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Abstract
We say that a curve X of genus g has maximally computed Clifford index if the Clifford index
c of X is, for ¢ > 2, computed by a linear series of the maximum possible degree d < g; then
d =2c + 3 resp. d = 2c¢ + 4 for odd resp. even c. For odd ¢ such curves have been studied in
[6]. In this paper we analyze if/how far analoguous results hold for such curves of even Clifford
index c.

1. Introduction

Let X denote a smooth irreducible projective curve defined over the complex numbers,
and let g > 4 resp. ¢ > 0 denote its genus resp. its Clifford index. We say that a (complete
and base point free) linear series g/, on X, or a divisor in it, computes ¢ if d < g, r > 0
and d — 2r = c¢. It is well known ([5, Thm. C]) that in this case we have d < 2c + 4 if X
is neither hyper- nor bi-elliptic (which certainly holds for ¢ > 2). For ¢ > 2 we say that
the Clifford index c of X is maximally computed if X has a g/, computing c of the maximal
possible degree, i.e. d = 2c + 3 resp. d = 2¢ + 4 if ¢ is odd resp. even. Such curves exist for
every ¢ > 2 (5, 3.3]) and examples are constructed on K3 surfaces.

Let X be such a curve. Then we have g = d + 1 ([5, 3.2.5]).

For odd ¢ we also know: X has gonality ¢ + 3 and infinitely many pencils gcl, 3 ([5,3.2.2
and 2.3]), and by [6], 3.6 and 3.7 the g/, is the only series on X computing c (in particular, it
is half-canonical, i.e. |2g2| is the canonical series of X, and very ample); moreover, the g; is
even normally generated.

For even ¢ our knowledge on X is less complete ([5], [10]) mainly because a basic Dio-
phantine equation ([6, sections 1 and 2]) valid for X in the case of odd c is not available if X
has even Clifford index. One knows, for even c:

e X has gonality ¢ + 2,

e for every pencil |D| of degree ¢ + 2 on X there is a pencil |D’| of degree ¢ + 2 on X such
that g/, = |[D + D’| ([5, 3.2.3 and 3.2.4]),

e X has no base point free pencil of degree ¢ + 3 ([5, 3.2.1]),

e X has no series computing ¢ of degree e with 3(c +2)/2 < e < 2(c +2) =d ([13, Cor.
1]); note that this implies that our g/, must be very ample.

In [5, 3.3.2] the following “recognition theorem” is proved: On any k-gonal curve (k > 3)
having only finitely many base point free pencils of degree k and k + 1, a linear series g/,
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r > 2, computing its Clifford index ¢ computes ¢ maximally and is the only linear series
computing ¢ which is not a pencil. (Note that ¢ is even, then, and the g/, is half-canonical.)
Moreover, it follows that the g/, is even normally generated: Since there are (by assumption)
only finitely many gcl, ., the curve embedded into P" by the ¢/, lies on only finitely many
quadrics of rank < 4 which implies (cf. [2, III, ex. D-1 and V, ex. C-7]) that it is quadratically
normal, and to see that it is n-normal for all other integers n > 1 we can use Green’s results
on Koszul-cohomology, as is done in [6, proof of Theorem 3.6].

However, there are curves whose (even) Clifford index ¢ is computed maximally which
have infinitely many pencils of degree c + 2; this will be shown in the next section where we
discuss the case ¢ = 4 in greater detail. So the recognition theorem does not always answer
the

QuesTion. Is, on our X, the g/, the only linear series computing ¢ which is not a pencil?

In this paper we deal with this Question. For ¢ = 0 mod 4 we prove in Section 3 that
every effective divisor of X computing c is contained in a divisor of the g/; in particular, the
g, 1s then the only linear series on X computing ¢ maximally. And forc =4,c=6andc =8
we answer our Question in the affirmative. Finally, for X lying, via the ¢/, on a K3 surface
of degree 2r — 2 we check if the divisor theory of the surface may be helpful to provide a
negative answer.

Nortation. The basic reference is [2]. For any curve X, Div(X) denotes its group of divi-
sors and the symbol ~ means the linear equivalence of divisors. For D, E € Div(X) we write
D < E (and say that D is contained in E) if E — D is effective, i.e. E — D > 0, and for linear
series g/, g, on X the notation g’, C g; means that every divisor in g/, is contained in a divisor
of g; (equivalently, |g; — g;| # 0). We sometimes identify a complete g/, on X with the point
in the variety W), = W) (X) corresponding to it via the Abel-Jacobi map. (Specifically, for a
canonical divisor Ky of X the canonical series |Kx| likewise is the only point in ng__lz, for
g>0)

2. Clifford index ¢ = 4

For ¢ = 4 we construct a curve whose Clifford index ¢ is maximally computed and satis-
fies dim(W}) > 0.

ExampLE. Let E denote a smooth elliptic curve and S — E be a ruled surface with in-
variant e > 0. Using the notations of [9, V, 2] we can find a smooth elliptic curve H in the
numerical equivalence class of Cyp + e - f (Cg = —e, f afibre); we have h°(H) = e + 1, and
—Cy — H is a canonical divisor of S ([8, 3.3]). Observe that H> = e and Cy- H = 0. Fore > 0
we consider the divisor D := 3H of §; then |D| is base point free and so a general member X
in |D| is a smooth curve, by Bertini’s theorem. Writing X = X; + X, with effective divisors
X1, X, of §, we thus must have X; - X, = 0. If X; = aCy + Bf (here = denotes numerical
equivalence) we have X, = (3 — a)Cy + (3¢ — B)f with integers @, 8 > 0, a < 3, 8 < 3e ([8,
3.1]), and X, - X, = 0 implies the relation (28 — ea)(2a — 3) = 3ea leading to X; = O for
a=0resp. X =0fora=3and B =—-e <0 fora = 1resp. § =4e > 3e for @ = 2. Thus it
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follows that X is irreducible, and its genus is, by adjunction, g = 3e + 1.

