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Abstract
We say that a curve X of genus g has maximally computed Clifford index if the Clifford index

c of X is, for c > 2, computed by a linear series of the maximum possible degree d < g; then
d = 2c + 3 resp. d = 2c + 4 for odd resp. even c. For odd c such curves have been studied in
[6]. In this paper we analyze if/how far analoguous results hold for such curves of even Clifford
index c.

1. Introduction

1. Introduction
Let X denote a smooth irreducible projective curve defined over the complex numbers,

and let g ≥ 4 resp. c ≥ 0 denote its genus resp. its Clifford index. We say that a (complete
and base point free) linear series gr

d on X, or a divisor in it, computes c if d < g, r > 0
and d − 2r = c. It is well known ([5, Thm. C]) that in this case we have d ≤ 2c + 4 if X
is neither hyper- nor bi-elliptic (which certainly holds for c > 2). For c > 2 we say that
the Clifford index c of X is maximally computed if X has a gr

d computing c of the maximal
possible degree, i.e. d = 2c + 3 resp. d = 2c + 4 if c is odd resp. even. Such curves exist for
every c > 2 ([5, 3.3]) and examples are constructed on K3 surfaces.

Let X be such a curve. Then we have g = d + 1 ([5, 3.2.5]).
For odd c we also know: X has gonality c + 3 and infinitely many pencils g1

c+3 ([5, 3.2.2
and 2.3]), and by [6], 3.6 and 3.7 the gr

d is the only series on X computing c (in particular, it
is half-canonical, i.e. |2gr

d | is the canonical series of X, and very ample); moreover, the gr
d is

even normally generated.
For even c our knowledge on X is less complete ([5], [10]) mainly because a basic Dio-

phantine equation ([6, sections 1 and 2]) valid for X in the case of odd c is not available if X
has even Clifford index. One knows, for even c:
• X has gonality c + 2,
• for every pencil |D| of degree c + 2 on X there is a pencil |D′| of degree c + 2 on X such

that gr
d = |D + D′| ([5, 3.2.3 and 3.2.4]),

• X has no base point free pencil of degree c + 3 ([5, 3.2.1]),
• X has no series computing c of degree e with 3(c + 2)/2 < e < 2(c + 2) = d ([13, Cor.

1]); note that this implies that our gr
d must be very ample.

In [5, 3.3.2] the following ”recognition theorem” is proved: On any k-gonal curve (k ≥ 3)
having only finitely many base point free pencils of degree k and k + 1, a linear series gr

d,
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r ≥ 2, computing its Clifford index c computes c maximally and is the only linear series
computing c which is not a pencil. (Note that c is even, then, and the gr

d is half-canonical.)
Moreover, it follows that the gr

d is even normally generated: Since there are (by assumption)
only finitely many g1

c+2 the curve embedded into Pr by the gr
d lies on only finitely many

quadrics of rank ≤ 4 which implies (cf. [2, III, ex. D-1 and V, ex. C-7]) that it is quadratically
normal, and to see that it is n-normal for all other integers n ≥ 1 we can use Green’s results
on Koszul-cohomology, as is done in [6, proof of Theorem 3.6].

However, there are curves whose (even) Clifford index c is computed maximally which
have infinitely many pencils of degree c+ 2; this will be shown in the next section where we
discuss the case c = 4 in greater detail. So the recognition theorem does not always answer
the

Question. Is, on our X, the gr
d the only linear series computing c which is not a pencil?

In this paper we deal with this Question. For c ≡ 0 mod 4 we prove in Section 3 that
every effective divisor of X computing c is contained in a divisor of the gr

d; in particular, the
gr

d is then the only linear series on X computing c maximally. And for c = 4, c = 6 and c = 8
we answer our Question in the affirmative. Finally, for X lying, via the gr

d, on a K3 surface
of degree 2r − 2 we check if the divisor theory of the surface may be helpful to provide a
negative answer.

Notation. The basic reference is [2]. For any curve X, Div(X) denotes its group of divi-
sors and the symbol ∼ means the linear equivalence of divisors. For D, E ∈ Div(X) we write
D ≤ E (and say that D is contained in E) if E − D is effective, i.e. E − D ≥ 0, and for linear
series gr

d, g
s
e on X the notation gr

d ⊂ gs
e means that every divisor in gr

d is contained in a divisor
of gs

e (equivalently, |gs
e − gr

d | � ∅). We sometimes identify a complete gr
d on X with the point

in the variety Wr
d = Wr

d(X) corresponding to it via the Abel-Jacobi map. (Specifically, for a
canonical divisor KX of X the canonical series |KX | likewise is the only point in Wg−1

2g−2, for
g > 0.)

2. Clifford index c = 4

2. Clifford index c = 4
For c = 4 we construct a curve whose Clifford index c is maximally computed and satis-

fies dim(W1
6 ) > 0.

Example. Let E denote a smooth elliptic curve and S → E be a ruled surface with in-
variant e ≥ 0. Using the notations of [9, V, 2] we can find a smooth elliptic curve H in the
numerical equivalence class of C0 + e · f (C2

0 = −e, f a fibre); we have h0(H) = e + 1, and
−C0−H is a canonical divisor of S ([8, 3.3]). Observe that H2 = e and C0 ·H = 0. For e > 0
we consider the divisor D := 3H of S ; then |D| is base point free and so a general member X
in |D| is a smooth curve, by Bertini’s theorem. Writing X = X1 + X2 with effective divisors
X1, X2 of S , we thus must have X1 · X2 = 0. If X1 ≡ αC0 + β f (here ≡ denotes numerical
equivalence) we have X2 ≡ (3 − α)C0 + (3e − β) f with integers α, β ≥ 0, α ≤ 3, β ≤ 3e ([8,
3.1]), and X1 · X2 = 0 implies the relation (2β − eα)(2α − 3) = 3eα leading to X1 ≡ 0 for
α = 0 resp. X2 ≡ 0 for α = 3 and β = −e < 0 for α = 1 resp. β = 4e > 3e for α = 2. Thus it
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follows that X is irreducible, and its genus is, by adjunction, g = 3e + 1.

