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CURVES OF GENUS 2 WITH SPLIT JACOBIAN

ROBERT M. KUHN

ABSTRACT. We say that an algebraic curve has split jacobian if its jacobian

is isogenous to a product of elliptic curves. If X is a curve of genus 2, and

/: X —► E a map from X to an elliptic curve, then X has split jacobian. It is

not true that a complement to E in the jacobian of X is uniquely determined,

but, under certain conditions, there is a canonical choice of elliptic curve E'

and algebraic f:X—>E', and we give an algorithm for finding that curve.

The construction works in any characteristic other than two. Applications of

the algorithm are given to give explicit examples in characteristics 0 and 3.

0. Introduction. We say that a curve has split jacobian if its jacobian is isoge-

nous to a product of elliptic curves. In the later half of the nineteenth century a

considerable body of work was done on the reduction of abelian integrals to ellip-

tic. Krazer [1] gives a summary of the results obtained. Stated geometrically, the

results are particular families of algebraic curves of genus 2 with maps of degree

2, 3 or 4 to elliptic curves. Such curves have split jacobian. The general question

of split jacobian curves and particularly, those of genus 2, is of interest for several

reasons. Split jacobian curves often have the maximal number of points over finite

fields, e.g. the examples of Moret-Bailley [2] are one parameter families of curves of

genus 2 over fields of order p2 whose jacobians are isomorphic to the square of the

supersingular elliptic curve, and which have maximal numbers of points over fields

of order p2n, n > 2. Split jacobian curves of genus 2 have also been used to exhibit

nonisomorphic curves with the same jacobian; vide [3, 4]. The approach in these

papers is through the algebraic geometry of abelian varieties, and the constructions

are therefore far from explicit.

Consider the following: Let X be a curve of genus 2, and f:X—>Ea map from

X to an elliptic curve. The jacobian of X is therefore isogenous to a product of E

and another elliptic curve, E1. Problem: find E', e.g. what is its j-invariant?

It is not clear, nor even true (vide T. Shioda [7]), that £" is uniquely determined.

However, under certain conditions there is a canonical choice of complement, and

we give an algorithm for finding that curve. Our aim is to provide explicit equations

for the curves and the maps between them.

We obtain a fairly complete combinatorial characterization of the splitting of

the jacobians of curves of genus 2. The splitting is characterized by the degree of

the map / above. Jacobi, generalizing an example of Legendre, gave the complete

solution for degree 2. Given any involution of P1, and three points not fixed by

the involution, the curve of genus 2 which has its 6 Weierstrass points above the

three points and their images under the involution, maps to the two elliptic curves

represented as double covers of the quotient of P1 by the involution, ramified at
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the images of the three points and one of the two fixed points of the involution.

Krazer attributes the results obtained for degree 3 to Hermite, Goursat, Burck-

hardt, Brioschi, and Bolza. They obtained the generic family of such curves, but

did not obtain all the special cases. For higher degree, there is considerable effort

involved in obtaining explicit results.

NOTATION. The symbol k is used throughout for a field of characteristic p ^ 2.

If X is an algebraic curve, by X(k) we mean the ^-rational points of X. To indicate

that any object, X, is defined over the field k, we write X/k. If a is an automorphism

of X, then X° is the quotient of X under the action of the group generated by a.

The jacobian of X, Jac(AT), is viewed as the linear equivalence classes of divisors

of degree zero. If Pi are points of X, we represent a divisor D by D = ^2ni(Pz),

ni E Z. If D is a divisor of degree zero we write [D] for the linear equivalence class

of D which is therefore a point of Jac(X). We use gx for the genus of X. Given

a map /: X —> E, eP is the ramification degree of f at P E X and we define the

divisor Rf of / to be

Rf= £>p-i)(p).
Pex

When / is tamely ramified, this is the usual ramification divisor.

1. Coverings of curves of genus 1 by curves of genus 2.

LEMMA. Let k be a field of characteristic p ^ 2. Let X/k be a hyperelliptic

curve of genus g > 2 covering E/k a curve of genus 1 by a map f/k: X —► E. Let i

be the unique hyperelliptic involution on X. Then i induces a k-rational involution

on E, with quotient of genus 0. The fixed points of X under i lie over the fixed

points of E under i.

PROOF. Let xq be a fixed point of X(k) under i and let e0 = f(xo). Embed

X and E in their respective jacobians via x •<—► \(x) — (xq)\ and e i—> [(e) — (eo)].