Now, let e = 4 and view the base curve E as an elliptic normal curve in Pl = P3 (of
degree e = 4); let Sy denote the cone over E in P*. Blowing up the vertex of the elliptic cone
Sy we obtain a ruled surface S — FE of invariant ¢ = 4 as above ([9, V, 2.11.4]), and the
blow down § — S c P* is defined by |H|. Our curve X C S from above blows down to a
curve X’ € Sy of degree X - H = 3H? = 3¢ = 12 = g— 1 and X’ is smooth since it misses the
vertex of Sg. Since h(S, H — X) = h°(S, —2H) = 0 the linear series |H| of S cuts out on X a
(maybe, incomplete) linear series of degree 12 and dimension h1°(H) — 1 = e = 4. Hence X
has Clifford index ¢ < 12 -2 -4 = 4. To see that ¢ = 4 we recall that on a curve of genus 13
its Clifford index can be computed by pencils; so we have to show that the gonality k of X is
6. Since the natural map 7 : X ¢ § — E has degree X - f = 3 our curve X is a triple covering
of an elliptic curve; in particular, X has infinitely many gé. If k < 6 we obtain, according to
Castelnuovo’s genus formula for curves with independent morphisms ([2, VIII, ex. C-1]),
thatg < (k—1)3-1) + 3g(E) = 2k + 1 < 11, a contradiction. So k = 6, ¢ = 4, and the
series |H|x| is a complete (and very ample) g‘l‘2 on X thus computing ¢ = 4 maximally. Since
W61 (X) contains (at least) the one-dimensional irreducible component 7* W21 (E) we clearly
have dim(W (X)) > 0.

Proposition 2.1. Let X be a curve whose Clifford index ¢ = 4 is computed maximally.
Assume that dim(Wé) > 0. Then X admits a triple covering m : X — E over an elliptic
curve E, 7T*(W21 (E)) is the only infinite irreducible component of W), and this component is
singular with finitely many singularities. Furthermore, X has only one series g‘l‘z (computing
¢ maximally), and the variety sz is not reduced.

Proof. By de Franchis’ theorem, on any k-gonal curve X with an infinite set S of g]'C either
infinitely many g,]( in S are compounded of the same irrational involution or there are only
finitely many compounded g,i in S. For k = 6, in the latter case such a curve is a smooth
plane septic (g = 15) or we have g < 11 ([4]), and in the first case infinitely many gé inS
are induced by a covering p : X — Y over a non-hyperelliptic curve Y of genus 3 or by a
triple covering m : X — E over an elliptic curve E. Now, let X be a curve whose Clifford
index ¢ = 4 is computed maximally and admitting infinitely many gé. Since g = 13 we then
are in the first case from above.

Assume that p : X — Y is a double covering of X over a curve Y of genus 3. Then Y is
a smooth plane quartic, and every gé on X is induced by p since otherwise we would have
g < (6-1)2-1)+2¢g(Y) = 11, by Castelnuovo’s genus formula for curves with independent
morphisms. Hence we have W61 X) = p*(W31(Y)) = p*Ky — p*(W(Y)). Since we know that
there are pencils gé, hé on X such that 9?2 = |gé + hél we thus have pencils L, L, of degree
3 on Y such that g‘fz = |p*(Ly) + p*(Lo)|. But (cf. [12, p. 1797])

R(X, p*(Ly + Ly)) = h°(Y, Ly + Ly) + i°(Y, (L, + Ly) — D) = 4 + h°(Y, L, + L, — D)

for a divisor D of Y such that 2D is linearly equivalent to the branch divisor B of p (i.e. B is
made up by the points of Y over which p ramifies). So 2deg(D) = deg(B) = 2g—2—-2(2g(Y)—-
2) = 16, i.e. deg(D) = 8 > 6 = deg(L, + L,) which implies that h1°(Y, L; + L, — D) = 0. Thus
we obtain h°(X, p*(L; + L,)) = 4 which contradicts |p*(L; + Ly)| = g‘fz.

So X admits a triple covering 7 : X — E over an elliptic curve E. Our very ample g‘l‘2
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embeds X as a curve of degree 12 in P*. Assume that there is another series on X computing
¢ maximally, i.e. a h‘l‘2 * g‘l‘z. Then |h‘1‘2 — g‘ltzl = (), and, according to a refinement of the
base point free pencil trick ([2, III, ex. B-6]) we have: dim(|h{, + g1,|) > 2 - 4—dim(|h}, —
ghl)+4—1=12=g— 1 whence h}, = |[Kxy — g},| and so [2g},| # |Kx|. Thus it follows
that dim(|2g‘1‘2|) =g—-2=11 =3 -4 -1, and so a result of Castelnuovo ([2, p. 120])
implies that X lies on a non-degenerate surface S of minimal degree in P*, i.e. on a cubic
rational normal scroll. But this is impossible: By Segre’s formula for curves on a rational
normal scroll whose ruling consists of n-secant lines for the curve, we obtain 13 = g =
(n—1)(deg(X)—1—-(n/2)deg(S)) = (n—1)(12—1—-(n/2)-3) which cannot hold. Consequently,
we see that a h], # g}, cannot exist on X, i.e. W7, is a point, and this point is not a smooth
point of WfZ since the tangent space to sz at it has positive dimension ([2, IV, ex. A-2];
observe that the unique g‘l‘2 on X is half-canonical).