Now, let e = 4 and view the base curve E as an elliptic normal curve in Pe−1 = P3 (of
degree e = 4); let S 0 denote the cone over E in P4. Blowing up the vertex of the elliptic cone
S 0 we obtain a ruled surface S → E of invariant e = 4 as above ([9, V, 2.11.4]), and the
blow down S → S 0 ⊂ P4 is defined by |H|. Our curve X ⊂ S from above blows down to a
curve X′ ⊂ S 0 of degree X ·H = 3H2 = 3e = 12 = g− 1 and X′ is smooth since it misses the
vertex of S 0. Since h0(S ,H − X) = h0(S ,−2H) = 0 the linear series |H| of S cuts out on X a
(maybe, incomplete) linear series of degree 12 and dimension h0(H) − 1 = e = 4. Hence X
has Clifford index c ≤ 12 − 2 · 4 = 4. To see that c = 4 we recall that on a curve of genus 13
its Clifford index can be computed by pencils; so we have to show that the gonality k of X is
6. Since the natural map π : X ⊂ S → E has degree X · f = 3 our curve X is a triple covering
of an elliptic curve; in particular, X has infinitely many g1

6. If k < 6 we obtain, according to
Castelnuovo’s genus formula for curves with independent morphisms ([2, VIII, ex. C-1]),
that g ≤ (k − 1)(3 − 1) + 3g(E) = 2k + 1 ≤ 11, a contradiction. So k = 6, c = 4, and the
series |H|X | is a complete (and very ample) g4

12 on X thus computing c = 4 maximally. Since
W1

6 (X) contains (at least) the one-dimensional irreducible component π∗W1
2 (E) we clearly

have dim(W1
6 (X)) > 0.

Proposition 2.1. Let X be a curve whose Clifford index c = 4 is computed maximally.
Assume that dim(W1

6 ) > 0. Then X admits a triple covering π : X → E over an elliptic
curve E, π∗(W1

2 (E)) is the only infinite irreducible component of W1
6 , and this component is

singular with finitely many singularities. Furthermore, X has only one series g4
12 (computing

c maximally), and the variety W4
12 is not reduced.

Proof. By de Franchis’ theorem, on any k-gonal curve X with an infinite set S of g1
k either

infinitely many g1
k in S are compounded of the same irrational involution or there are only

finitely many compounded g1
k in S . For k = 6, in the latter case such a curve is a smooth

plane septic (g = 15) or we have g ≤ 11 ([4]), and in the first case infinitely many g1
6 in S

are induced by a covering ρ : X → Y over a non-hyperelliptic curve Y of genus 3 or by a
triple covering π : X → E over an elliptic curve E. Now, let X be a curve whose Clifford
index c = 4 is computed maximally and admitting infinitely many g1

6. Since g = 13 we then
are in the first case from above.

Assume that ρ : X → Y is a double covering of X over a curve Y of genus 3. Then Y is
a smooth plane quartic, and every g1

6 on X is induced by ρ since otherwise we would have
g ≤ (6−1)(2−1)+2g(Y) = 11, by Castelnuovo’s genus formula for curves with independent
morphisms. Hence we have W1

6 (X) = ρ∗(W1
3 (Y)) = ρ∗KY − ρ∗(W1(Y)). Since we know that

there are pencils g1
6, h1

6 on X such that g4
12 = |g1

6 + h1
6| we thus have pencils L1, L2 of degree

3 on Y such that g4
12 = |ρ∗(L1) + ρ∗(L2)|. But (cf. [12, p. 1797])

h0(X, ρ∗(L1 + L2)) = h0(Y, L1 + L2) + h0(Y, (L1 + L2) − D) = 4 + h0(Y, L1 + L2 − D)

for a divisor D of Y such that 2D is linearly equivalent to the branch divisor B of ρ (i.e. B is
made up by the points of Y over which ρ ramifies). So 2deg(D) = deg(B) = 2g−2−2(2g(Y)−
2) = 16, i.e. deg(D) = 8 > 6 = deg(L1 + L2) which implies that h0(Y, L1 + L2 −D) = 0. Thus
we obtain h0(X, ρ∗(L1 + L2)) = 4 which contradicts |ρ∗(L1 + L2)| = g4

12.
So X admits a triple covering π : X → E over an elliptic curve E. Our very ample g4

12
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embeds X as a curve of degree 12 in P4. Assume that there is another series on X computing
c maximally, i.e. a h4

12 � g
4
12. Then |h4

12 − g4
12| = ∅, and, according to a refinement of the

base point free pencil trick ([2, III, ex. B-6]) we have: dim(|h4
12 + g

4
12|) ≥ 2 · 4−dim(|h4

12 −
g4

12|) + 4 − 1 = 12 = g − 1 whence h4
12 = |KX − g4

12| and so |2g4
12| � |KX |. Thus it follows

that dim(|2g4
12|) = g − 2 = 11 = 3 · 4 − 1, and so a result of Castelnuovo ([2, p. 120])

implies that X lies on a non-degenerate surface S of minimal degree in P4, i.e. on a cubic
rational normal scroll. But this is impossible: By Segre’s formula for curves on a rational
normal scroll whose ruling consists of n-secant lines for the curve, we obtain 13 = g =
(n−1)(deg(X)−1−(n/2)deg(S )) = (n−1)(12−1−(n/2)·3) which cannot hold. Consequently,
we see that a h4

12 � g
4
12 cannot exist on X, i.e. W4

12 is a point, and this point is not a smooth
point of W4

12 since the tangent space to W4
12 at it has positive dimension ([2, IV, ex. A-2];

observe that the unique g4
12 on X is half-canonical).