Consider the following commutative diagram:

X    -+    Jac(X)

if if*

E    ^    Jac(E)

Because of the choice of embeddings, the hyperelliptic involution, i, on X induces

the involution -1 6 End(Jac(A)) and hence induces the involution -1 on Jac(E) ~

E. Hence, there is an involution iE on E compatible with / and i. Since iE is — 1

on Jac(E), the genus of EL is 0. A simple argument shows that iE is defined over

k.    D

Let k be a field such that char(fc) ^ 2, and let f/k: X/k —> E/k be a function

of degree d from a curve of genus 2 to a curve of genus 1. Also, let t stand for

both the hyperelliptic involution on X and the induced involution on E, and let X1

and EL be the curves of genus 0 obtained from X and E respectively by taking the

quotient by the involution. Consider the ramification of each map in the following
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commutative diagram:

X    X    E

XL      £      El

In this diagram we know that rrx ramifies at 6 points, Cy,C2,...,Ce, which lie

over the 4 ramification points, Dy,D2,D3,D4, of irE. Suppose / is unramified over

the 4 Di, then irE o / has 4d double ramification points over them. irE o f = fl o-kx.

Now, irx is ramified at exactly 6 points, hence fL is doubly ramified at the 2d — 3

points over the Di, other than the Cr On the other hand, by Riemann-Hurwitz

2 - 2gx, = d(2 - 2gE.) - deg(i?/.) - W

(where W is the contribution for wild ramification), and hence

deg(i2/0 + W = 2d - 2.

We have therefore located nearly all of the ramification of /', in the sense that, if

/ is unramified above the Di, then /' has 2d — 2 double ramification points, 2d — 3

above the images, dl, of the Dt, and one other. If / is ramified above the Di, then

all of the ramification of /' lies above the dt.

LEMMA. Let Cj, j = 1,2,3,4,5,6, be the Weierstrass ramification points of X,

and Di, j = 1,2,3,4, be the ramification points of E over El. Let Cj and di be

the images of these points in X1 and EL, then {(fL)~1(di)} contains Cj with odd

multiplicity for each j and any other points of XL with even multiplicity. In terms

of divisors,

/4*(Ed«)=5> (mod2)-

PROOF. We prove this lemma by recourse to the function fields of the various

curves over the algebraic closure, k, of the field of definition. We view these function

fields as subfields of k(X). If u is a parameter on X1, and s is a parameter on El,

then s is given by a rational function of u, s = fL(u) = gfej-   Without loss of

generality, we may suppose k(X) = k(u,v)/(v2 = P(u)), where P is a polynomial

of degree 6, and k(E) = k(s, t)/(t2 = D(s)), where D is a polynomial of degree 4.

Now the subfield of k(X) fixed by i is k(u), and the subfield of k(E) fixed by i

is k(s).  We also have i(v) = -v and i(t) = -t, hence t(£) = £. Thus, £ E k(u)

sav    t  =  E<u]_

Therefore,

F(u)2 [  >F(u)2

The zeros of the right-hand side are the points of X1 over the d,-, and since P(u)

has multiplicity 1 at each c}, the lemma is proved.    □

The previous lemma severely restricts the ramification picture for XL over El.

Suppose d = deg(/) = deg(/1) is odd, then there are an odd number of c3 above

each di, hence there is a distinguished di, say dy, such that (/')-1(di) contains

three of the Cj, while the remaining di are such that there is a unique Cj above

each.
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If / has even degree, the situation is more complicated, since an even number of

c3 then lie over each dj. There are thus three ways the Cj can lie over the d», either

(1) (/t)-1(d2) D cy,c2,(r)-1(d3) => c3,c4 and (/TW D c5,c6.

(2) (fl)~1{d2) D cy,c2,c3,c4 and (fTHdy) 3 c5,c6.

(3) (fl)~1(dy) D Ci,C2,C3,C4,C5,C6.