W61 (X) has the irreducible component 7r*(W21 (E)). The argument in the beginning of this
proof shows that a further infinite irreducible component of Wé (X) gives rise to a second
triple covering 7" : X — E’ over an elliptic curve E’; but applying Castelnuovo’s genus
bound for curves admitting independent morphisms to the pair (m, 7’) of coverings we get
the contradiction g < (3 — 1)(3 - 1) + 3g(E) + 3g(E’) = 10.

For simplicity we identify our g}, on X with the point ¢ of W},(X) corresponding to
it. Then the irreducible component ¢ — 7*(W,(E)) of Wi(X) coincides with 7*(W, (E)).
Hence there are four points py,..., ps € E such that £ = |7*(p; + ... + p4)|. Since, on E,
p1+ ... + ps ~ 2q1 + 2q, for two points g1, ¢> € E there exists a gé = |n*(q1 + g2)| on X such
that |2gé| = {, and since X has only finitely many 2-torsion points X has only a finite number
of such g;. Recall that the embedding series ¢ is the only g}, on X. Hence [2g{| = ( is
equivalent with dim|2g}| > 4, and it follows ([2, IV, 4.2]) that the g, in 7*(W, (E)) satisfying
|2gé| = { correspond to the singularities of the component 7r*(W21 (E)) of W61 (X). ]

Though dim(Wﬁl) > 0 is possible, on every curve X whose Clifford index ¢ = 4 is com-
puted maximally only the unique g‘l‘2 and the pencils of degree 6 compute c. To see this,
recall that X has no series computing ¢ of degree d with 3(c + 2)/2 < d < 2(c + 2), i.e. no
g3,- A g3 on X (computing ¢) cannot be simple since we know that W) = W, + W, which
implies that Igé — P| has a base point, for every point P € X. So a g§ on X is compounded
thus inducing a double covering p : X — Y over a smooth plane quartic, i.e. over a non-
hyperelliptic curve of genus 3. But in the proof of the Proposition we observed already that
this is impossible.

Finally, we just note that one can show that the curve X of Proposition 2.1 is as in the
example. (In fact, viewing X as being embedded by the g‘l‘2 it lies in the intersection of two
irreducible quadrics in P*, i.e. on a surface of degree 4 which turns out to be an elliptic
cone.)

3. The main result

The following general result is elementary but useful, for our purposes.

Lemma 3.1. On any curve Y of genus g and Clifford index c let D, E be effective divi-
sors computing c. Then the greatest common divisor (D, E) of D and E has Clifford index
cliff(D, E)) < ¢, and if dim |(D, E)| > O then (D, E) and one of the divisors D + E — (D, E)
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(the ”least common multiple” of D and E) resp. its dual Ky — (D + E — (D, E)) compute c.

Proof. Recall that, for a divisor A of ¥, we have cliff(A) = deg(A) — 2h°(A) + 2, cliff(Kyx —
A) = cliff(A), and that the Clifford index ¢ of Y is the minimum of all cliff(A) such that
h°(A) > 2 and h'(A) > 2 holds.

It is easy to prove the inequality (cf. [14, 2.21])

cliff(D) + cliff(E) > cliff(D, E)) + cliff(D + E — (D, E)).

Since cliff(D) = ¢ = cliff(E) the first claim of the Lemma follows from this inequal-
ity provided that cliff(D + E — (D, E)) > c. So assume that cliff(D + E — (D, E)) < c.
Since h%(D + E — (D,E)) > h°(D) > 2 we then must have h!(D + E — (D,E)) < 1,
and so we obtain ¢ > cliff(D + E — (D, E)) = cliffi(Ky — (D + E — (D,E))) = 29 — 2 —
(deg(D)+deg(E)—deg((D, E)))—-2h"(D+E—(D, E))+2 > deg((D, E)) (recall that deg(D) < g
and deg(E) < ¢g). But deg((D, E)) < c implies that #1°(D, E)) = 1 whence it follows that
cliff(D, E)) = deg((D, E)) < c.

Assume that h1°((D, E)) > 2. We then have cliff(D, E)) > ¢, and by the (just proved) first
claim of the Lemma we see that (D, E) computes c¢. Hence the inequality at the beginning
of this proof shows that cliff(D + E — (D, E)) < c. Since h%(D + E — (D, E)) > 2 it follows
that |D + E — (D, E)| or its dual series computes ¢ (depending on which of these two series
has degree < ¢) provided that 4! (D + E — (D, E)) > 2, too. But for h'(D + E — (D,E)) < 1
we obtain ¢ > cliff(Ky — (D + E — (D, E))) > 2g — 2 — (deg(D)+deg(E)—deg((D, E))) >
deg((D, E)) whence h°((D, E)) < 1, a contradiction. O

From now on we use the following notation: X always denotes a curve of genus g whose
Clifford index c is even and computed maximally. We setdy := g —1 = 2c + 4, ry :=
(dy—c¢)]2 =(c+4)/2, and g:lf) is an arbitrary but fixed series on X (computing ¢ maximally).
Finally, I denotes the set of effective divisors D of X computing ¢ such that deg(D) > ¢ + 2.
(Clearly, I # 0 since it contains the g, .)