W1
6 (X) has the irreducible component π∗(W1

2 (E)). The argument in the beginning of this
proof shows that a further infinite irreducible component of W1

6 (X) gives rise to a second
triple covering π′∗ : X → E′ over an elliptic curve E′; but applying Castelnuovo’s genus
bound for curves admitting independent morphisms to the pair (π, π′) of coverings we get
the contradiction g ≤ (3 − 1)(3 − 1) + 3g(E) + 3g(E′) = 10.

For simplicity we identify our g4
12 on X with the point � of W4

12(X) corresponding to
it. Then the irreducible component � − π∗(W1

2 (E)) of W1
6 (X) coincides with π∗(W1

2 (E)).
Hence there are four points p1, ..., p4 ∈ E such that � = |π∗(p1 + ... + p4)|. Since, on E,
p1 + ... + p4 ∼ 2q1 + 2q2 for two points q1, q2 ∈ E there exists a g1

6 = |π∗(q1 + q2)| on X such
that |2g1

6| = �, and since X has only finitely many 2-torsion points X has only a finite number
of such g1

6. Recall that the embedding series � is the only g4
12 on X. Hence |2g1

6| = � is
equivalent with dim|2g1

6| ≥ 4, and it follows ([2, IV, 4.2]) that the g1
6 in π∗(W1

2 (E)) satisfying
|2g1

6| = � correspond to the singularities of the component π∗(W1
2 (E)) of W1

6 (X). �

Though dim(W1
6 ) > 0 is possible, on every curve X whose Clifford index c = 4 is com-

puted maximally only the unique g4
12 and the pencils of degree 6 compute c. To see this,

recall that X has no series computing c of degree d with 3(c + 2)/2 < d < 2(c + 2), i.e. no
g3

10. A g2
8 on X (computing c) cannot be simple since we know that W1

7 = W1
6 +W1 which

implies that |g2
8 − P| has a base point, for every point P ∈ X. So a g2

8 on X is compounded
thus inducing a double covering ρ : X → Y over a smooth plane quartic, i.e. over a non-
hyperelliptic curve of genus 3. But in the proof of the Proposition we observed already that
this is impossible.

Finally, we just note that one can show that the curve X of Proposition 2.1 is as in the
example. (In fact, viewing X as being embedded by the g4

12 it lies in the intersection of two
irreducible quadrics in P4, i.e. on a surface of degree 4 which turns out to be an elliptic
cone.)

3. The main result

3. The main result
The following general result is elementary but useful, for our purposes.

Lemma 3.1. On any curve Y of genus g and Clifford index c let D, E be effective divi-
sors computing c. Then the greatest common divisor (D, E) of D and E has Clifford index
cliff((D, E)) ≤ c, and if dim |(D, E)| > 0 then (D, E) and one of the divisors D + E − (D, E)
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(the ”least common multiple” of D and E) resp. its dual KY − (D + E − (D, E)) compute c.

Proof. Recall that, for a divisor Δ of Y , we have cliff(Δ) = deg(Δ)− 2h0(Δ)+ 2, cliff(KX −
Δ) = cliff(Δ), and that the Clifford index c of Y is the minimum of all cliff(Δ) such that
h0(Δ) ≥ 2 and h1(Δ) ≥ 2 holds.

It is easy to prove the inequality (cf. [14, 2.21])

cliff(D) + cliff(E) ≥ cliff((D, E)) + cliff(D + E − (D, E)).

Since cliff(D) = c = cliff(E) the first claim of the Lemma follows from this inequal-
ity provided that cliff(D + E − (D, E)) ≥ c. So assume that cliff(D + E − (D, E)) < c.
Since h0(D + E − (D, E)) ≥ h0(D) ≥ 2 we then must have h1(D + E − (D, E)) ≤ 1,
and so we obtain c > cliff(D + E − (D, E)) = cliff(KY − (D + E − (D, E))) = 2g − 2 −
(deg(D)+deg(E)−deg((D, E)))−2h1(D+E−(D, E))+2 ≥ deg((D, E)) (recall that deg(D) < g
and deg(E) < g). But deg((D, E)) < c implies that h0((D, E)) = 1 whence it follows that
cliff((D, E)) = deg((D, E)) < c.

Assume that h0((D, E)) ≥ 2. We then have cliff((D, E)) ≥ c, and by the (just proved) first
claim of the Lemma we see that (D, E) computes c. Hence the inequality at the beginning
of this proof shows that cliff(D + E − (D, E)) ≤ c. Since h0(D + E − (D, E)) ≥ 2 it follows
that |D + E − (D, E)| or its dual series computes c (depending on which of these two series
has degree < g) provided that h1(D + E − (D, E)) ≥ 2, too. But for h1(D + E − (D, E)) ≤ 1
we obtain c ≥ cliff(KY − (D + E − (D, E))) ≥ 2g − 2 − (deg(D)+deg(E)−deg((D, E))) ≥
deg((D, E)) whence h0((D, E)) ≤ 1, a contradiction. �

From now on we use the following notation: X always denotes a curve of genus g whose
Clifford index c is even and computed maximally. We set d0 := g − 1 = 2c + 4, r0 :=
(d0− c)/2 = (c+4)/2, and gr0

d0
is an arbitrary but fixed series on X (computing c maximally).

Finally, I denotes the set of effective divisors D of X computing c such that deg(D) > c + 2.
(Clearly, I � ∅ since it contains the gr0

d0
.)

Theorem 3.2. Assume that there is a divisor D ∈ I which is not contained in a divisor of
the gr0

d0
. Then c ≡ 2 mod 4, D computes c maximally and Wr0

d0
is infinite.

