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Curvilinear Structure Analysis by Ranking the
Orientation Responses of Path Operators

Odyssée Merveille, Hugues Talbot, Member, IEEE, Laurent Najman, Nicolas Passat

✦

Abstract—The analysis of thin curvilinear objects in 3D images is a
complex and challenging task. In this article, we introduce a new, non-
linear operator, called RORPO (Ranking Orientation Responses of Path
Operators). Inspired by the multidirectional paradigm currently used in
linear filtering for thin structure analysis, RORPO is built upon the notion
of path operator from mathematical morphology. This operator, unlike
most operators commonly used for 3D curvilinear structure analysis,
is discrete, non-linear and non-local. From this new operator, two
main curvilinear structure characteristics can be estimated: an intensity
feature, that can be assimilated to a quantitative measure of curvilin-
earity; and a directional feature, providing a quantitative measure of the
structure’s orientation. We provide a full description of the structural and
algorithmic details for computing these two features from RORPO, and
we discuss computational issues. We experimentally assess RORPO by
comparison with three of the most popular curvilinear structure analysis
filters, namely Frangi Vesselness, Optimally Oriented Flux, and Hybrid
Diffusion with Continuous Switch. In particular, we show that our method
provides up to 8% more true positive and 50% less false positives than
the next best method, on synthetic and real 3D images.

Index Terms—Thin structures, non-linear filtering, direction estimation,
mathematical morphology, path opening, 3D grey-level imaging, curvi-
linear structure.

1 INTRODUCTION

THIN structures in nD images are characterized by a
significantly smaller size in at least one of their n

dimensions. In most image-related applications, n is 2
or 3. We can then define two kinds of thin structures:
1D thin structures, typically line-like or tube-like objects
respectively in 2D or 3D images; and 2D thin structures
which are plane-like objects in 3D images. In this article,
we mainly focus on 1D thin structures in 3D images,
which we term curvilinear structures.

Images of curvilinear structures are among the hardest
to handle in image analysis. The difficulty lies both in
the sparsity of the images and their complex geome-
try. In addition, such structures are naturally fragile,
in that even a small amount of noise may be enough
to disrupt their contours, leading to disconnections or
misconnections. Curvilinear structures can also be very
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Fig. 1. An illustration of the RORPO intensity feature (b)
applied on a 3D synthetic image (a) with a plane and a
curvilinear structure. Both images are seen with a Max-
imum Intensity Projection (MIP). RORPO successfully
removes the plane structure, decreases the background
intensity while preserving the curvilinear structure.

tortuous, possess different orientations and scales and
form a network, making geometric prior difficult to
use. Nonetheless many applications involve curvilinear
structures, e.g.road extraction in remote sensing images,
vessels segmentation in medical images, or fibre detec-
tion in material science. In order to segment these, it
is frequent to use a general segmentation framework
(e.g., active contours, region-growing, machine learning)
enriched with some specific curvilinear prior knowledge.

Various methods have been developed to extract these
specific features. Such methods aim at enhancing the
curvilinear structure signal and decreasing the response
of non-curvilinear structures, which results in the ex-
traction of features based on their intensity. Higher-
level features can also be estimated, such as orientation,
diameter or curvature (see Sec. 2).

We recently introduced a new operator called RORPO
(Ranking Orientation Responses of Path Operators)
[1][2]. Similarly to operators already proposed in the
literature, RORPO relies on a multidirectional and multi-
scale paradigm. However, in contrast to most approaches
from the state of the art, it is a non-linear, global discrete
operator; this makes RORPO a powerful tool for the low-
level processing of curvilinear structures (see Fig. 1).

In this article, we present RORPO in more details,
and we propose two fundamental curvilinear structure
features, namely (1) a low-level intensity feature that
preserves the curvilinear structures while removing the
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signal of other objects; and (2) a directional feature
providing an estimation of the orientation of a putative
curvilinear structure.