We can summarize the data above with the following ramification pictures for

/': XL —► EL. In the diagrams, - represents an unramified point of XL over one of

the di, which is therefore one of the Cj, and 3? represents a doubly ramified point.

odd degree
qyy      qyy      qyy      qyy

6C 6C 6t t£

qyy      qyy      qyy      qyy
<yZ        d%*        OC        <s£

— qyy qyy GV?
6C <yu OC

dy    d2    d3    d4

even degree

case 1 case 2 case 3
ox?      qyy      qyy      qyy qyy      qyy      qyy      qyy qyy      qyy      qyy      qyy

£C        6C       <y€       t£ {£       <y€       6C       6C 6C       tZC       t£       t£

qyy       qyy       qyy       qyy
<yC        6C        6C        <5t

qyy      qyy      qyy      qyy —        qyy      qyy      qyy
6C ryV tft &C tC 6C £?V

qyy      qyy      qyy      qyy qyy       —        qyy      qyy —        qyy      qyy      qyy
<yC      iZC       /yC       6C z£ t%*       ryZ 6C       6C       6C

qyy       —        —        — —        —        qyy      qyy —        qyy      qyy      qyyaC iyr<       <yc &      tyt      <%■

dy    d2    d3    d4        dy    d2    d3    d4        dy    d2    d3    d4

These diagrams show the ramification of fl over the di, assuming that / is

unramified over the Di\ we might call this the "generic" picture. The ramification

divisor of fl is of degree one greater than represented by the diagrams above. We

now state the combinatorial characterization of fl in the following theorems.

THEOREM (GENERIC). /// is unramified over the Di, the ramification of fL

over the di is one of the cases above. There is one more point of X1 at which fl is

doubly ramified.

THEOREM (SPECIAL).   /// is ramified over some Di, then the ramification of

fL over the di is one of the cases except that either:

(i) One of the Cj has ramification degree 3, or

(ii) There is a unique point, not one of the Cj, with ramification degree 4.
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We note in passing that all three even degree cases occur, lid = 2 then the only

possible case is case 1. If /: X —► E is such a map, E can be given the structure

of an elliptic curve by choosing the origin to be at di. Then the composition of

/ with the quotient by a subgroup of order 2 gives an example of case 2, and the

composition of / with the quotient by the subgroup of all of the points of order

2 gives an example of case 3. An interesting question we answer later is whether

there are any "primitive" examples of cases 2 and 3.

COROLLARY. Let k be a number field, and let X be a curve of genus 2 defined

over k. If there exists a map f from X to a curve E of genus 1, where f and E are

both defined over k, then E has a k-rational point.

PROOF. In each case above, the ramification picks out a distinguished di, hence

di is rational on EL and therefore Dy is rational on E.    □

REMARK. Since the highest ramification degree possible is 4, wild ramification

can only occur in characteristics 2 and 3. It is only in the characteristic 2 case that

a nonzero Swann conductor is possible.

Suppose we are given a map /': P1 —► P1 with one of the ramification pictures

above, then /' clearly lifts to /: X —> E. Given X, the existence of /' from XL —► P1

lifting to a map from X to an elliptic curve is an algebraic condition in terms of

the hyperelliptic points Cj of X1.

2. The complement to an elliptic curve in the Jacobian of a genus 2

curve.

DEFINITION. Let k be a field with algebraic closure k. We say that a k-rational

map f from a curve X defined over k to an elliptic curve E defined over k is optimal

if, whenever there exist an elliptic curve E' defined over k and maps g from X to E'

and h from E' to E, both defined over k whose composition is f, then deg (h) = 1.

LEMMA. Let X/k be a nonsingular projective curve of genus 2 and E/k be an

elliptic curve, both defined over k. If f:X —> E, of degree d, is optimal, then there

exists a pair (E',f), where E' is an elliptic curve and f is an optimal map from

X to E'. Moreover:

(1) deg(/') = d.

(2) Jac(AT) = J is isogenous to the direct sum E © E', (J ~ E®E'). Moreover

the isogeny is given by the following:

O^K^EQE'^J^O

where K = ker(/* +/'*), and

(3) K is isomorphic to the group of points of order d on E or E'.

PROOF. Embed X in its jacobian J, by x i-> [(x) — (xo)\, where x0 is one of the

6 Weierstrass points of X. We could equally well embed X in its jacobian using any

divisor D of degree 1 invariant under the hyperelliptic involution by x •—> [(x) — D}.

Define E' and g by the following exact sequence of abelian varieties:

(1) 0->£'-^ J^E^O.
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REMARK. E' is connected because / is optimal. The dual sequence is also exact,

i.e.

(2) o^eCj^e'-+o.

Define f':X —► E' by composing the embedding of A in J with </, then g = /'*

and g' = fl- The exactness of (2) requires the optimality of /'.

Now consider the map f*:E —> J, and hence the map

f* + g: E © E' - J.

