(x) Bi(a) + Хз(а) Бз(а) , 

Bn-iioc) = -х„_2(а)Б„_з(а) + >t:„_i(a) Б(а) , 

Б'(а) = ~;^„_i(a)^„_2(a) . 

Eliminating BQ and ^v (^ = 1, . . . , n — 2) from the system (6) we obtain — assuming 
the radius of flexion r to be known — a certain linear diff'erential equation of the 
n-th order 

(7) G{B{(x)) = r{oc) + r(a + ^a) . 

The solutions of the corresponding homogeneous equation 

(8) G(ß(a)) = 0 
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are n coordinates of the vector n. This can be directly seen from the comparison of 
(5) and (6) for r(a) + r(a + ^a) = 0. Wronskian W{<x) of these solutions differs 
from zero for each a e <0, a), as the equality 

(9) W{a) = [n(a), n '(a), . . . , n^""i)(a)] = "ffxj(a) 

holds; (9) follows from (5) and its derivation will be sketched later (see No 1). There
fore the coordinates of the vector n form a fundamental system of the equation (8). 

Analogously to Z. Nâdenik in [8], we shall estabhsh first of all the necessary and 
sufficient conditions for a curve ^^ to be a curve of constant breadth. Some direct 
consequences will be given here, too. 

Theorem 1 (see No 1): Let Л((х) be the coefficient of B(a) in the equation (7). 
A curve ^s is a curve of constant breadth В if and only if the relation 

(10) Л(а) В = r(a) + r(a + ia) 

is valid. If the curve ^^ has a constant sum of radii of flexion at the opposite points, 
then it is a curve of constant breadth В if and only if the coefficient Л(а) = Л is 
constant as well. 

The following theorem characterizes curves ^^ of constant breadth geometrically: 

Theorem II (see No 2): A curve ^^ ^^ ^f constant breadth В if and only if the vector 
^n-iip^ f^^ eac/i OLE {0, ^a) IS perpendicular to the connecting line of the opposite 
points. 

Theorem III (see No 3): On a curve ^^ of the length Land constant breadth В the 
following relations hold: 

(11) L = 5 Л(а )аа , 

(12) К«) + r(a -H ia) = -~^^^-^ ^ 
M2 

Jo ^̂"̂  da 

To a curve ^^ of constant breadth, the analogue of Barbier's theorem (see [1]) also 
applies. 

Theorem IV (see No 4): All curves ^^ of the same constant breadth and with the 
same spherical image ^* of tangents also have the same length, 
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E. MEISSNER [5] (p. 327) proved that the centre of gravity of an oval curve of 
constant breadth coincides with its centre of gravity of curvature. The notion of the 
centre of gravity of curvature was introduced by J. STEINER [ Ю ] ; it stands for the 
point Z = ija ^<^x(s) ki(s)ds (s is the arc on ^ ) . Also the curves studied by Z. 
Nâdenik in [8] have the same property: the centre of gravity of the curve coincides 
with Steiner's centre of gravity of curvature (see [8], p. 544). Meissner's theorem 
evidently holds for curves which have the centre, regardless of the fact whether they 
are curves of constant breadth. Relation (10) is not fully analogous to the correspond
ing relation on an oval curve of constant breadth; the fact that the sum of radii of 
flexion at opposite points is constant (as it follows from Theorem I) does not mean 
that any curve ^^ is also of constant breadth and vice versa. The analogue of Meiss
ner's theorem holds when expressed in the following form: 

Theorem V (see No 5): On a curve ^^ ^i^h constant sum of radii of flexion at 
opposite points the centre of gravity coincides with Steiner's centre of gravity of 
curvature if and only if 

J "é 
r(a) {x(a) - x(a + ia)] da = 0 . 

II. 

If between curves JT, ^Ж with parametric equations z = z(a), ^z = •̂ z(̂ a) there 
exists such a one-to-one mapping given by the relation ^a = / (a) that the couple of 
moving n-hedrons at the corresponding points is invariant with respect to the group 
of Euclidean motions, then, following E. CECH and Z. Nâdenik (see [6], pp. 57 — 58), 
we shall call these curves Bertrand's curves. 

In this section we shall describe the properties of some special curves ^^ of constant 
breadth which with respect to themselves are Betrand's curves. In order to simplify 
the formulations it is suitable to denote by Ёо(а), Ê2i{oc) the hyperplanes passing 
through the point x(a) of the curve ^^ and perpendicular to the vectors t(a), 62 ̂ (a) 
(i = 1, . . . , i{n — 2)) for each a e <0, a). 

Theorem VI (see No 6): On a curve ^^ ^he hyperplanes ÊQ^O), Ê2i{oc) coincide at 
each couple of opposite points if and only if ^^ is a curve of constant breadth with 
constant ratios of curvatures /c2i(a)/fe2i+i(^) {l — Ь -•-, ii^ — 2)). These curves are 
Bertrand's curves, have a constant sum of radii of flexion at opposite points and 
the vectors t(a), е2^(а) are always perpendicular to the connecting line of the opposite 
points. 