In Sec. 3, we develop the general strategy behind
RORPO and its underlying concepts. In Sec. 4, we
present the computation of RORPO and its associated
features. Sec. 5 discusses algorithmic considerations in-
cluding RORPO parameters, computational cost, and ro-
bustness to noise. An experimental validation of RORPO
is carried out in Sec. 6, by comparison with three opera-
tors representative of the state of the art, namely Frangi
Vesselness (FV) [3], Optimally Oriented Flux (OOF) [4],
and Hybrid Diffusion with Continuous Switch (HDCS)
[5]. A discussion on extensions and future work con-
cludes this article (Sec. 7).

2 RELATED WORK: CURVILINEAR STRUCTURE

FILTERING

Curvilinear structure filtering in 3D grey-level images
is an active research area, that has led to the proposal
of many methods over the last two decades. A complete
survey is beyond the scope of this article. The reader may
refer to [6, Chs. 1, 2] for a general overview, and to [7],
for a medical-oriented survey. We propose here a global,
but non-exhaustive vision of the principal families of
approaches, illustrated by representative methods.

Methods devoted to filtering curvilinear structures can
be divided into two categories, namely those relying
on differential (mostly linear scale-space) operators, and
those relying on non-linear (often mathematical mor-
phology) operators.

2.1 Linear approaches

The majority of linear approaches are based on lo-
cal, scale-space, differential analysis of images, viewed
as continuous functions. In particular, the analysis of
second-order derivative properties of the image were
first proposed in [8], [9]. In these methods, the eigenval-
ues of multiscale Hessian matrices and their associated
eigenvectors are analyzed to characterize blob-like, pla-
nar and curvilinear structures as well as their scale and
orientation.

This strategy has led to the proposal of several “ves-
selness” measures, combining differential information
into heuristic formulations. The vesselness proposed by
Frangi et al. [3] is the most commonly used vesselness.
Many methods/variants have been proposed since then.
Some of them also used the eigenvectors obtained from
the Hessian matrix [10], [11], for instance for guiding a
diffusion framework [12]. In [13], the second derivatives
were associated to the first derivatives and a Canny
filter, while in [14], a strain energy function used a
stress tensor computed from the Hessian tensor. The so-
called structure tensor can be used instead of the Hessian
matrix. It is produced from the tensor product of the
gradient vector convolved with a Gaussian kernel [15].

Eigenvalue analysis can also be performed to make use
of anisotropy information [5], [16], [17]. It is usually
less sensitive to noise than the Hessian, but cannot
distinguish dark structures from light structures. A more
recent alternative is to consider the projection of the
image gradient onto the surface of a spherical region.
This links to the notion of an oriented flux, which, when
minimized, yields a method for detecting curvilinear
structures [4].

To achieve multiscale detection, derivative operators
are combined with a convolution kernel. In order to
avoid the induced blurring effects, these may be replaced
by a gradient vector flow [18]. The use of a bi-Gaussian
kernel was proposed to better take into account the
anisotropy of curvilinear structures [19].

Alternatively to Hessian-based approaches, steerable
filters are anisotropic filters that can be expressed in
terms of a linear combination of basis filters [20]. In [21],
the convolution between a bar profile and the second
derivative is used to introduce a multi-scale approach.
3D steerable filters were first proposed in [22], using a
nth Gaussian derivative basis. In [23], 3D steerable filters
based on the second and fourth Gaussian derivatives
were used to detect dendrite profiles.

Discrete gradients have also been used. In [24], line-
like orientation is first estimated using a set of discrete
orientations. Then, instead of a classical low pass filter,
an anisotropic filter is used to enhance curvilinear fea-
tures. The maximum curvature of curvilinear structures
is also computed by the second derivative operator along
the 13 discrete lines of a 3 × 3 × 3 kernel [25], [26].

2.2 Non-linear approaches

2.2.1 SE-based approaches

Non-linear approaches include those based on math-
ematical morphology [27]. In this framework, a com-
mon notion is the structuring element (SE), a geometric
pattern from which basic operators (erosions, dilations,
openings, closings, etc.) can be defined. Considering
local straightness and extremal intensity of curvilinear
structures, a basic idea is to propose filters using small
structuring elements fitting these properties.