This map is clearly onto, with some finite kernel K. Thus the following sequence

is exact:

0^K^E®E'^J^0.

Now
K = EnE' = lm(/*)nlm(/'*)

= Im(/*)nker(/»)

= ker(/»/*) = the points of order d on E.    D

Observe that if X, E, and / are all defined over a field k, E' will be canonical and

therefore defined over A:. On the other hand we have only established the existence

of the canonical map /' over k(xo) where xo is one of the hyperelliptic ramification

points of X, or more precisely, over any field in which an embedding of X in its

jacobian is defined.

3. The Weil pairing. As the results of the previous two sections show, the odd

and even degree cases of optimal maps from a curve of genus 2 to an elliptic curve

are considerably different. Not only are the ramification pictures different but also,

since the ramification points of the curve of genus 2 project to the points of order

2 on the elliptic curve, they fall into the kernel of the isogeny between the product

of elliptic curves and the jacobian of the curve of genus 2, if and only if the degree

is even. We therefore treat the two cases separately. Let /: X —> E be an optimal

(fc-)rational map from a curve of genus 2 to a curve of genus 1. We have seen that E

will therefore have a distinguished rational point Dy, and we identify E and Jac(.E)

via the rational isomorphism e t—v [(e) — (Dy)}. The hyperelliptic involution t on X

induces —1 on both X and E, and the (not necessarily rational) points of order 2

on E are D2,D3 and D4. The (not necessarily rational) hyperelliptic ramification

points of X are Cy, C2, C3, C4, C5, and C&, and lie above the Dz.

The 15 distinct divisor classes

[(Ci)-{Cj)],        l<t<j<6,

are the 15 points of order 2 on Jac(A).  Let us represent them by the unordered

pair (i,j). For distinct i,j,k,l,m and n, the addition law is given by

{i,j) + (i,j)=0,    (i,j) + (k,l) = (m,n),     (i,j) + (i,k) = (j,k).

The Weil pairing on the points of order 2 on Jac(A) is given by (see Mumford

[6]):
((»',;'), (i,i)) = +i,   ((i,j),(k,i)) = +i,   ((i,3),(i,k)) = -i.
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4. Optimal maps of odd degree. We now restrict attention to /: X —> E

of odd degree. We observe that three of the C», without loss of generality Cy,C2,

and C3, lie over Dy and hence the divisor Cy + C2 + C3 is effective, hence X1 is

rationally isomorphic to P1, and we can write X:y2 — P(x) with P(x) a sextic

rational polynomial. The rationality of Dy then entails that P(x) is the product

of two cubics, A(x) and B(x), where the roots of A(x) are ci,C2, and c3 and

lie over dy. The canonical divisor K = 2(C,) is of course effective, so the divisor

(Cy) — (C2) + (C3) is effective, and moreover its divisor class is uniquely determined,

since it is equal to the class of (Ci) — (Cj) + (Ck), where {i,j,k} = {1,2,3} or

{4,5,6}. We can therefore conclude:

THEOREM. Given f:X —► E a rational optimal map of odd degree from a curve

of genus 2 to a curve of genus 1, there is a rational embedding of X in its jacobian,

canonically determined by /; namely,

X ~ [(X) - (Cy) + (C2) - (C3)}.

COROLLARY. There is a uniquely determined rational, optimal map f from X

to the canonical complement E' of E in Jac(A) whose degree is the same as that

off-

Symmetry Principle. If f: X —>■ E is optimal of odd degree, then f is

obtained by exchanging the roles of the cubics A(x) and B(x).

The image of Ci in Jac(A) is (j,k) where {i,j, k} = {1,2,3} or {4,5,6}. Since

we are considering / of odd degree, the isogeny between Jac(A) and E © E' is an

isomorphism on points of order 2. We use the same names for the maps restricted

to the points of order 2, thus

f*+f't:J2^E2®E'2    and

/* + /'*: E2® E'2 —> J2, are isomorphisms.

Since f~HDi) = {Cy,C2,C3}, we have that

/r1(0) = {(l,2),(2,3),(l,3)}

and the statement that /' is obtained by exchanging the roles of the two cubics is

equivalent to

/r1(0) = {(4,5),(5,6),(4,6)}.

Suppose (i,j) E fl    (0), we compare the Weil pairings on E'2 and J2.

(fL(iJ),D2) = {(iJ),f'*(D2)),

but f't(i,j) — 0, hence ((i,j),f't(D2)) = 1, and similarly for D3 and D4.   But

{fl(Dk)}k=3A,h is {(1,2), (2,3), (1,3)} and the result follows from the Weil pairing.