The curves ^^ from Theorem VI are such that none of functions Bo, B, B^ (v = 
= 1, . . . , n — 2) changes its sign. At the same time they are the only curves ^^ having 
this property; this can be easily verified by means of (6). 
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Theorem VII (see No 7): On a curve ^^ ^f constant breadth В with constant ratios 
of curvatures /c2f(a)//c2,+i(a) {i = 1, . . . , i(n - 2)) the position of radius-vectors at 
opposite points can be expressed by the relation 

(13) x(a 4- ia) - x(a) = ЛВ е^{(х) + 
(n-2)/2 Д-1 (\ 

+ i: Л В П - ^ е , , _ , ( а ) + Вп(а), 
ß=:2 j = l X2j+l[GC) 

where A is the constant coefficient from (10) of the following form: 

(14) Л = П ^ ^ ' 

As we have already mentioned in the introduction to Theorem V, the constant 
sum of radii of flexion at opposite points does not guarantee that a curve ^^ is of 
constant breadth. Even the constant coefficient A itself does not imply that ^^ is 
a curve of constant breadth (see No 8). Nevertheless, the following theorem holds: 

Theorem VIII (see No 8): a) In case that a curve ^^ ^^^ ~" ̂ ^ addition to the constant 
ratios of curvatures k2i{^)l^2i+i{'^) (̂  = 1, . . . , ^{n — 2)) — also a constant sum of 
radii of flexion at opposite points, then ^^ is Bertrand's curve of constant breadth. 

b) A curve ^s with a constant flexion and constant ratios of curvatures k2i{oc) : 
: k2i+i{cc) (i = 1, ..., i(n — 2)) is Bertrand's spherical curve of constant breadth. 

Let us now pass to the proofs of the above theorems. 

1. First of all the identity (9) is to be proved. If we substitute the corresponding 
expression for n'(a) from (5) into the determinant [n, n ' , . . . , n^"~^^], then the 
vectors n(a) and e„_2(a) will be found in the first two columns. Differentiating the 
other columns, arranging then by means of (5) and omitting the summands which 
would contribute zero determinants, we obtain the determinant [n, —x„-16^-2» 

which (9) follows directly. 
Now the proof of Theorem I: If B(oc) = В = const, then (7) has the form (10) 

where A(a) is formed only by the ratios of curvatures Xj{a) ( j = 2 , . . . , w — 1) and 
their derivatives. Conversely, if (10) holds, then one solution of the non-homogeneous 
equation (7) is B{<x) = B; the general solution of the homogeneous equation (8) is 
Б(а) = V. n(a), where v is an arbitrary fixed vector. Thus the general solution of 
the equation (7) has the form B((x) = В + v . ii(a). As the breadth В(а) is a periodic 
function with the period | a , it necessarily follows from (1) that also B(a) = Б-— 
— V . n(a). Therefore v = 0 and Б(а) = В. The latter part of the theorem is a direct 
consequence of the former, 
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2. The validity of this assertion is evident from the last formula (6) and from (4). 

3. On any curve ^^ of constant breadth В (10) holds. Then we have for the length L 
of the curve ^/. 

Лй/2 ра/З 
L = {r(a) + r(a + ia)} doc = В \ Л(а) da . 

Jo Jo 

Comparing (10) and (11) we obtain (12). 

4. (11) holds for the length of the considered curve ^^; the coefficient A(a) is formed 
only by the ratios of curvatures Xj{a) (j = 2,..., n - 1) and their derivatives. These 
ratios of curvatures are uniquely determined by the spherical image '̂ f. 

5. Let R = r((x) + r(a + ia) = const. For the centre of gravity Y of the curve ^^ 
the following equation holds (s is the arc on ^^5): 

Y = i 
L 

x(s) ds = — x(a) r(a) da = 
^ J 'i^s* 

= — x(a) r(a) da Ч • x(a + ^a) r(a + | a ) da 
^^ J 'es* ^^ J 'g's* 

(a + ia) da . 

According to the assumption, the first integral equals zero. As L = ^aR, the second 
one equals ija J<̂ *̂ x(a) da = l/a J^^ x(5) r~ (̂5) ds, which is Steiner's centre of gravity 
of the curvature of the curve ^5. 

If both centres of gravity coincide, i.e., l/a Ĵ ^* x(a) da = l/L J*̂ «̂ x(a) r(a) da and 
if we substitute for a the corresponding expression from the formula for the length L, 
then 

R^ 
2L 

x(a) doc = — x(a) rfa) doc -i x(a + ia) r(oc + ia) doc. 