Two dual approaches have been considered. The first
models a curvilinear structure by a small straight line
SE [28], [29], to carry out opening or closing operations
by line segments of arbitrary orientation [30], [31], [32].
The second models the background in the orthogonal
hyperplane of the segment, to carry out grey-level hit-
or-miss transform [33], [34], [35].

Even if the shapes of the SEs are fixed, orientation
parameters can be specified to form filter banks. Sev-
eral strategies were experimented: rotating structuring
elements [36], knowledge-based parametrization [34], or
spatially-variant mathematical morphology [37]. Blurred
operators [35] were also designed to increase robustness.

The hard, straight geometry of such SEs remains a lim-
itation to the accuracy of these approaches, progressively
leading to the use of more flexible SEs [38].
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2.2.2 Connectivity-based approaches

A second notion is that of connectivity, generally han-
dled on graphs. The key notion of connectivity is no
longer local with SEs, but more global with connected
components. In this context, the concept of component-
tree [39] and attribute-based methods was specifically
investigated and developed for extensive, anti-extensive
and self-dual filtering.

Most considered attributes are scalar [40], [41], allow-
ing for threshold-based interaction. Geodesic attribute
were recently designed for thin structures [42]. Vectorial
attributes remain infrequently used [43], due to a more
complex handling.

By construction, connected filters cannot split con-
nected component, which may result in erroneous con-
nections between curvilinear structures and artifacts, or
between branching curvilinear segments. Some attempts
to minimize these drawbacks were proposed, either via
tilling approaches [43], or with asymmetric notions of
connectivity [44].

It is worth mentioning that hybrid SE/connected
strategies were proposed, e.g.in [45] for reconnection
purposes. The links between connectivity-based and
path-based approaches (described below) were also in-
vestigated in [46].

2.2.3 Path-based approaches

The SE- and connectivity-based approaches present dual
intrinsic strengths and weaknesses. SE-based approaches
can naturally handle anisotropy, which is highly desir-
able for curvilinear structure filtering, but require explic-
itly defined families of SEs for orientation sampling. In
comparison, connectivity-based approaches lead to more
global descriptors; unfortunately the isotropic notion
of adjacency cannot efficiently model the anisotropy of
curvilinear structures.

To address this problem, geodesic paths [47] were
introduced to consider long-range, non-local interactions
while still coping with the constraints of curvilinear
objects, in particular noise. A curvilinear object detector
was proposed in [48] using geodesic voting, similar
to path density. Polygonal path images [49] extended
this idea allowing for better regularization and fewer
artefacts. A recent formal discussion on optimal global
paths was also proposed in [50]. All these solutions
remained costly in 3D.

In [51], a notion of local optimal path was pioneered.
The purpose was to restrict the search to a given dis-
tance, and in a given cone of orientations, in order to find
the best paths starting from a given point. This paradigm
led to the development of a notion of path operator
[52]. These use a family of paths – i.e., connected sets
– instead of a fixed shape as SE, thus enabling a higher
flexibility in geometry and size, while preserving a 1D
semantics. Algorithmic efforts were conducted to make
such approach computationally efficient [53] and robust
to noise [54], [55], leading to a notion of robust path

(a) (b) (c)

Fig. 2. In 3D, (a) a blob structure, (b) a planar structure,
and (c) a curvilinear structure, in blue. Arrows show sam-
pling along some orientation; a green (resp. red) arrow
represents a high (resp. low) response of an oriented
filter. The blob presents a high response in every orien-
tation; the planar structure presents a high response in
4 out of the 8 orientations; the curvilinear structure only
presents a high response in 1 orientation.

opening. Sparse representations [56] were also proposed
to avoid redundant computation.

3 PROPOSED FRAMEWORK

In this article, we aim to provide two new features
characterizing curvilinear structures: an intensity fea-
ture which can be seen as a measure of presence of
such a structure, and a directional feature providing,
at each point, the orientation of these structures. Here,
we explain the distinguishing features of curvilinear
structures; then we motivate the choice of operator used
in our method: the path opening, and we recall some
basic notions.