If /: X —* E is of odd degree, then the determination of /, /', E, and £" is purely

combinatorial and algorithmic.

5. Optimal maps of even degree. In the even degree case we cannot define

the same canonical embedding of X in its jacobian. The optimality of / implies that

E injects into Jac(A), and on the points of order 2, the image of /* is the kernel

of /*. The kernel of /» on points of order 2 therefore contains 0 and three of the

divisor classes (i,j) forming a subgroup. Without loss of generality, (1,2) € ker(/,).
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If (l,k) E ker(/„), then ker(/») = {0, (1,2), (l,k), (2,k)}, but then embedding
X in its jacobian via x >-► \(x) - (Cy)\, we obtain /-1(u) = {Cy,C2,Ck} which

contradicts the ramification pictures for even degree. Hence, up to renumbering,

ker(/») = {0, (1,2), (3,4), (5,6)}. Since exactly two hyperelliptic ramification points

of A lie over 0E for each embedding of A in Jac(A) of the form x i-+ [(x) — (Ci)}, we

have shown that only the first ramification pattern for / of even degree can occur

for an optimal map. Since the images of the points of order 2 on the elliptic curves

E and E' are the same, the ramification picture for /'' is determined by that for

/', and again we get an algorithmic construction.

6. Example: Parametrizing splittings of degree 3. Using the results

above, it is straightforward, (particularly with the aid of a computer symbolic

manipulation program), to parametrize the curves of genus 2 which split with de-

gree 3. Let A be a curve of genus 2 defined over a number field k, and suppose

that /: A —> E is not special in the sense of §1. The ramification point of / which

is not over a point of order 2 on E is rational, as is the other point over its image.

By a linear fractional transformation on Xc, these points can be moved to 0, and

co, i.e. we may suppose that /': X1 —> EL is given by

x2

x3 + ax2 +bx + c

The planar model for A is then

A: y2 = (z3 + ax2 + bx + c)(4cx3 + b2x2 + 2bcx + c2).

The denominator of the other map is, therefore

4cx3 + 62x2 + 2bcx + c2,

and its numerator is

(x-d)2(x-e)

where
_ -3c 3ac2 - b2c

d__     andj    e _______

The ./-invariants of the curves are

_ 16(972ac3 - 40562c2 - 216a2fec2 + 126a63c - 1265 - a2&4)3

J(   '~ (27c2-63)3(27c2-18a6c + 4a3c + 463-a262)2

_ 256(3fc - a2)3

J {    '     27c2 - 18a6c + 4a3c + 463 - o?b2'

There is a unique isomorphism class of curves of genus 2 with both functions

special, namely,

y2 = (3x2 +4)(x3 +x).

Here the two maps are given by

x3 1
t = —-=-     and,    t = -5-.

3a:2 + 4 x3 + x

The two elliptic curves then both have j-invariant 1728.
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7. Example: The Moret-Bailley family of curves for p = 3. Moret-Bailley

[2] gives a "construction" of a one parameter family A of curves of genus 2 over

the prime fields Fp whose jacobians are isomorphic to the square of a supersingular

elliptic curve E. Such supersingular curves of genus 2 are discussed in more gen-

erality by Ibukiyama, Katsura and Oort [5]. The optimal maps from A to _ are

of degree p. By means of the results above, and some computation, we give the

explicit equations in the characteristic 3 case. Consequently, let

_: w2 = z3 - z

be the supersingular elliptic curve over F3.   Then there is a P1-family of covers

with parameter a given by

x2(x — a) x(x — 1)
z=-i-TT'    w = y-<-;-T~n2

ax + a+1 (ax + a + iy

with obvious singularities at a = 0,1, — 1,00. The corresponding curve of genus 2

has model

A: y2 = (x — a)(x — a— l)(ax + a + l)(x3 — ax2 + ax + a + 1).

There is then another map from A to another elliptic curve, £", given by

_      x2-(a5 + l)x + a4(a + l)2

a3(x — a)(x — a — l)(ax + a + 1)'

5  x3 + (a5 - a)x2 + (a5 - a4 + a3 + a2 + l)x + (a + l)7

s ~a y~ (x _ a)(x _ a _ i)(ax + a + i))2

yielding the elliptic curve

*:.._-.(,.+«-£).

Over Fg(a) this curve is isomorphic to E.
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