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We develop a method for completely shaping optical vector beams with controllable amplitude, phase, and polarization

gradients along three-dimensional freestyle trajectories. We design theoretically and demonstrate experimentally curvi-

linear Poincaré vector beams that exhibit high intensity gradients and accurate state of polarization prescribed along the

beam trajectory.
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1. Introduction

Shaping and tailoring distribution of amplitude, phase, and
polarization of light has become a subject of rapidly growing

interest, due to its unique properties and novel applications in
various scientific and engineering realms, such as optics trap-
ping[1,2], surface plasma excitations[3], super-resolution[4], and
laser micromachining[5]. Besides, it has been proved that light
beams with a polarization gradient, aiming at exploiting the vec-
torial nature of the light, can exert forces and torques on the illu-
minated particle for special purposes[6–9]. These demands in
optical science prompt the everlasting quest to find novel meth-
ods of completely controlling the structure of light fields[10,11].
Currently, several methods, based on the superposition of

orthogonal base vector components and a computer-generated
hologram (CGH) on the spatial light modulator (SLM), have
been proposed to create and shape the desired vector field[12–18],
including iterative[12] and non-iterative methods[13–18].
However, the vector fields as mentioned above have a common
feature in that the amplitude of the base vector is uniform so that
the state of polarization (SoP) of the synthesized vector beam
varies only along a equator circle[15–17] or prime meridian
circle[18] on the Poincaré sphere (PS), wherein two quarter-wave
plates (QWPs) and two half-wave plates (HWPs) are employed,
respectively, but unable to span the entire surface of the PS.
Generally, the construction of genuine Poincaré vector beams
(PVBs) needs four independent modulation degrees of freedom,
one for the amplitude, one for phase retardation, and two for the
polarization[14,19], which is not a trivial task and requires a delib-
erate design.
In this Letter, we extend a scheme reported in Ref. [20] for

creating scalar beams to synthesize vector beams and propose
to produce in the far field (viz., the focal field of focusing lenses)

a new kind of PVBs that are curved in the three-dimensional
(3D) space, termed curvilinear PVBs (CPVBs). We design
CPVBs based on the superposition of two orthogonally polar-
ized beams[21], both of which possess the same curve locus
but an independently prescribed amplitude and phase distribu-
tion, and demonstrate experimentally that the created CPVBs
contain arbitrarily tailorable amplitude, phase, as well as polari-
zation gradients with high intensity gradients prescribed along
any 3D trajectories. Furthermore, the 3D curve rendered by the
CPVB can bemapped onto a continuous curve on the PS surface.

2. Principle of Curvilinear Vector Beam Generation

Let us consider a focusing process under the paraxial condition,
as shown in Fig. 1.We want to generate a desired focal beam that
can trace out a 3D curve represented by Cartesian coordinate
[x0�t�, y0�t�, z0�t�] with the azimuthal angle t ∈ �0,T �, where
T stands for the maximum value of the azimuthal angle. For this
purpose, we need to design a complex amplitude of the incident
light field given by the following expression:

H�x,y� =

Z

T

0

g�t�ψ�x,y,t�φ�x,y,t�dt: (1)

The terms g�t�, ψ�x,y,t�, and φ�x,y,t� in Eq. (1) are deter-
mined by[20]
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where w0 is a constant. The term
�������������������������������������������������

x 0
0�t�

2 � y 0
0�t�

2 � z 00�t�
2

p

in

Eq. (2) guarantees a uniformly distributed intensity along the
curve, while α�t� acts as a free parameter for controlling the
variation gradient of amplitude along the curve. ϕ�t� is a phase
function that dominates the phase gradient along the curve.
Dynamic modulation of amplitude along the curve can be
acquired by changing the dependence of α�t� on the parameter
t in a certain way. The term ψ�x,y,t� controls the position of each
focused spot in the focal plane, while the term φ�x,y,t� controls
the focusing distance through a quadratic phase function,
wherein f and λ represent the focal length of the Fourier lens
and the wavelength, respectively.
Equation (1) allows us to calculate the incident complex field

that can shape a structurally stable scalar focal beam with pre-
scribed arbitrary amplitude and phase gradient along a curve in
the focal volume of the lens. First, we consider the generation of
an Archimedean curve represented by x0�t� = −R0t cos�10t�,