Proof. For a divisor D ∈ I let d := deg(D), and r := dim(|D|) = (d − c)/2 ≥ 2. Using a
notation of [5], for any integer e ≥ r − 1 the set

Vr−2
e (|D|) := {E ∈ Div(X) : E ≥ 0, deg(E) = e and dim |D − E| ≥ 1}

is the variety of e-secant (r − 2)-plane divisors of X; if Vr−2
e (|D|) � ∅ every irreducible

component Z of it has dimension dim(Z) ≥ 2(r−1)−e. By [5, 1.2] we know that Vr−2
2r−3(|D|) �

∅, and for E ∈ Vr−2
2r−3(|D|) we have |D−E| ∈ W1

c+3 = W1
c+2+W1. Hence for every E ∈ Vr−2

2r−3(|D|)
there is exactly one point PE ∈ X such that E + PE ∈ Vr−2

2r−2(|D|). So the assignment E �→
E+PE defines a surjection Vr−2

2r−3(|D|)→ Vr−2
2r−2(|D|) with finite fibres whence dimVr−2

2r−2(|D|) =
dimVr−2

2r−3(|D|) ≥ 2(r−1)− (2r−3) = 1. Let i : Vr−2
2r−2(|D|)→ W1

c+2 be the natural map defined
by F �→ |D − F| for F ∈ Vr−2

2r−2(|D|).
For any pencil L in the image of i there is a divisor F ∈ Vr−2

2r−2(|D|) resp. a pencil L′ of
degree c + 2 on X such that |D| = |L + F| resp. gr0

d0
= |L + L′|, and for any point P in the
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support of F we can find a divisor E′ ∈ L′ containing P. Hence for any E ∈ L the greatest
common divisor G := (E + F, E + E′) of E + F ∈ |D| and E + E′ ∈ gr0

d0
contains the divisor

E + P. So deg(G) > deg(E) = c + 2, and by Lemma 3.1 we know that cliff(G) ≤ c. Since
dim|G| ≥ dim|E| = 1 we see that G computes c, i.e. G ∈ I.

Now assume that D is not contained in a divisor of the gr0
d0

. Then G is properly contained
in E + F ∈ |D|, and so deg(G) < d. Thus the divisor H := (E + E′)+ (E + F)−G has degree
g − 1 + d−deg(G) ≥ g, and, again by Lemma 3.1, |KX − H| is a linear series of degree at
most g− 2 = 2c+ 3 computing c which implies that deg(KX −H) ≤ 3(c+ 2)/2, i.e. we have
2(c+ 2)− d+ deg(G) = deg(KX −H) ≤ 3(c+ 2)/2. Hence deg(G) ≤ d − (c+ 2)/2, and since
deg(G) > c + 2 we obtain d > 3(c + 2)/2. It follows that d = 2c + 4 = g − 1, i.e. |D| is a
g(c+4)/2

2c+4 on X different from our chosen gr0
d0

.

Claim. Assume that X has a linear series computing c maximally which is different from
our gr0

d0
. Then Wr0

d0
is infinite, and X has linear series of degree 3(c + 2)/2 computing c.

To prove this claim let hr0
d0

be a g(c+4)/2
2c+4 on X different from our gr0

d0
. For any L ∈ W1

c+2 there
is a unique pair (L′, L′′) of different pencils L′, L′′ of degree c+2 on X such that gr0

d0
= |L+L′|

and hr0
d0
= |L + L′′|. Let L = |E|.

Assume that L′ and L′′ are not compounded of the same involution. Then the General
Position Theorem ([1, 4.1]) implies that there is a divisor E′ ∈ L′ having with every divisor
E′′ ∈ L′′ at most one point in common, and for every point P in the support of E′ we
can find a divisor E′′ ∈ L′′ containing P. With this choice we see, by Lemma 3.1, that
G := (E + E′, E + E′′) = E + (E′, E′′) = E + P is a divisor computing c which is impossible
since deg(G) = c + 3.

Hence the two pencils L′ = |gr0
d0
−L|, L′′ = |hr0

d0
−L| are compounded of the same (irrational)

involution. Then there is a covering π : X → Y of maximum possible degree n such that
L′, L′′ are induced from pencils of degree (c + 2)/n on the curve Y (in particular, n divides
c+ 2). For this pair (L′, L′′) specified by L = |E| we can choose, for any point P ∈ X, unique
divisors E′P ∈ L′, E′′P ∈ L′′ having the point P in common. Then the greatest common divisor
(E′P, E

′′
P ) of E′P and E′′P is the divisor π∗(π(P)) of degree n of X. (Clearly, dim|(E′P, E′′P )| = 0.

Choosing E′Q ∈ L′, E′′Q ∈ L′′ having another point Q ∈ X in common we either have
(E′Q, E

′′
Q) = (E′P, E

′′
P ) - which happens only in the case π(Q) = π(P) - or that (E′Q, E

′′
Q) and

(E′P, E
′′
P ) have no point in common.) The divisor GP := (E + E′P, E + E′′P ) = E + (E′P, E

′′
P )

has degree deg(GP) = c + 2 + n = ((λ + 1)/λ)(c + 2) if 2 ≤ λ := (c + 2)/n, and according to
Lemma 3.1 it computes c. We will show that λ = 2, i.e. deg(GP) = 3(c + 2)/2; then Y is an
elliptic curve.