Theorem 3.2. Assume that there is a divisor D € I which is not contained in a divisor of
the g;‘;. Then ¢ = 2 mod 4, D computes ¢ maximally and W{;g is infinite.

Proof. For a divisor D € [ let d := deg(D), and r := dim(|D|) = (d — ¢)/2 > 2. Using a
notation of [5], for any integer e > r — 1 the set

Ve’_2(|D|) :={E € Div(X) : E > 0,deg(E) = eand dim|D — E| > 1}

is the variety of e-secant (r — 2)-plane divisors of X; if VE’_Z(IDI) # 0 every irreducible

component Z of it has dimension dim(Z) > 2(r—1)—e. By [5, 1.2] we know that V2’;_23(|D|) *

0, and for E € V52 (ID|) we have [D—E| € W!,, = W! ,+W,. Hence for every E € V; % (D)

Cc

there is exactly one point Pr € X such that £ + Py € V;;_22(|D|). So the assignment E —

E+ Py defines a surjection V5~2,(ID]) — V5~2,(D]) with finite fibres whence dimV} 2, (D) =

dimV; % (D)) > 2(r—1)—(2r-3) = 1. Leti : V;-%(D|) - W!,, be the natural map defined

by F > |D — F| for F € V5 2,(ID)).
For any pencil L in the image of i there is a divisor F € Vz’r‘_zz(lDl) resp. a pencil L’ of
degree ¢ + 2 on X such that |D| = |[L + F| resp. g(rl‘(’) = |L + L'|, and for any point P in the
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support of F' we can find a divisor E’ € L’ containing P. Hence for any E € L the greatest
common divisor G := (E+ F,E+ E')of E+ F €|D|and E + E’ € g:l‘; contains the divisor
E + P. So deg(G) > deg(E) = ¢ + 2, and by Lemma 3.1 we know that cliff(G) < c. Since
dim|G| > dim|E| = 1 we see that G computes ¢, i.e. G € I.

Now assume that D is not contained in a divisor of the g;‘(’). Then G is properly contained
in E + F € |D|, and so deg(G) < d. Thus the divisor H := (E + E’) + (E + F) — G has degree
g — 1 + d—deg(G) > ¢, and, again by Lemma 3.1, |Kx — H| is a linear series of degree at
most g — 2 = 2c¢ + 3 computing ¢ which implies that deg(Kx — H) < 3(c +2)/2, i.e. we have
2(c +2) —d+ deg(G) = deg(Ky — H) < 3(c+2)/2. Hence deg(G) < d — (¢ +2)/2, and since
deg(G) > ¢ + 2 we obtain d > 3(c + 2)/2. It follows thatd = 2c+4 =g —1,1.e. |D|is a

g(z‘;_:?/ ? on X different from our chosen gup-

CrLam. Assume that X has a linear series computing ¢ maximally which is different from
our g;‘;. Then ng is infinite, and X has linear series of degree 3(c + 2)/2 computing c.

To prove this claim let h;‘; be a g(;:;)/ * on X different from our g:l‘; Forany L € WC1 ., there

is a unique pair (L', L") of different pencils L', L” of degree c+2 on X such that g;‘; =|L+L|
and h;‘()) =|L+L"|. LetL = |E|.

Assume that L’ and L” are not compounded of the same involution. Then the General
Position Theorem ([1, 4.1]) implies that there is a divisor E” € L’ having with every divisor
E” e L” at most one point in common, and for every point P in the support of E’ we
can find a divisor E” € L” containing P. With this choice we see, by Lemma 3.1, that
G:=(E+FE,E+E")=E+(E',E"”)=E + Pisadivisor computing ¢ which is impossible
since deg(G) = ¢ + 3.

Hence the two pencils L' = |g2‘(’) -L|,L" = Ih;‘; —L| are compounded of the same (irrational)
involution. Then there is a covering 7 : X — Y of maximum possible degree n such that
L’,L"” are induced from pencils of degree (¢ + 2)/n on the curve Y (in particular, n divides
¢+ 2). For this pair (L', L") specified by L = |E| we can choose, for any point P € X, unique
divisors E}, € L', E} € L” having the point P in common. Then the greatest common divisor
(Ep, Ep) of E, and E} is the divisor 7*(m(P)) of degree n of X. (Clearly, dim|(E%, E})| = 0.
Choosing E’Q e L, Eé € L” having another point Q € X in common we either have
(E’ ,Eé) = (E}, E}) - which happens only in the case 7(Q) = n(P) - or that (E,, Eé) and
(Ep, E7) have no point in common.) The divisor Gp := (E + E},,E + E}) = E + (E},, E})
has degree deg(Gp) =c+2+n=((1+1)/D)(c+2)if 2 < A := (c+ 2)/n, and according to
Lemma 3.1 it computes c. We will show that 4 = 2, i.e. deg(Gp) = 3(c + 2)/2; then Y is an
elliptic curve.