3.1 General strategy

Our strategy for distinguishing curvilinear structures
from planar and blob structures is based on a simple
geometric observation, illustrated in Fig. 2.

Let F be any sort of oriented filter and O be a set of
chosen orientations such as Fo(I), o ∈ O is the response
of this filter using orientation o on image I . Without loss
of generality, we assume a bright structure on a dark
background and a scale compatible with the size of the
considered structure. Curvilinear structures lie in fewer
dimensions than planar or blob structures. Consequently,
the number of high responses among {Fo(I), ∀o ∈ O}
for a blob or a planar structure is higher than the
number of high responses for a curvilinear structure.
Therefore, counting the number of high responses of an
oriented filter should allow us to distinguish each kind
of structure.

Among the large choice of oriented filters in the litera-
ture, we chose the path operators. The main criterion we
considered was their non-locality. Indeed, the majority
of oriented filters compute the response of a structure in
an isotropic neighborhood whose size depends on the
scale, which itself depends on the size of the sought
structure. This approach is not optimal for curvilinear
structures which are highly anisotropic. In particular,
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(a) (b) (c)

Fig. 3. Comparison on image (a) of a classical opening
with line structuring elements (b) and a path opening (c)
with the same SE length of 10 pixels. The bottom right
line is globally vertical but presents local tortuosity. Only
the path opening is able to detect such structure.

it may lead to false detection and wrong orientation
estimation, especially near structures borders. Path op-
erators, by computing the response along an anisotropic
neighborhood fitting in the curvilinear structure, avoid
this pitfall.

Moreover, unlike classical openings, path openings
can efficiently deal with local tortuosity. If a structure
locally diverges from a chosen orientation, path open-
ings can still detect this structure (see Fig. 3). As the
purpose of our operator is to provide features suitable
for segmentation, an edge preserving filter is preferable.
This excludes all the filters based on the Gaussian scale-
space paradigm, as they tend to move the edges. Finally,
the path operators are nearly parameter-free. The only
real parameter is the path length which is semantically
related to the length of the structure of interest.

3.2 Path operators

Path operators include the dual path openings and path
closings. Without loss of generality, we will focus our
explanations on path openings.

Intuitively, a path opening uses a set of oriented
connected pixels of fixed length as a family of structuring
elements. If no such SE fits entirely inside a structure
at some local threshold level, the threshold value is
decreased until at least one does. In this section we
explain this operator more formally.

3.2.1 Paths

Let X be the support of an image and → be an irreflex-
ive, non-symmetric binary adjacency relation. For two
points x and y of X , the relation x → y means that y is
connected to x. We define a path π of length L as a set
of L successively connected pixels (see Eq. (1)).

π = {(x1, x2, ..., xL), xi → xi+1 ∀i ∈ J1, L− 1K} (1)

Practically, a path of length L is defined on a graph
(X,Γ), such that the connectedness Γ is the elementary
adjacency relation → periodically reproduced over X
(see Fig. 4.(a,b)). We note ΠΓ

L(X) the set of all paths of
length L on X with connectedness Γ and σ(π) the set
{x1, x2, ..., xL} of the pixels belonging to the path π .

(a) (b)

(c) (d)

Fig. 4. (a) An example of adjacency relation →. (b–d) The
connectedness Γ which is a periodic repetition of (a) over
X. (b) A path of length 3 (resp. 4) is depicted in red (resp.
blue). (c) A binary image defined on X. (d) The result of
a path opening of length 4 on the image of (c).

3.2.2 Binary and grey-level path opening

The binary path opening of length L with connectedness
Γ is defined as the union of all paths of length L in X
(see Eq. (2)). This operator preserves each point of X
belonging to at least one path of ΠΓ

L(X), and removes
the others; an example is shown in Fig. 4.(c,d).

αΓ
L(X) =

⋃

{σ(π) | π ∈ ΠΓ
L(X)} (2)

Let I be a grey-level image with intensity I(x) ∈ R

at each point x ∈ X . We note G the set of grey-
levels of I . The extension of the path opening to grey-
level is obtained by stacking the path openings on the
thresholdings of I at every grey-level of G [52]. More
formally, the thresholding of I at grey-level λ is noted
I>λ = {x ∈ X | I(x) > λ}, and Eq. (3) defines the
grey-level path opening, AΓ

L(I(x)). As openings, path
openings are increasing, anti-extensive and idempotent.