For m ≥ 2 points P1, ..., Pm of X such that (E′Pi
, E′′Pi

) and (E′Pj
, E′′Pj

) have disjoint sup-
port for 1 ≤ i < j ≤ m we set GP1,...,Pm := E + (E′P1

, E′′P1
) + ... + (E′Pm

, E′′Pm
). Then

(GP1,...,Pm−1 ,GPm) = E computes c, and we have GP1,...,Pm = GP1,...,Pm−1+GPm−E = GP1,...,Pm−1+

GPm − (GP1,...,Pm−1 ,GPm). Inductively applying Lemma 3.1 we see that GP1,...,Pm computes c
as long as deg(GP1,...,Pm) = c + 2 + mn = c + 2 + m(c + 2)/λ = (1 + (m/λ))(c + 2) is strictly
smaller than g, i.e. for m ≤ λ. If λ ≥ 3 we choose m = λ − 1 and obtain that GP1,...,Pλ−1 is a
divisor computing c of degree strictly between 3(c + 2)/2 and 2(c + 2); this is not possible.
Hence we have λ = 2. Then we choose m = λ whence deg(GP1,P2 ) = 2c + 4 = d0. Since,
for Q ∈ X, we have GP1,P2 ∼ GP1,Q iff (E′P2

, E′′P2
) = (E′Q, E

′′
Q) (i.e. π(P2) = π(Q)) we see
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that - fixing P1 but varying P2 - we obtain this way infinitely many linear series on X which
compute c maximally. This proves the claim.

Finally, we observe that 3(c + 2)/2 = deg(GP) ≡ c ≡ 0 mod 2 implies that c ≡ 2 mod 4.
�

Corollary 3.3. In the case c ≡ 0 mod 4 the gr0
d0

is the only linear series on X computing c
maximally.

Remark. Let Vn
e (gr0

d0
) := {E ∈ Div(X) : E ≥ 0, deg(E) = e and dim(|gr0

d0
−E|) ≥ r0−1−n};

here n ∈ Z with n ≤ e − 1 and n ≤ r0 − 1. Choose an integer r such that 1 < r < r0 and
set d = c + 2r (note that d0 − d = 2(r0 − r)). The upshot of the Theorem, then, is that
Vr0−1−r

2(r0−r) (g
r0
d0

) � Wr
d (via E �→ |gr0

d0
−E|). For r = 1 (i.e. d = c+ 2) this bijection is wrong since

Vr0−2
2r0−2(gr0

d0
) is the set of all effective divisors of degree 2r0 − 2 = c + 2 of X which move in a

non-trivial linear series, i.e. Vr0−2
2r0−2(gr0

d0
) = {0 ≤ E ∈ Div(X) : |E| = g1

c+2}; so Vr0−2
2r0−2(gr0

d0
) is a

P
1-bundle over W1

c+2.
The Theorem thus relates the question if Wr

d � ∅ (1 < r < r0) to the existence of a 2(r0 − r)-
secant (r0 − 1 − r)-plane for the curve X viewed as imbedded into Pr0 by the gr0

d0
. And for

2(c + 2) > d > 3(c + 2)/2 (i.e. for 0 < r0 − r < (c + 2)/4) we know that there is no such
plane.

Corollary 3.4. Assume that there exists a divisor D ∈ I of degree d < g − 1. Then W1
c+2

contains a one-dimensional irreducible component W such that for every pencil L ∈ W we
have dim |D− L| = 0, and the unique divisor in |D− L| is contained in a divisor of the pencil
|gr0

d0
− L| of degree c + 2.

Proof. We use the notation from the proof of the Theorem. Let r := dim(|D|) and i|Z :
Z → W1

c+2 be the natural map from an irreducible component Z of Vr−2
2r−2(|D|) into W1

c+2;
recall that dim(Z) ≥ 1. Since there is no pencil of degree 2r − 2 = d − c − 2 < c + 2 on X
the map i is injective whence we have dim(i(Z)) ≥ 1. But since dim(W1

c+2) ≤ 1 ([2, VII, ex.
C-2]) it follows that dim(i(Z)) = 1 = dim(Z). (In particular, Vr−2

2r−2(|D|) is equi-dimensional
of dimension 1.)

Let W := i(Z). Then W is an infinite irreducible component of W1
c+2, and for every L ∈ W

there is a divisor F ∈ Z such that |D| = |L+F|. Since deg(F) = 2r−2 = d− (c+2) < c+2 we
have |D − L| = {F}, and, by the Theorem, F is contained in a divisor of the pencil |gr0

d0
− L|.
�

Recall that D ∈ I, deg(D) < g − 1 = 2c + 4 implies that deg(D) ≤ 3(c + 2)/2, and for
c ≡ 0 mod 4 we even have d < 3(c + 2)/2 since d ≡ c ≡ 0 mod 2. We add the following
observation.

Corollary 3.5. In Corollary 3.4, if d < 3(c + 2)/2 then W1
c+2 contains a one-dimensional

irreducible component (namely gr0
d0
− W) such that no two different pencils in it are com-

pounded of the same involution.

Proof. In Corollary 3.4 we have |gr0
d0
− D| ⊂ |gr0

d0
− L| for any L ∈ W. Setting d = deg(D)

we clearly have deg(|gr0
d0
−D|) = d0 −d, and we know that (c+2)/2 = 2(c+2)−3(c+2)/2 ≤

d0 − d ≤ (2c + 4) − (c + 4) = c. In particular, |gr0
d0
− D| consists of a single divisor E ≥ 0.
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Assume that two pencils L′ � L′′ in gr0
d0
−W are compounded of the same involution thus

giving rise to a covering π : X → Y of degree n ≥ 2 such that L′, L′′ are induced from
pencils of degree (c + 2)/n on the curve Y . We can choose divisors E′ ∈ L′, E′′ ∈ L′′ whose
greatest common divisor (E′, E′′) contains E. We may assume that n = deg((E′, E′′)); then
n ≥ deg(E) ≥ (c+ 2)/2, and so we obtain n = (c+ 2)/2 = deg(E). Thus d = 3(c+ 2)/2; Y is
an elliptic curve, then, and gr0

d0
−W = π∗(W1

2 (Y)). However, for d < 3(c + 2)/2 this does not
occur. �

We see that the divisor D ∈ I in Corollary 3.5 endows X with a feature of its pencils of
minimal degree which - observing that their Brill-Noether number is negative - is apparently
only known to be shared by the smooth plane curves (of degree ≥ 6). Cf. Remark 3.8 in [6].