For m > 2 points P, ..., P,, of X such that (E’i,E},’i) and (E’j,E}J’]_) have disjoint sup-
port for 1 < i < j < m we set Gp,_p, :=E + (E] 1,E;;l) + ...+ (£, m,E};m). Then

= = Mt WL sttt up,

(Gp,....p,»Gp,) = E computes c, and we have Gp, _p, = Gp, _p, ,+Gp,—E=Gp,__p,  +
Gp, — (Gp,..p,,»Gp,). Inductively applying Lemma 3.1 we see that Gp, _p, computes ¢
as long as deg(Gp,..p,) =c+2+mn=c+2+m(c+2)/A=(1+@m/A))(c+2) is strictly

smaller than g, i.e. form < A. If 4 > 3 we choose m = A — 1 and obtain that Gp, _p, , isa
divisor computing c of degree strictly between 3(c + 2)/2 and 2(c + 2); this is not possible.
Hence we have 4 = 2. Then we choose m = A whence deg(Gp, p,) = 2¢ + 4 = dy. Since,
for Q € X, we have Gp, p, ~ Gp, o iff (E’Z,E;;Z) = (E ,Eé) (i.e. m(Py) = n(Q)) we see
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that - fixing P; but varying P, - we obtain this way infinitely many linear series on X which
compute ¢ maximally. This proves the claim.

Finally, we observe that 3(c + 2)/2 = deg(Gp) = ¢ = 0 mod 2 implies that ¢ = 2 mod 4.

O

Corollary 3.3. In the case ¢ = 0 mod 4 the g;((’) is the only linear series on X computing c
maximally.

REMARK. Let V"(gr") :={E €Div(X) : E > 0, deg(E) = e and dlm(lgr" —E|)>ry—1-n};
here n € Z withn < e — 1 and n < ryp — 1. Choose an integer r such that 1 <r<ryand
set d = ¢ + 2r (note that dy — d = 2(r9p — r)). The upshot of the Theorem, then, is that

yro-t- r(gr‘) =W (viaE |gr° —E|). Forr = 1 (i.e. d = c¢ + 2) this bijection is wrong since

2<ro r)
;‘;0 22(g ) is the set of all effective divisors of degree 2ry — 2 = ¢ + 2 of X which move in a
non-trivial linear series, i.e. VZ’(;O zz(g")) ={0 < E eDiv(X) : [E| = g!,,}; so V;‘r)o 22(9"’) isa

P'-bundle over W!,,

The Theorem thus relates the question if W), # 0 (1 < r < ro) to the existence of a 2(ro — r)-
secant (ryp — 1 — r)-plane for the curve X viewed as imbedded into P by the g:i‘(’). And for
2(c+2)>d>3(+2)/2@G.e. for0 < ryg—r < (c+2)/4) we know that there is no such
plane.

Corollary 3.4. Assume that there exists a divisor D € I of degree d < g — 1. Then Wc1'+2
contains a one-dimensional irreducible component W such that for every pencil L € W we
have dim |D — L| = 0, and the unique divisor in |D — L| is contained in a divisor of the pencil
lg, — LI of degree c + 2.

Proof. We use the notation from the proof of the Theorem. Let r := dim(|D|) and i|; :
Z — W!, be the natural map from an irreducible component Z of V;~2,(|D]) into W!_,;
recall that dim(Z) > 1. Since there is no pencil of degree 2r -2 =d-c—-2<c+2on X
the map i is injective whence we have dim(i(Z)) > 1. But since dim(Wj L) < 1([2, VII ex.
C-2]) it follows that dim(i(Z)) = 1 = dim(Z). (In particular, V7 ~ 2(|D|) is equi-dimensional
of dimension 1.)

Let W :=i(Z). Then W is an infinite irreducible component of Wcl o> and forevery L € W
there is a divisor F € Z such that |D| = |L+ F|. Since deg(F) =2r—-2 =d—(c+2) < c+2 we
have |D — L| = {F}, and, by the Theorem, F is contained in a divisor of the pencil Igfj‘; - L.

O

Recall that D € I, deg(D) < g — 1 = 2¢ + 4 implies that deg(D) < 3(c + 2)/2, and for
= 0 mod 4 we even have d < 3(c + 2)/2 since d = ¢ = 0 mod 2. We add the following
observation.

Corollary 3.5. In Corollary 3.4, if d < 3(c + 2)/2 then Wcl, ., contains a one-dimensional
irreducible component (namely g:l‘z) — W) such that no two different pencils in it are com-
pounded of the same involution.

Proof. In Corollary 3.4 we have |g;) — D| C |g)) — L| for any L € W. Setting d = deg(D)
we clearly have deg(lgr0 —D|) =dy—d, and we know that (c+2)/2 =2(c+2)-3(c+2)/2 <
dy—d < Q2c+4)-(c+4)=c. In particular, |g") D| consists of a single divisor E > 0.
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Assume that two pencils L” # L in g;((’) — W are compounded of the same involution thus
giving rise to a covering 7 : X — Y of degree n > 2 such that L', L”” are induced from
pencils of degree (c + 2)/n on the curve Y. We can choose divisors E’ € L', E” € L” whose
greatest common divisor (E’, E”) contains E. We may assume that n = deg((E’, E”)); then
n > deg(E) > (c+2)/2, and so we obtain n = (¢ + 2)/2 = deg(E). Thus d = 3(c +2)/2; Y is
an elliptic curve, then, and g"° — W = 7T*(W21(Y )). However, for d < 3(c + 2)/2 this does not

do
OCcur. O

We see that the divisor D € I in Corollary 3.5 endows X with a feature of its pencils of
minimal degree which - observing that their Brill-Noether number is negative - is apparently
only known to be shared by the smooth plane curves (of degree > 6). Cf. Remark 3.8 in [6].