AΓ
L(I(x)) = max{λ | x ∈ αΓ

L(I>λ)} (3)

3.2.3 Orientation-space sampling

A path opening is defined over an adjacency relation,
which provides a general orientation. A path opening
preserves the structures compatible with this orientation.
In order to preserve structures in all orientations, several
path openings, each with a different orientation, must be
combined. Consequently, a space sampling is required.

In this article, we chose to consider a set of n = 7
orientations: the 3 main orientations corresponding to
the vectors of the orthogonal basis {0, 0, 1}, {0, 1, 0} and
{1, 0, 0} denoted {e1, e2, e3}, and the 4 diagonals cor-
responding to {−1, 1,−1}, {−1, 1, 1}, {1, 1, 1}, {1, 1,−1}
denoted {d1, d2, d3, d4}.



O. MERVEILLE ET AL.: CURVILINEAR STRUCTURE ANALYSIS BY RANKING THE ORIENTATION RESPONSES OF PATH OPERATORS 5

(a) Ce1 (b) Ce2 (c) Ce3

(d) Cd1 (e) Cd2 (f) Cd3 (g) Cd4

Fig. 5. The 7 orientations of C. The center of the cube,
the centers of faces, and corners represent points of the
image. The arrows represent the adjacency relation. The
red arrows are the vectors e⋆ and d⋆ representing the
global orientation of each cone.

There is a degree of arbitrariness for this choice.
Indeed it depends on some of the underlying properties
of the path operator, like the angular aperture of the
cones we use, themselves dependent on the adjacency
relation we choose. However, this choice is motivated in
Sec. 5. In the remainder we will focus our description
using only these 7 orientations, for simplicity.

In order to cover the whole space using only these 7
vectors, our adjacency relation consists of a 3D discrete
cone centered on them. We associate to e⋆ (resp. d⋆ ) the
cone Ce (resp. Cd ) bounded by the vectors {d1, d2, d3, d4}
(resp. {e1, e2, e3}). We note C the set of the 7 cones
corresponding to the 7 orientations (see Fig. 5). In the
remainder of this article, Ac

L(I), c ∈ C, denotes the path
opening of length L with the orientation c.

4 RORPO: RANKING THE ORIENTATION RE-
SPONSES OF PATH OPERATORS

So far, we have presented the purpose of our work:
characterizing curvilinear structures; and the strategy we
have developed: detecting these structures by counting
the number of high responses of an oriented filter, the
path operators. In this section, we first present our
methodology (Sec. 4.1) and how we derive our intensity
(Sec. 4.2) and directional (Sec. 4.3) features from it.

4.1 Methodology

Path operators, as an oriented filter, preserve structures
compatible with specific orientations. However, this is
not sufficient to distinguish curvilinear from planar and
blob-like structures. For instance, a path opening on a
2D image containing an isotropic object (a blob) and
a curvilinear object, with similar diameter/length, will
preserve both. The 3D case is even harder since we have
to take into account planar structures, which are also
detected by a path opening.

Fig. 6. 2D illustration of filter response ranking. A struc-
ture present in one orientation (the vertical line) remains
in RF1; structures present in two orientations (the oblique
lines) remain in RF1 and RF2; the disc is present in all the
orientations and thus remains in all the RFs.

To tackle this problem, we propose to count the num-
ber of high responses of path openings. This is done by
point-wise ranking of the 7 path openings responses. Let
γi
L(I) be the image obtained by applying a point-wise

rank filter, RFi, of order i (see Eq. (4)). In particular, RF1,
RF4 and RF7 are respectively the point-wise maximum,
median and minimum operators.

γi
L(I(x)) = RFi{A

c
L(I(x)), c ∈ C} (4)

From the 7 responses of the path opening, {Ac
L(I)}c∈C ,

we have built the 7 ranked filtered images {γi
L(I)}i∈J1,7K.