y0�t� = −R0t sin�10t�, and z0�t�= sR0�0.5− �1− t2�1=2�, with t ∈
�0,1� and s = 0 for a two-dimensional (2D) or else a 3D curve,
with different amplitude and phase gradient, and show by sim-
ulation the controlling capability of amplitude and phase. As an
illustration, Fig. 2 shows the simulated results (R0 = 0.275mm),
where the left and right halves of Fig. 2 display the amplitude and
phase distribution of the resulting beams, respectively; the sub-
graphs with labels (ai) and (bi) with i �=1, 2, : : : , 6� represent the
amplitude and phase of the ith beam, respectively. The first row
in Fig. 2 presents the uniform amplitude distribution, while the
second shows the ability to control arbitrary amplitude varia-
tions along the curve by adjusting the amplitude distribution
terms in Eq. (2) such as α�t� = j sin�2πt�j. Note that the
amplitude distribution through rows 1 to 2 is different, while
the phase through rows 1 to 2 has the same structure.
Therefore, it shows that the amplitude gradient α�t� and phase
gradient ϕ�t� are independently controlled. The 3D structure of
controllable amplitude Archimedean curve is revealed along
the beam propagation in the focal region in simulation, as
shown in Figs. 2(c) and 2(d), respectively. The beam intensity

distributions calculated at the focal plane (z = −25, − 15,
−5, 0, and 15 mm, respectively) are shown in Figs. 2(e)

and 2(f). It should also be noted that the term ϕ�t� =

2πm∫ t
0dl=∫

T
0 dl actually resembles the phase ramp of perfect

optical vortices[15] with an index m that denotes the topological

charge of the vortex and is independent of the size of the curve
beam, as shown in Fig. 2.
We now consider the realization of a CPVB. As is well-known,

any SoP can be geometrically represented by a point on the PS
surface through the spherical coordinate (2χ, 2ϕ) as follows[22]:

p̂�2χ,2ϕ� = sin

�

χ �
π

4

�

exp�−jϕ�êr � cos

�

χ �
π

4

�

exp�jϕ�êl,

(3)

where χ and ϕ are also responsible for the ellipticity and angle of
the polarization ellipse, respectively. êr and êl refer to the right-
and left-circular polarization base vector, corresponding to the
north and south poles of the PS, respectively. Our proposed
CPVB aims to enable the Cartesian coordinates of the beam
location [x0�t�, y0�t�, and z0�t�] to be mapped onto the spherical

coordinates (2χ, 2ϕ) on the PS surface by the following relation:

8

<

:

x0�t� = S1 = S0 cos 2χ cos 2ϕ,

y0�t� = S2 = S0 cos 2χ sin 2ϕ

z0�t� = S3 = S0 sin 2χ,

, �4�

where (S0, S1, S2, S3) represent the Stokes parameters construct-

ing the PS and S0 =
��������������������������

x20 � y20 � z20
p

. Obviously, given a beam

location [x0�t�,y0�t�, and z0�t�] determined by the spherical

coordinates (2χ, 2ϕ), we can calculate the parameters expressed
by Eq. (2) and finally find the input light field needed for yielding
a desired CPVB. It should be noted that the reason we choose
such a beam whose trajectory is reflected on the PS surface is

Fig. 1. Schematic illustration of generating a curvilinear light beam in the

focal region, z ∈ [−d, d], of the Fourier lens.
Fig. 2. (a),(b) Different amplitude gradient [controlled by α(t)] and phase gra-

dient [controlled by ϕ(t) or m] along a 2D Archimedean curve in the focal

plane. (c),(d) Intensity distribution of a 3D Archimedean curve in the focal

plane. (e),(f) Reconstructed intensity of the beam at −25, −15, −5, 0, and
15 mm from the focal plane, respectively.
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just to give an example for proving the effectiveness of our
method; in fact, we can generate any on-demand polarization
gradient curve beams, for example, a vector counterpart of
the scalar Archimedean-curved beams.