Corollary 3.6. For integers d, r such that c + 2 ≤ d ≤ g − 1 and d − 2r = c we have
dim(Wr

d) ≤ 1.

Proof. We have dim(W1
c+2) ≤ 1 ([2, VII, ex. C-2]), and since Wr0

d0
⊂ g1

c+2 + W1
c+2 for

a fixed pencil g1
c+2 on X it follows that dim(Wr0

d0
) ≤ 1. So we assume that c + 2 < d <

d0 = g − 1. Let K be an irreducible component of maximal dimension of Wr
d. Then

⋃
gr

d∈K
i(Vr−2

2r−2(gr
d)) ⊂ W1

c+2 is a union of one-dimensional irreducible components W1, ... ,Wn of
W1

c+2. If Kj := {gr
d ∈ K|i(Vr−2

2r−2(gr
d)) ⊃ Wj} ( j = 1, ..., n) we thus have K = K1 ∪ ... ∪ Kn.

Fixing Lj ∈ Wj we have, by Corollary 3.4, a map γ j : Kj → P1 which assigns to gr
d ∈ Kj

that divisor of the pencil |gr0
d0
− Lj| which contains the (unique) divisor E = |gr0

d0
− gr

d |. Since
E specifies gr

d (and since the divisor γ j(gr
d) of degree c + 2 contains only a finite number

of effective divisors of degree d0 − d ≤ c) the fibres of γ j are finite. Choosing j such that
dim(Kj) = dim(K) = dim(Wr

d) it follows that dim(Wr
d) ≤ dim(P1) = 1. �

Corollary 3.7. If the gr0
d0

on X is not unique then every pencil of degree c + 2 on X is
induced by a pencil of degree 2 on a smooth elliptic curve (which is covered by X with
(c + 2)/2 sheets), and I consists of divisors of degree 3(c + 2)/2 and 2(c + 2) = d0.

Proof. Let L ∈ W1
c+2. There are pencils L′, L′′ ∈ W1

c+2 with L′′ � L such that dim(|L′ +
L|) = r0 = dim(|L′ + L′′|), and from the proof of the Claim in the proof of the Theorem we
see that L and L′′ are compounded of the same elliptic involution of order (c + 2)/2. The
remaining assertion follows from Corollary 3.5. �

Lemma 3.8. X has no net computing c if c > 8.

Proof. Assume that X has a net g2
c+4. Then for every point P ∈ X the pencil g2

c+4(−P)
of degree c + 3 has a base point since W1

c+3 = W1
c+2 + W1. Hence the g2

c+4 is not simple.
Then it induces a morphism X → Y of degree m > 1 upon an integral plane curve Y of
degree (c + 4)/m. If m > 2 or if Y has singularities the normalization of Y has a pencil
of degree d < (c + 2)/m which induces a pencil of degree md < c + 2 on X which cannot
exist. Hence m = 2 and Y is a smooth plane curve of degree (c + 4)/2. Then Y has genus
g(Y) = (1/2)((c + 4)/2 − 1)((c + 4)/2 − 2) = c(c + 2)/8, and by the Riemann-Hurwitz genus
formula for coverings we obtain 2c + 5 = g ≥ 2g(Y) − 1 = c(c + 2)/4 − 1, i.e. (c − 3)2 ≤ 33
which implies c ≤ 8. �
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For c = 6 and c = 8 we don’t know yet if X has no net computing c.

4. Clifford index c = 6 and c = 8

4. Clifford index c = 6 and c = 8
In this section we turn to the Question posed in the Introduction, for c = 6 and c = 8.

In these cases the series computing c, besides those computing c maximally, are at most
pencils, nets and webs. First, we reduce to pencils and nets, by the

Lemma 4.1. Let c = 6 or c = 8. If X has a web computing c then it also has a net
computing c.

Proof. Assume that X has a g3
c+6. Then this series is base point free and simple thus

inducing a birational morphism onto an integral space curve X′ of degree c + 6.
Let D ∈ g3

c+6. The number ρ2 of conditions imposed on quadrics in P2 by a general plane
section of X′ is at most h0(2D) − h0(D), and from the proof of Corollary 1 in [13] we know
that h0(2D) ≥ 4 · 3 − 2 = 10, i.e. |2D| = gr

2c+12 with r ≥ 9. If r ≥ 10 then X has a
g10

24 = |KX − g2
8| for c = 6 which is impossible resp. X has a g10

28 = |KX − g2
12| for c = 8 in

which case there is a net computing c = 8 on X. So we may assume that r = 9 whence
ρ2 ≤ 10 − 4 = 6 = 2dim(|D|). By a lemma of Castelnuovo and Fano’s extension of it ([3,
1.10 and 3.1]) this implies that X′ lies on a surface S of degree at most 3 in P3. The proof of
Corollary 1 in [13] shows that X′ ⊂ P3 cannot lie on a quadric; so S is a cubic surface.

The projection π : X′ → P2 with center a smooth point of X′ is birational onto its image
Y since c + 5 is a prime number for c = 6 and c = 8. Hence Y is a plane curve of degree
c + 5 which cannot be smooth. Since X has no base point free g1

c+3 all singular points of
Y are triple points (points of multiplicity 3). Thus the fibre of π at a singular point of Y
consists of 3 points of X′. Consequently, X′ has a quadrisecant line through every smooth
point. Clearly, then, all these lines must lie on the cubic S ; since our g3

c+6 is complete this is
only possible if S is an elliptic cone. The ruling of the cone makes X a 4-fold covering of
an elliptic curve. In particular, X has infinitely many g1

8 which is impossible for c = 8. For
c = 6 we use Segre’s formula for the arithmetic genus of a curve on an elliptic scroll whose
ruling are n-secant lines for the curve,

pa(X′) = (n−1)(deg(X′)−1−(1/2)ndeg(S ))+n = 3(12−1−(1/2)·4·3)+4 = 19 > g = 17.
So X′ has at least one singular point; taking the projection X′ → P2 with center this point
we obtain a net of degree m ≤ deg(X′) − 2 = c + 4 = 10 on X. Since c = 6 we must have
m = 10, and so we are done. �

Theorem 4.2. For c = 6 and c = 8 the gr0
d0

is the only non-pencil on X computing c.