Let us consider a structure appearing in n (n ≤ 7) of
the 7 Ac

L(I); then, this structure now appears in
{γi

L(I)}i∈J1,nK. In particular, the image γ3
L(I) contains

all the structures detected in at least 3 orientations. An
illustration in the 2D case is shown in Fig. 6.

4.2 Filtering curvilinear structures

We have seen that curvilinear structures are detected in
fewer path opening orientations than other structures. In
the previous section, we have also proposed a method to
count the number of orientations preserving a structure.

Let it be the maximal number of path opening orienta-
tions preserving a curvilinear structure. Then, we define
the RORPO filter, ΦL as follows:

ΦL(I) = γ1
L(I)− γit+1

L (I) (5)

γ1
L contains structures preserved in all orientations and

γit+1
L contains no curvilinear structure by definition of it.

All other structures with a diameter/thickness greater
than L are preserved in more orientations than curvi-
linear structures. Consequently, the residual operator
ΦL(I) reduces the signal of all structures except for those
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detected in at most it orientations, and these are the
curvilinear structures.

The orientation threshold value it depends on the
chosen orientation space sampling. With the one we
selected (see Sec. 3.2.3), up to some limit cases we
will deal with later, curvilinear structures can only be
preserved by up to 3 orientations. We confirmed this geo-
metric result experimentally by exhaustively analysing a
dense sampling of the orientation space using randomly
generated curvilinear structures. This experiment is fully
developed in Sec. 5.2.3. Based on these results, we se-
lected it = 3.

4.3 Direction estimation of curvilinear structures

Since RORPO is based on oriented path operators, it
intrinsically carries information about the direction of
the detected curvilinear structures. In order to retrieve
this directional information, we have to identify which
path opening orientations fit best at each point. Typically,
there will be more than one, so by combining these
orientations, we may obtain a reasonable evaluation of
the curvilinear structure orientation.

Finding which orientations detect a curvilinear struc-
ture requires, for each orientation, a binary decision:
either an orientation detects the curvilinear structure or
not. However, the output of each path opening filter is a
grey-level response. A solution with a threshold t such
that if AΓ

L(I(x)) > t, orientation Γ detects the curvilinear
structures would be simple but flawed. Indeed the in-
tensity of the responses depends on the initial grey-level
of the image and the degree of noise of the curvilinear
structure.

Consequently, we propose to determine which path
opening orientations detect a given curvilinear structure
by separating the 7 orientations in two classes: those that
detect the curvilinear structures (called orientations of
interest) and the others. Our expectation is to achieve
homogeneous responses AΓ

L(I(x)) inside each class: high
responses in the orientations of interest and low ones in
the others (see Fig. 7). For simplicity and efficiency, we
choose the standard deviation as homogeneity criterion
and we reformulate the problem as a minimization of
the intra-class standard deviation.

More formally, we recall that C is the set of the 7
path opening orientations. Let S be the set of all the
combinations of 1, 2 or 3 path opening orientations. One
of the combinations of S is the set of the orientations of
interest we seek. Let P = {Γ1,Γ2, . . . ,Γk}, 1 ≤ k ≤ 3, be
one of these combinations (P ∈ S); we note σP (x), the
standard deviation of the path opening responses with
the orientations of P at pixel x:

σP (x) =

√

√

√

√

1

k

k
∑

j=1

(

A
Γj

L (I(x))− µ
)2

µ =
1

k

k
∑

j=1

A
Γj

L (I(x))

(6)

Fig. 7. At each point of an image (red square), 7 path
opening responses AΓ

L(I(x)), associated to each orien-
tation C⋆, are computed (top right values). After ranking,
the orientations of interest can be the first one, two or
three path opening orientations (in the figure the first two
orientations).