3. Experimental Results and Discussion

To create the proposed CPVB, we use the aforementioned tech-
nique to shape the two scalar 3D curves that have the same path

but different phase and amplitude and mutually orthogonal
SoPs, and then we employ vector optical field generation tech-
niques to create the CPVB. The experimental setup of the CPVB
generation system is schematically illustrated in Fig. 3, which is
composed of two parts—one is a vector field generator, and the
other is the focusing part for yielding the far field. The detailed
working principle can be found in Ref. [15] and is briefly out-
lined here. First, two complex amplitude fields at the incident
plane, denoted as H1�x,y� and H2�x,y�, are calculated through
Eq. (1) from two constituent beams representing polarization
components. Subsequently, each complex amplitude field is
imposed by linear phase factors of exp�i2πx sin θx=λ� and
exp�i2πy sin θy=λ�, respectively, and is converted into mutually

orthogonal left- and right-circular SoPs using two QWPs in the

two optical channels of the filter plane, which serve as a pair of
base vector beams for the subsequent vectorial superposition. A
Ronchi grating placed at the rear focal plane of the second lens
re-corrects the diffraction direction of each beam, enabling the
collinear recombination of the two base vector beams. Thus, the
holographic function needed to be encoded on the SLM is
calculated by

H�x,y� =H1�x,y� exp�i2πx sin θx=λ�

�H2�x,y� exp�i2πx sin θy=λ�: (5)

The above complex holographic function is encoded into a
phase-only CGH by using the cosine-grating encoding

method[23] and imprinted on the phase-only SLM
(HOLOEYE Leto, 6.4 μm pixel pitch, 1920 × 1080). Once the
synthesized vector field is input into the focusing system, the
3D CPVB is produced in the focal volume.
We place a polarization camera (4D TECHNOLOGY Polar-

Cam G5, 3.45 μm pixel pitch, 2464 × 2056) in the focal region of

the focusing lens (f = 100mm) to capture the focused field

resulting from the synthesized field H1�x,y�êr �H2�x,y�êl.

The polarization camera is composed of an array of super-pixels,

each of which has four sensor pixels covered by their corre-

sponding micropolarizers with four discrete polarizations (0,

45, 90, 135 deg). Combined with a QWP, the polarization cam-

era can measure the four parameters (S0, S1, S2, S3) simultane-

ously. By moving the camera back and forth along the optical

axis to record the intensity distribution of focal volume, we

can accomplish the 3D polarimetric tomography for the focal

field and thus reconstruct the 3D trajectory of CPVB.
We now construct ring-shaped CPVBs in the 3D space for

demonstration purposes. Assuming that the unit normal vector

n̂ of the plane occupied by the 3D ring is defined as n̂ =

�nx,ny,nz�
T with T representing the transpose of matrix, and let-

ting û and v̂ stand for two orthogonal unit vectors in the ring
plane, �û,v̂,n̂� forms the right-hand triplet. In this way, the

parameter equation of the 3D ring is defined as �x0,y0,z0�
T
=

R0 cos�t�û� R0 sin�t�v̂. The projection of the 3D ring onto
the x–y plane (i.e., the focal plane) is easily determined by the
normal vector of the 3D ring.
Before presenting results of the designed CPVBs, we should

address an important aspect associated with the scaling factor

in the transverse and longitudinal coordinates of the focal space.

Note that the paraxial propagation is assumed in the focusing

process, which is a prerequisite of our design method. The para-

xial propagation means that the light beam mainly propagates

along the z direction. In order to obey this paraxial condition,

we specify the trajectory space of the designed beam as

[−0.3mm, 0.3 mm] in the transverse dimension and [−8.0mm,

8.0 mm] in the longitudinal dimension, which is assumed in the

3D geometrical drawing of the examples presented in the follow-

ing context.
Let us present the first CPVB example that represents a

common ring in the focal plane by setting ~n = �0, cos�π=2�,

sin�π=2��T and R0 = 0.275mm. Correspondingly, this ring-

shaped PVB has a space-variant SoP distribution that spans

across the equator of the PS, as marked by the black solid circle

in Fig. 4(a). The right-circular polarization component field in

the input plane is shown in Fig. 4(b), wherein the normalized

amplitude (∈ �0, 1�) and phase (∈ �0, 2π�) are visualized by the

colormap. By moving the polarization camera in the z direction,

we measure 101 cross-sectional distributions of the focused field

within the range of z ∈ �−d, d� with d = 8.0mm, each of which

contains four sets of data used to calculate the Stokes parameters

(S0, S1, S2, S3). Figure 4(c) shows the experimentally measured

intensity (S0) distributions of the generated CPVB in successive

planes at z = −5.6, 0, and 5.6 mm, respectively. For comparison,
Figs. 4(d) and 4(e) give the simulation and experimental results