Proof. By Corollary 3.7, Lemma 4.1 for c = 6 resp. Corollary 3.3 for c = 8, the gr0
d0

on
X is unique (and so, in particular, half-canonical). By Lemma 4.1 it remains to show the
non-existence of nets on X computing c. So assume there is a g2

c+4 on X. As in the proof of
Lemma 3.8 we see that this net induces a double covering π : X → Y over a smooth plane
curve Y of degree (c + 4)/2. Let σ (σ2 = id.) denote the unique automorphism of X/Y .

By Theorem 3.2 there is an effective divisor Dc of X of degree d0 − (c + 4) = c such that
g2

c+4 = |gr0
d0
− Dc|. Since the g2

c+4 is base point free the support of a general divisor D′ ∈ g2
c+4

consists of pairwise different points (is ”separable”) and is disjoint to the support of Dc.
Since all divisors in our g2

c+4 are of the form π∗(δ) for a divisor δ in the unique net g2
(c+4)/2
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on Y the divisor D′ (being separable) contains no ramification point of π and is σ-invariant
(i.e. σD′ = D′).

Let D0 := D′ + Dc. Then D0 ∈ gr0
d0

. Since the gr0
d0

on X is unique we have σ(gr0
d0

) = gr0
d0

. In
particular, D′ +Dc = D0 ∼ σD0 = σD′ +σDc = D′ +σDc, i.e. σDc ∼ Dc. But dim|Dc| = 0,
and so it follows that σDc = Dc and, then, σD0 = D0.

Let R1, ...,Rn be the ramification points of π; then R := R1 + ... + Rn ∈ Div(X) is the
ramification divisor of π, and we have n = 12 for c = 6, n = 4 for c = 8. For a σ-
invariant divisor D =

∑n
i=1 kiRi +

∑
j l j(Pj + σ(Pj)) ∈ Div(X) with Pj � Ri for all i, j we

define a divisor π0D of Y by π0D :=
∑n

i=1[ki/2]π(Ri) +
∑

j l jπ(Pj) ∈ Div(Y), and we let
Ve(D) := { f ∈ H0(D)| f ◦ σ = f } resp. Vo(D) := { f ∈ H0(D)| f ◦ σ = − f } be the even
resp. odd part of H0(D). Then deg(π0D) ≤ (1/2) deg(D), and we have equality here iff
π∗(π0D) = D. Furthermore, Ve(D) � H0(Y, π0D) (since f ∈ Ve(D) has a pole of even order
at every ramification point Ri of π), and H0(D) = Ve(D) ⊕ Vo(D).

Let Ve := Ve(D0), Vo := Vo(D0). Since H0(Y, π0D′) � Ve(D′) ⊂ Ve we have dim(Ve) ≥
h0(π0D′) = 3. Furthermore, dim(Ve) = h0(π0D0) with deg(π0D0) ≤ d0/2 = c+2 = 2deg(Y)−
2. Since Y is a smooth plane curve it follows that h0(π0D0) ≤ 4, and if h0(π0D0) = 4 holds
then deg(π0D0) = c+2. So we see that dim(Ve) ≤ 4, and if dim(Ve) = 4 then π∗(π0D0) = D0.

We first consider the case dim(Ve) = 3, i.e. Ve = Ve(D′). Then dim(Vo) = h0(D0) − 3 =
(((c + 4)/2) + 1) − 3 = c/2.

Let Dc ≤ R (i.e. π0Dc = 0); this is only possible for c = 6. By adjunction we have
KX ∼ π∗(KY) + R ∼ π∗(2δ) + R ∼ 2D′ + R for a divisor δ in the net g2

(c+4)/2 on Y , and since
|D0| is half-canonical we have KX ∼ 2D0 = 2D′ + 2Dc. Hence we have 2Dc ∼ R. For a
suitable numbering of the ramification points R1, ...,R12 of π we thus have 2(R1 + ... + R6) ∼
R1 + ... + R6 + R7 + ... + R12, i.e. R1 + ... + R6 ∼ R7 + ... + R12. But X has no g1

6; hence it
follows that R1 + ... + R6 = R7 + ... + R12 which is not true.

So we have 2Ri ≤ Dc for some i or P+σ(P) ≤ Dc for a non-ramification point P ∈ X. Let
ki ≥ 2 resp. l ≥ 1 be the multiplicity of Ri resp. P in Dc; note that ki is odd. Choose a basis
f1, ..., fc/2 of Vo such that Ri resp. P is a pole of order ki resp. l of these functions. Then
there are a1, ..., a(c/2)−1 ∈ C such that the functions g j := fc/2−a j f j ∈ Vo ( j = 1, ..., (c/2)−1)
have a pole of order ki − 2 at Ri resp. l − 1 at P (and σ(P)). Then the vector space Ve ⊕
span(g1, ..., g(c/2)−1) of dimension dim(Ve) + ((c/2) − 1) = (c/2) + 2 gives rise to a linear
series on X of dimension (c/2) + 1 and degree deg(D′) + 2((c/2) − 1) = 2c + 2. Since this
series computes c we obtain a contradiction.