Then, we find the orientations of interest by solving:

minimize
P∈S

σP + σ(C\P ) (7)

For this, we could compute the intra-class standard
deviation of all of the combination of S (63 combinations
in 3D), but it is better to use the information coming
from the point-wise rank filter previously computed
for the RORPO intensity feature, to reduce the number
of possible combinations. Indeed the 7 AΓ

L(I) have
already been ranked into the γi

L(I)i∈J1,7K from which
we can derive the ranked orientations (Oi

L)i∈J1,7K such
that Oi

L is the orientation associated to γi
L. Moreover,

we know that a curvilinear structure is detected in
at most 3 orientations, so if a curvilinear structure is
detected in k orientations, 1 ≤ k ≤ 3, the orientations of
interest are the k (Oi

L)i∈J1,kK. This results in 3 possible
groups: {O1

L}, {O
1
L, O

2
L} or {O1

L, O
2
L, O

3
L}. Therefore, for

each pixel, we only have to compute the sum of the
standard deviations of these 3 possible groups with
their complements and choose the one with the lowest.
Note that the first group has only one orientation and

thus, only the standard deviation of its complement is
considered. The direction of the structure is estimated
by the mean of the orientations in the selected group.
Because only a small number of path openings are
used, abrupt direction changes can appear in the
resulting directional feature, for example in areas of
high curvature. To reduce that effect, directions are
averaged using a 7× 7× 7 window.

Orientation vs. direction: An important point to note
is that we encode a curvilinear structure orientation by a
3-vector. However, a vector has a direction which is more
specific than an orientation. If a structure is horizontal,
both vectors [0, 0, 1] and [0, 0,−1] encode its orientation.
When averaging path opening orientations, as we use
the vectors e⋆ and d⋆, we must ensure that all the vectors
are set to the same right half-space. As an example, the
mean of vectors [0, 1, 0], [0, 0, 1] and [1,−1,−1] is not
[ 13 , 0, 0] but [− 1

3 ,
2
3 ,

2
3 ].
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4.4 Multiscale length analysis

One of the difficulties in curvilinear structure analysis
is dealing with multiple scales. Real applications need
to cope with varying diameters, lengths and curvatures,
which are generally highly correlated. To tackle this
issue, multiscale approaches have been developed. A
common multiscale approach consists of applying the
filter multiple times while changing scale-related param-
eters, and merging the results. In this section, we propose
a multiscale version of our operator based on the length
of the structure.

In the literature on multiscale curvilinear object analy-
sis, the scale parameter is usually a diameter. However,
in the case of RORPO, only a length parameter is avail-
able. To vary the diameter, a combination of RORPO
with a top-hat filter could be envisaged. Fortunately, in
many applications, the diameter, curvature and length
of curvilinear structures are highly correlated. For ex-
ample small blood vessels, are generally more tortuous
and shorter than large vessels like the aorta. The same
argument can be made, e.g. for insulation glass fibers or
country roads vs. highway.

With RORPO, path lengths depend on the curvature
of the structures. Indeed, to be retained, a structure of
a given length must stay within a single cone, which
puts a limit on the degree of its large-scale curvature.
Consequently, a curvilinear structure with a high large-
scale curvature can only be detected with a smaller
path length than if it were straight. This consideration
is only relevant for large-scale curvature, since small-
scale curvature is already handled by path flexibility.
The reader may refer to Sec. 5.2.1 for complementary
explanations about path length.

More formally, let l = {L1, L2, ..., Ln} be a set of path
lengths. The multiscale RORPO filter, Φ(I), is obtained
by taking the maximum of each scale response ΦL(I):

Φ(I) =
⋃

L∈l

ΦL(I) (8)

This multiscale paradigm also applies to the direc-
tional feature. Indeed, a direction can be computed for
each scale. The final direction is the one associated with
the highest RORPO response and the lowest scale.

5 ALGORITHMIC CONSIDERATIONS

5.1 Simplified robust path opening

RORPO is based on the path opening. It then inherits the
main weakness of path operators: a relative fragility to
disconnections induced by noise, in particular for high
values of L. Several contributions were devoted to pro-
pose various noise resistant versions of path operators
[52], [54], in particular the Robust Path Opening (RPO)
of Cokelaer et al. [55]. RPO allows for K disconnec-
tions (noisy pixels) between two successive path pixels.
However this improved robustness comes at the price of
increased CPU and memory usage.