Fig. 3. Schematic of the optical setup for generating CPVB, based on the

superposition of two orthogonally polarized component beams. SLM, spatial

light modulator; QWP, quarter-wave plate.
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of the four Stokes parameters (S0, S1, S2, S3) in the focal plane
(z = 0), which are shown in order from top to bottom. The
experimental results shown in Fig. 4 agree well with the simu-
lation, and the SoP distribution is correctly arranged along
the beam’s trajectory. For example, the values of S1 and S2 vary
azimuthally, while the value of S3 is almost zero, as shown in
Fig. 4(e), indicating the generated beam has azimuthal-variant
linear polarization along the ring trace.
We now describe the second example of ~n = �0, cos�π=4�,

sin�π=4��T, which can be understood as a tilted ring that results
from a 45 deg rotation of the ring in the first example around the
x axis in the rescaled cubic space, as shown in Fig. 5. Besides trac-
ing out a 3D ring-shaped trajectory, this beam contains hybrid
SoPs spanning across the northern and southern hemispheres of
the PS, in contrast with the first example, which is comprised
of locally linear SoPs only occupying the equator of the PS.
Figure 5(b) shows the complex field of one component (right-
circular polarization) in the input plane, and Fig. 5(c) presents
the experimentally measured intensity of the generated CPVB in
the planes at z = −5.6, 0, and 5.6 mm in the focal space, respec-
tively. It can be clearly seen that due to the inclination the beam

trajectory appears with a fade-in and fade-out in the successive
scenes. The 3D trajectory can also be visualized by the intensity
(S0) distribution of the beam in the focal space, shown in
Figs. 5(d1) (simulation) and 5(e1) (experiment). It can be
seen that the beam intensity is uniformly distributed along
the inclined ring in the real space, which is exactly what
we expected. The measured Stokes parameters shown in
Fig. 5(e), agreeing well with the numerical simulation shown
in Fig. 5(d), show that the realized CPVB is indeed endowed with
the desired SoPs.
Finally, we explore the simultaneous generation of double

CPVBs that trace out two crossed rings in the focal space.
The two rings are symmetrically inclined around the z axis

by setting ~n = �0, cos�π=4�, sin�π=4��T and �0, cos�3π=4�,

sin�3π=4��T, respectively, as schematically illustrated in Fig. 6.
The presented results show that this double-ring-shaped PVB
is constructed as expected, as shown by the simulation in
Fig. 6(d), and is satisfactorily realized by the experiment, as
shown by the volumetric reconstruction in Fig. 6(e).

Fig. 4. Simulation and experimental results of a ring-shaped CPVB in the focal

plane. (a) Ring-shaped trajectory of the beam having SoPs belonging to the

equator of the PS. (b) The complex amplitude of right-circular polarization

component needed for producing this CPVB. (c) The recorded intensity in

three successive planes of the focal space. (d1)–(d4) The Stokes parameters

(S0, S1, S2, S3) calculated by simulation. (e1)–(e4) Measured Stokes parameters

(S0, S1, S2, S3) of the experimentally generated beam.

Fig. 5. Simulation and experimental results of the 3D CPVB with a tilt ring-

shaped trajectory in the focal space. (a) SoPs belong to the PS’ great circle

inclined at 45 deg around the S1 axis. (b) The complex amplitude of right-cir-

cular polarization component needed for producing this CPVB. (c) The

recorded intensity in three successive planes of the focal space.

(d1)–(d4) The Stokes parameters (S0, S1, S2, S3) calculated by simulation.

(e1)–(e4) Measured Stokes parameters (S0, S1, S2, S3) of the experimentally

generated beam.
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4. Conclusion

In summary, we develop a method for enabling the complete
control of amplitude gradients as well as the phase gradient dis-
tribution along the 3D trajectory of the light beam, and apply it
for generating curvilinear vector beamswith prescribed intensity
distribution and SoPs. The real-space trajectory of the generated
CPVB is endowed with SoPs specified by the analogous trajec-
tory of the Poincaré space. The experimental results demon-
strate that the generated CPVBs exhibit high intensity
gradients and accurate SoPs prescribed along arbitrary 3D tra-
jectories. Owing to the high intensity gradient and the control-
lable polarization gradient, the proposed CPVB can provide an
optical guiding channel for trapping and moving microscopic
particles. Our approach can facilitate exploration and applica-
tion of the freestyle 3D vector optical manipulation.
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