Corollary 3.6. For integers d, r such that c +2 < d < g—1and d —2r = ¢ we have
dim(W)) < 1.

Proof. We have dim(WLl,ﬂ) < 1 (]2, VII, ex. C-2]), and since W;g cg ,+ W for

c+2 c+2
a fixed pencil gcl, ., on X it follows that dim(Wgz) < 1. So we assume that c + 2 < d <

dy = g — 1. Let K be an irreducible component of maximal dimension of W). Then Ug;e K

i(V;r_fz(gg)) C WC1 ., 1s @ union of one-dimensional irreducible components Wy, ... ,W, of
W', If K; := {g}, € Kli(V}%(g}) D W;} (j = 1,....,n) we thus have K = K; U ... U K,

Fixing L; € W; we have, by Corollary 3.4, amap y; : K; — P! which assigns to g, € K;
that divisor of the pencil |g2‘(’] — L;| which contains the (unique) divisor E = |g2‘(’) — g/)|. Since
E specifies g/, (and since the divisor y;(g/,) of degree ¢ + 2 contains only a finite number
of effective divisors of degree dy — d < c¢) the fibres of y; are finite. Choosing j such that
dim(K;) = dim(K) = dim(W)) it follows that dim(W}) < dim(P') = 1. O

Corollary 3.7. If the g;‘(‘) on X is not unique then every pencil of degree ¢ + 2 on X is

induced by a pencil of degree 2 on a smooth elliptic curve (which is covered by X with
(¢ +2)/2 sheets), and I consists of divisors of degree 3(c +2)/2 and 2(c + 2) = dj.

Proof. Let L € W(} .,- There are pencils L', L” € WC1 L, with L” # L such that dim(|/L" +
L|) = rp = dim(|L" + L"), and from the proof of the Claim in the proof of the Theorem we
see that L and L” are compounded of the same elliptic involution of order (¢ + 2)/2. The
remaining assertion follows from Corollary 3.5. O

Lemma 3.8. X has no net computing c if ¢ > 8.

Proof. Assume that X has a net gg .4~ Then for every point P € X the pencil gg (=P
of degree ¢ + 3 has a base point since Wj = Wc1 .» + Wi. Hence the gf L4 18 not simple.
Then it induces a morphism X — Y of degree m > 1 upon an integral plane curve Y of
degree (¢ + 4)/m. If m > 2 or if Y has singularities the normalization of Y has a pencil
of degree d < (¢ + 2)/m which induces a pencil of degree md < ¢ + 2 on X which cannot
exist. Hence m = 2 and Y is a smooth plane curve of degree (¢ + 4)/2. Then Y has genus
g¥)=(01/2)(c+4)/2-1)({(c+4)/2-2) = c(c+2)/8, and by the Riemann-Hurwitz genus
formula for coverings we obtain 2c + 5 = g > 2g(Y) = 1 = c(c +2)/4 — 1, i.e. (c = 3)* <33
which implies ¢ < 8. |
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For ¢ = 6 and ¢ = 8 we don’t know yet if X has no net computing c.

4. Clifford index c = 6 and ¢ = 8

In this section we turn to the Question posed in the Introduction, for ¢ = 6 and ¢ = 8.
In these cases the series computing ¢, besides those computing ¢ maximally, are at most
pencils, nets and webs. First, we reduce to pencils and nets, by the

Lemma 4.1. Let ¢ = 6 or ¢ = 8. If X has a web computing c then it also has a net
computing c.

Proof. Assume that X has a gi .- Then this series is base point free and simple thus
inducing a birational morphism onto an integral space curve X’ of degree ¢ + 6.

LetD e gi .6+ The number p, of conditions imposed on quadrics in P? by a general plane
section of X’ is at most h°(2D) — h°(D), and from the proof of Corollary 1 in [13] we know
that 1°(2D) > 4 -3 -2 = 10, i.e. 2D| = G, With r > 9. If r > 10 then X has a
gég = |Kx — g§| for ¢ = 6 which is impossible resp. X has a gég = |Ky - g%zl for ¢ = 8 in
which case there is a net computing ¢ = 8 on X. So we may assume that » = 9 whence
p2 <10 -4 = 6 = 2dim(|D|). By a lemma of Castelnuovo and Fano’s extension of it ([3,
1.10 and 3.1]) this implies that X’ lies on a surface S of degree at most 3 in P*. The proof of
Corollary 1 in [13] shows that X’ c P? cannot lie on a quadric; so S is a cubic surface.

The projection 7 : X’ — P? with center a smooth point of X’ is birational onto its image
Y since ¢ + 5 is a prime number for ¢ = 6 and ¢ = 8. Hence Y is a plane curve of degree
¢ + 5 which cannot be smooth. Since X has no base point free gcl, .3 all singular points of
Y are triple points (points of multiplicity 3). Thus the fibre of & at a singular point of Y
consists of 3 points of X’. Consequently, X’ has a quadrisecant line through every smooth
point. Clearly, then, all these lines must lie on the cubic S ; since our gg .6 1s complete this is
only possible if S is an elliptic cone. The ruling of the cone makes X a 4-fold covering of
an elliptic curve. In particular, X has infinitely many gé which is impossible for ¢ = 8. For
¢ = 6 we use Segre’s formula for the arithmetic genus of a curve on an elliptic scroll whose
ruling are n-secant lines for the curve,

pa(X") = (n—1)(deg(X")—1—-(1/2)ndeg(S))+n = 3(12—-1-(1/2)-4-3)+4 =19 > g = 17.
So X’ has at least one singular point; taking the projection X’ — P? with center this point
we obtain a net of degree m < deg(X’) —2 = ¢+ 4 = 10 on X. Since ¢ = 6 we must have
m = 10, and so we are done. O

1o

Theorem 4.2. Forc =6 andc =8 the g a1 the only non-pencil on X computing c.