Writing R under the integral sign and replacing R by the corresponding sum we 
obtain an equality which is just another form of the equality required by the theorem; 
the required equality is always fulfilled on oval curves and on curves dealt with by 
Z. Nâdenik in [8]. It should be mentioned that the proof proceeds similarly to that 
of Z. Nâdenik in [8] (pp. 547-548). 

6. When the hyperplanes Êo{a) and Ê2i(a) (i = 1, . , . , i(n — 2)) on a curve ^^ 
coincide at each couple of opposite points, then the functions BQ, B2i identically 
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equal zero. Differentiation of (4) yields the following equation: 

- {r(a) + r(a + ia)} t(a) = 

(и-2)/2 (n-2)/2 
== Z B'2i-,e2i-,{a) + BXa)n{a)+ ^ ^2/-i(a) e^ i - iW + Б(а) n'(a) . 

Let us compare now both sides of this equation and replace e2i('^) ^^^ "X^) by the 
corresponding expressions from (5). We then see that the functions B2i-i and В are 
constant and, further, that also the ratios of curvatures /c21/^:2HI ^^^ the sum of 
radii of flexion at opposite points are constant. The equation (4) has therefore the 
form 

(n-2)/2 
(6,1) x(a + ia ) - x(a) = ^ ^2,-1 e2i-i(a) + В n{cc) , 

i = i 

Bji-i and В being positive constants. 

Conversely: If В is constant, then it follows from the last equation (6) that 
Б„_2(а) = 0. The recurrent procedure with constant ratios of curvatures /c2i//c2,+i 
(i = 1, . . . , i{n — 2)) leads to the conclusion that the functions BQ, B2i identically 
equal zero and the functions Б2,-1 are necessarily constant; hence also r(a) + 
+ r(a + ^a) = Bi is constant. 

From (6,1) and (l) it may be seen that these curves ^^ are Bertrand's curves. 
Also the assertion that the vectors t(a), e2i{oc) are perpendicular to the connecting 
line of the opposite points is a consequence of (6,1). 

7. First the following recurrent relation will be proved: Let v be an even index 
(v = 4, ..., л — 2). If on the considered curve ^^ the equality 

x„-2(a)x„-4(a)...x„_^+2(a) 

holds for some v, then also the equality 

/7 ^^ о /^4 _ x,-i(a)x,-3(Q^).»»>^n-v+i(Qg) J. (/'2j iJ„_v_ Да; —7 y-r - — - В 
><^«-2(a)^«-4(a)---^n-v(a) 

is vaHd. To prove it (6) will be used. Each equation of the system (6) with an even 
index on the left hand side is, for the considered v, given by the relation 

Б;_,(а) = -x„_,(a)B„_,_i(a) + x„,^+i{(x) B„.^+i{a) ^ 

Substituting (7,1) into this equation we obtain (7,2), since B„^^((x) = 0 according 
to Theorem VI. From the last equation (6) it follows that the condition (7,1) holds 
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for V = 4. Thus the recurrence is confirmed and consequently (13) also holds ac
cording to (6,1). Further from (7,2) and from the first equation (6) we obtain for 
V = n — 2 

(7,3) r(a) + r(a + ia) = Б , = П ^ ^ ^ ^ В . 

(14) follows from (10) and (7,3). 

8a) The first step will be to prove that, in consequence of the fact that the ratios 
of curvatures /c2i(a)//c2i+i(a) (f = 1, . . . , i{n — 2)) on the curve ^^ are constant, the 
coefficient Л(а) at Б(а) in the equation (7) has the form (14); therefore it is constant. 
The first equation of the system (6) is 

(8.1) Bo{(x) + B^{(x) = r(a) + r{oc + ia) . 

From the last equation (6) we get B„_2(a) = — B'(a)/x;„_i(a), and from the last but 
one, Б„_з(а) = (•) + (>t:„_i(a)/x„_2(a)) ^(a). The expression (•) contains only 
the derivatives of Б(а); we are only interested in the coefficient at B{oc) in the equation 
(7). Recurrently we find out that the functions Bo{oc) and Б2^(а) are expressed only 
by derivatives of the function Б(а), while the function B{a) itself appears only in 
expressions of the functions B2i-i{o(), namely, 

(8.2) Б,._,(«) = [ . ] + " " - f ; " " - f ; - ^ - ; f В{а) . 

The expression [•] includes only the derivatives of Б(а); the fact that Л has the form 
(14) follows from (8,1) and (8,2). From Theorem I it follows that the curve ^^ is of 
constant breadth В and from Theorem VI that it is Bertrand's curve. 

b) The mutual position of the radius-vectors at opposite points on these curves ^^ 
is given by the equation (13). When the curve ^^ has a constant flexion, it is centrally 
symmetrical. If the origin of the coordinate system is chosen at the centre of symmetry 
it follows from (13) that this curve is spherical. 
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