So we have dim(Ve) = 4, i.e. h0(π0D0) = 4. Then π∗(π0D0) = D0 whence ([12, p. 1797])

((c + 4)/2) + 1 = h0(X,D0) = h0(X, π∗(π0D0)) = h0(Y, π0D0) + h0(Y, π0D0 − E)

for a divisor E of Y such that 2E is linearly equivalent to the branch divisor π∗(R) of π.
Thus we obtain h0(π0D0 − E) = (c + 6)/2 − 4 = (c − 2)/2, i.e. h0(π0D0 − E) = 2 for

c = 6 and h0(π0D0 − E) = 3 for c = 8. But for c = 6 we have deg(E) = n/2 = 6 and so
deg(π0D0 −E) = (1/2) deg(D0)−deg(E) = (c+2)−6 = 2, i.e. |π0D0−E| is a g1

2 on Y which
is impossible. Let c = 8. Then we have deg(E) = n/2 = 2 whence deg(π0D0 − E) = 8,
i.e. |π0D0 − E| is a g2

8 on Y . Let δ be a divisor in the unique net g2
6 on Y . Then there are

points p1, p2, q1, q2 of Y such that π0D0 ∼ 2δ − p1 − p2 and π0D0 − E ∼ δ + q1 + q2. (In
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fact, it is well known that W2
8 (Y) = W2

6 (Y) +W2(Y) = |δ| +W2(Y) for a smooth plane sextic
Y whence W3

10(Y) = |KY | − W2
8 (Y) = |3δ| − (|δ| + W2(Y)) = |2δ| − W2(Y).) So we obtain

δ + q1 + q2 ∼ π0D0 − E ∼ 2δ − p1 − p2 − E, i.e. δ − E ∼ p1 + p2 + q1 + q2 which implies
that h0(δ − E) ≥ 1. But we have 3 = h0(X, π∗(δ)) = h0(Y, δ) + h0(Y, δ − E) = 3 + h0(Y, δ − E)
which shows that h0(Y, δ − E) = 0, and this contradiction proves the Theorem. �

If a smooth curve in P5 on a cone over a 4-gonal canonical curve of genus 5 is cut out
there by a quadric hypersurface it has maximally computed Clifford index 6 and infinitely
many g1

8; so Theorem 4.2 is, for c = 6, not merely a consequence of the recognition theorem
stated in the Introduction.

5. X on a K3 surface

5. X on a K3 surface
Viewing X as being embedded into Pr0 by our gr0

d0
it possibly lies on a smooth projective

K3 surface S of degree 2r0 − 2 in Pr0 . (In fact, the examples of curves with maximally
computed Clifford index have been constructed in this way, cf. [5, 3.2.6, 3.2.7].) If so,
observing that c < [(g − 1)/2] = c + 2 there exists an effective divisor D of S such that
its restriction D|X to X computes c ([7]). Hence one may ask if it is possible to find an
(unexpected) gr

c+2r with 1 < r < r0 on X ⊂ S with the aid of a suitable divisor of S . As a
consequence of an interesting result of Knutsen for curves on a K3 surface ([11, 3.4]) we
have the

Theorem 5.1. Assume that X lies, as a curve of degree d0, on a K3 surface S of degree
2r0 − 2 in Pr0 . Then for every complete linear series |D| of S without a base curve such that
D|X computes c we have deg(D|X) = 2c + 4 or deg(D|X) = c + 2.

Proof. Let H be a hyperplane section of S . We have H2 = deg(S ) = 2r0 − 2 = c + 2,
X2 = 2g − 2 = 4c + 8 and H · X = d0 = 2c + 4, i.e. (H · X)2 = 4(c + 2)2 = H2X2 which
implies, by the Hodge index theorem ([9, V, 1.9 and ex. 1.9]), that X ∼ ((H ·X)/H2)H = 2H.
Since the canonical series of S is trivial we have h0(H − X) = h0(−H) = h2(H) = 0 and
h1(H−X) = h1(X−H) = h1(H) = 0 ([15, 2.2]) whence by a standard exact sequence and by
the Riemann-Roch theorem ([9, V, 1.6]) it follows that h0(X,H|X) = h0(H) = 2 + (1/2)H2 =

r0 + 1, i.e. |H|X | = gr0
d0

.
Let D be an effective divisor of S such that |D| has no base curve and D|X computes c.

Then D2 ≥ 0, and since deg(D) = D·H = (1/2)D·X = (1/2) deg(D|X) < g−1 = d0 = deg(X)
we have h0(D − X) = 0.

Assume that h1(D) = 0. Then a standard exact sequence shows that h0(X,D|X) = h0(D)+
h1(D − X). Likewise, if X0 is an arbitrary smooth irreducible curve in |2H| we have
h0(X0,D|X0 ) = h0(D)+h1(D−X0). Clearly, D−X0 ∼ D−X implies that h1(D−X0) = h1(D−X)
whence h0(X0,D|X0 ) = h0(X,D|X). Since, by [7], X0 has the same Clifford index c as X, we
see that D|X0 computes the Clifford index of X0.

Choose X0 general in |2H|. Then X0 has only finitely many pencils g1
c+2, according to a

theorem of Knutsen ([11, 3.4]), and since the Clifford index c of X0 is maximally computed
(by H|X0 ) there are no base point free g1

c+3 on X0. Consequently, the recognition theorem
(applied to X0) shows that D|X0 computes c maximally or |D|X0 | = g1

c+2. Hence, for X, we
have h0(X,D|X) = r0 + 1 or (provided that D2 = 0) h0(X,D|X) = 2.
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Assume that h1(D) � 0. Then D ∼ kE0 for an irreducible curve E0 with E2
0 = 0 and some

integer k ≥ 2 ([15, 2.6]). We have k deg(E0|X) = deg(D|X) ≤ g − 1 = 2c + 4, and since
h0(X, E0|X) ≥ h0(E0) ≥ 2 + (1/2)E2

0 = 2 we have deg(E0|X) ≥ c + 2. Thus we obtain k = 2
and deg(D|X) = 2c + 4. �
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