Proof. By Corollary 3.7, Lemma 4.1 for ¢ = 6 resp. Corollary 3.3 for ¢ = 8, the g;‘; on
X is unique (and so, in particular, half-canonical). By Lemma 4.1 it remains to show the
non-existence of nets on X computing c. So assume there is a gf .4 0n X. As in the proof of
Lemma 3.8 we see that this net induces a double covering 7 : X — Y over a smooth plane
curve Y of degree (c +4)/2. Let o (0 = id.) denote the unique automorphism of X/Y.

By Theorem 3.2 there is an effective divisor D, of X of degree dy — (c + 4) = ¢ such that
gf = Ig:,‘; — D.|. Since the gg .4 1s base point free the support of a general divisor D" € g? 4

consists of pairwise different points (is “’separable”) and is disjoint to the support of D..
Since all divisors in our gg .4 are of the form 7*(6) for a divisor ¢ in the unique net g%c )2
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on Y the divisor D’ (being separable) contains no ramification point of 7 and is o-invariant
(i.e. oD =D").

Let Dy := D" + D.. Then Dy € g, . Since the g} on X is unique we have o'(g})) = g;). In
particular, D'+ D. = Dy ~ 0Dy = oD’ +0D, = D' +0D,,ie. cD. ~ D.. Butdim|D.| = 0,
and so it follows that oD, = D, and, then, Dy = D,.

Let Ry, ...,R, be the ramification points of m; then R := R; + ... + R, € Div(X) is the
ramification divisor of &, and we have n = 12 for ¢ = 6, n = 4 for ¢ = 8. For a o-
invariant divisor D = 37" kiR; + 3 1;(P; + o(P))) € Div(X) with P; # R; for all i, j we
define a divisor moD of Y by moD := YL [ki/21n(R) + X jlim(P;) € Div(Y), and we let
V(D) = {f € HD)|f oo = f} resp. V,(D) := {f € HYD)|f o ¢ = —f} be the even
resp. odd part of H'(D). Then deg(roD) < (1/2)deg(D), and we have equality here iff
n*(noD) = D. Furthermore, V,(D) = H°(Y,myD) (since f € V,(D) has a pole of even order
at every ramification point R; of rr), and H°(D) = V(D) ® V,(D).

Let V, := V.(Dy), V, := V,(Dy). Since H'(Y,nyD’) = V,(D’) c V, we have dim(V,) >
h°(moD’) = 3. Furthermore, dim(V,) = h°(myDy) with deg(mo Do) < do/2 = c+2 = 2deg(Y)—
2. Since Y is a smooth plane curve it follows that ho(moDy) < 4, and if h°(myDy) = 4 holds
then deg(mpDy) = c+2. So we see that dim(V,) < 4, and if dim(V,) = 4 then n* (7o Dy) = Dy.

We first consider the case dim(V,) = 3, i.e. V, = V(D). Then dim(V,) = h°(Dy) — 3 =
(((c+4d)/2)+1)—-3=c/2.

Let D, < R (i.e. moD. = 0); this is only possible for ¢ = 6. By adjunction we have
Kx ~ n*(Ky) + R ~ ©°(26) + R ~ 2D’ + R for a divisor § in the net g(26+4)/2 on Y, and since
|Dy| is half-canonical we have Ky ~ 2Dy = 2D’ + 2D.. Hence we have 2D, ~ R. For a
suitable numbering of the ramification points Ry, ..., Rj» of m we thus have 2(R| + ... + Rg) ~
Ri+..+Rs+R;+..+Rp, ie R +..+Rg~Ry+ ...+ Rp. But X has no g;; hence it
follows that R| + ... + Rg = R7 + ... + Rj» which is not true.

So we have 2R; < D, for some i or P+ o(P) < D, for a non-ramification point P € X. Let
k; > 2 resp. [ > 1 be the multiplicity of R; resp. P in D,; note that k; is odd. Choose a basis
S1s s fe2 of V, such that R; resp. P is a pole of order k; resp. [ of these functions. Then
there are ay, ..., aj2)-1 € C such that the functions g; := f.p—a;fj €V, (j=1,..,(c/2)-1)
have a pole of order k; — 2 at R; resp. [ — 1 at P (and o(P)). Then the vector space V, &
span(gi, ..., g¢/2)-1) of dimension dim(V,) + ((¢/2) — 1) = (¢/2) + 2 gives rise to a linear
series on X of dimension (¢/2) + 1 and degree deg(D’) + 2((c/2) — 1) = 2c¢ + 2. Since this
series computes ¢ we obtain a contradiction.

So we have dim(V,) = 4, i.e. h°(myDy) = 4. Then 7*(myDy) = Dy whence ([12, p. 1797])
((c+4)/2) + 1 = B°(X, Do) = K°(X, 7" (moDy)) = h°(Y, o Do) + h°(Y, oDy — E)

for a divisor E of Y such that 2E is linearly equivalent to the branch divisor 7.(R) of 7.
Thus we obtain #°(moDy — E) = (¢ + 6)/2 — 4 = (¢ — 2)/2, i.e. W’(myDy — E) = 2 for
¢ = 6 and h(moDy — E) = 3 for ¢ = 8. But for ¢ = 6 we have deg(E) = n/2 = 6 and so
deg(moDy — E) = (1/2) deg(Dy) —deg(E) = (c+2)—6 = 2,1i.e. |mgDy— E| is a gé on Y which
is impossible. Let ¢ = 8. Then we have deg(E) = n/2 = 2 whence deg(ngDy — E) = 8§,
i.e. |[mpDg — E| is a g§ on Y. Let ¢ be a divisor in the unique net gé on Y. Then there are
points p1, p2,q1,q> of Y such that mpDy ~ 20 — p; — pr and 1Dy — E ~ 0 + q1 + ¢». (In
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fact, it is well known that Wé(Y ) = Wé(Y ) + Wa(Y) = |6] + W,(Y) for a smooth plane sextic
Y whence W;,(Y) = |Ky| = Wg(Y) = 136] — (16| + Wa(Y)) = [26] — Wa(¥).) So we obtain
O0+q1+qy ~ngDy—E ~20—p1 —p,—E,ie. d— E ~ p; + p2 + q1 + ¢q» which implies
that 16 — E) > 1. But we have 3 = i°(X, 7%(6)) = h°(Y,6) + i°(Y,6 — E) =3 + h°(Y,6 - E)
which shows that h1°(Y,§ — E) = 0, and this contradiction proves the Theorem. ]

If a smooth curve in P> on a cone over a 4-gonal canonical curve of genus 5 is cut out
there by a quadric hypersurface it has maximally computed Clifford index 6 and infinitely
many gé; so Theorem 4.2 is, for ¢ = 6, not merely a consequence of the recognition theorem
stated in the Introduction.

5. X on a K3 surface

Viewing X as being embedded into P" by our g;‘; it possibly lies on a smooth projective

K3 surface S of degree 2ry — 2 in P’°. (In fact, the examples of curves with maximally
computed Clifford index have been constructed in this way, cf. [5, 3.2.6, 3.2.7].) If so,
observing that ¢ < [(g — 1)/2] = ¢ + 2 there exists an effective divisor D of § such that
its restriction Dy to X computes ¢ ([7]). Hence one may ask if it is possible to find an
(unexpected) g/, with 1 < r < rpon X C § with the aid of a suitable divisor of §. As a
consequence of an interesting result of Knutsen for curves on a K3 surface ([11, 3.4]) we
have the

Theorem 5.1. Assume that X lies, as a curve of degree dy, on a K3 surface S of degree
2rg — 2 in P, Then for every complete linear series |D| of S without a base curve such that
D|x computes c we have deg(D|x) = 2c¢ + 4 or deg(D|x) = c + 2.

Proof. Let H be a hyperplane section of S. We have H> = deg(S) = 2rp -2 = c + 2,
X?=29-2=4c+8and H-X =dy = 2c +4,ie. (H-X)* = 4(c +2)*> = H*X? which
implies, by the Hodge index theorem ([9, V, 1.9 and ex. 1.9]), that X ~ ((H-X)/H*)H = 2H.
Since the canonical series of S is trivial we have h°(H — X) = h%(-H) = h*(H) = 0 and
h'(H-X) = h'(X-H) = h'(H) = 0 ([15, 2.2]) whence by a standard exact sequence and by
the Riemann-Roch theorem ([9, V, 1.6]) it follows that h°(X, H|x) = h°(H) =2 + (1/2)H? =
ro+ 1,1.e. |Hlx| = g;‘(’).

Let D be an effective divisor of S such that |[D| has no base curve and D|y computes c.
Then D? > 0, and since deg(D) = D-H = (1/2)D-X = (1/2)deg(D|x) < g—1 = dyp = deg(X)
we have (D - X) = 0.

Assume that 2'(D) = 0. Then a standard exact sequence shows that 1°(X, D|y) = h°(D) +
h'(D — X). Likewise, if X, is an arbitrary smooth irreducible curve in [2H| we have
h°(Xo, Dlx,) = h°(D)+h'(D—X,). Clearly, D—X, ~ D—X implies that h'(D—X,) = h'(D-X)
whence h°(Xy, Dlx,) = h°(X, D|x). Since, by [7], X, has the same Clifford index c as X, we
see that D[y, computes the Clifford index of Xj.

Choose X general in |2H|. Then X, has only finitely many pencils gcl, L»» according to a
theorem of Knutsen ([11, 3.4]), and since the Clifford index ¢ of Xy is maximally computed
(by H|x,) there are no base point free gi .3 on Xp. Consequently, the recognition theorem
(applied to Xp) shows that D|x, computes ¢ maximally or |Dlx,| = gi .- Hence, for X, we
have h°(X, D|x) = ro + 1 or (provided that D?> = 0) h1°(X, D|x) = 2.
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Assume that 2'(D) # 0. Then D ~ kE, for an irreducible curve E, with Eg = 0 and some
integer k > 2 ([15, 2.6]). We have k deg(Ey|x) = deg(Dlx) < g — 1 = 2¢ + 4, and since
h(X, Eolx) > h°(Eo) > 2 + (1/2)E; = 2 we have deg(Eoly) > ¢ + 2. Thus we obtain k = 2
and deg(D|x) = 2¢ + 4. m]
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