Dilation Path Opening

Min

1 2

3

Fig. 8. Illustration of our proposed simplified robust path
opening (see Sec. 5.1). The disconnected curvilinear
structure is fully preserved while the top noise structure
is removed.

We propose an alternative to RPO which yields similar
results but is less time consuming. Our method relies
on a mask-based second-generation connectivity strategy
[57] in order to reconnect the noisy parts of curvilinear
structures. A dilation by a cubical structuring element of
size N is performed on the initial image I . This dilated
image is used to compute the regular path opening.
In order to preserve the anti-extensivity of the path
opening, an infimum operator is applied (see Eq. (9)).

Ac
L,N =

∧

{I, Ac
L(δN (I))} (9)

An illustration of this strategy is shown in Fig. 8.

5.2 Parameters

RORPO only requires a few parameters compared to
other similar filters. In this section, we explain why the
path length L is the only tunable parameter. Then we
analyse why and how the other parameters are set.

5.2.1 Path length

Path length corresponds to the length of a path that lies
in a given orientation. As evoked in Sec. 4.4, the path
length carries both length and curvature information. A
curvilinear structure with a high large-scale curvature
will be detected in several orientations, each detecting
a part of the complete structure. As the orientations
overlap, the parts overlap as well (see Fig. 9).

5.2.2 Robustness parameter

In our simplified version of path opening robustness (see
Sec. 5.1), the robustness parameter N is the size of the
cubical structuring element used for the dilation of the
image (N should be an odd number). This parameter
corresponds to the maximal number of noisy pixels in
a row allowed in a path, which is exactly N − 1. We
do not consider the robustness parameter tunable, given
that in practice, we recommend N = 3 or N = 5.
For higher values, false detections start appearing and
the background noise reduction is less effective. In the
following experiments, we set N = 3.
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(a) (b) (c) (d)

Fig. 9. The path length also depends on the scale of
the curvature. (a) A thin structure of length Lr presenting
small-scale and large-scale curvature. (b) A path length of
length L1 < Lr along one orientation detects a first part
of the structure. (c) A path length of length L2 < Lr along
another orientation detects a second part of the structure.
(d) The two detected parts overlap.

5.2.3 Orientations sampling

Working with a finite number of orientations implies to
choose a sampling policy, in order to determine the num-
ber and the shape of the orientations for the computation
of the path openings. Considering the structure of Z

3,
isotropy requirements, and the algorithmic constraints of
path opening, three main families of sampling policies
can be considered: along the 3 principal orientations;
along the 3+4 principal orientations and principal diag-
onals; and along the 3+4+6 principal orientations and
principal/secondary diagonals.

As stated earlier, 3 orientations are not sufficient to ac-
curately capture curvilinear structures due to the neces-
sity for orientations to overlap. The 4 principal diagonals
seem essential and offer a high degree of overlap with
the 3 principal orientations. Our working hypothesis
was that, with 3+4=7 orientations, such as described in
Section 3.2.3, a quantitative analysis of the path openings
responses should be sufficient to decide whether a point
belongs to a curvilinear structure. In order to verify this
hypothesis experimentally, we computed the number of
high responses within the 7 path opening orientations
for 362 (resp. 325) synthetic binary tubes (resp. planes).
The results of this study (Fig. 10) validate this conjecture.
Indeed, nearly all curvilinear structures are detected in
at most 3 orientations whereas all planar structures are
detected in at least 4 orientations. In addition, it will
be observed from the experimental results of Sec. 6 that
using more than 7 orientations – in particular the variant
of RORPO based on the 13 principal orientations of
the 3 × 3 × 3 local neighborhood – does not provide
substantial improvements both in terms of intensity and
direction feature determination.

5.2.4 Angular cones

The basic patterns for each of the 7 orientations need to
fully cover the immediate neighbourhood of any point
x = (x, y, z) of Z

3, namely, the 26 points forming a 3 ×
3 × 3 cube around x. Two policies may be considered:

(a) Tubes (b) Planes

Fig. 10. Number of path opening orientations detecting
(a) tubes and (b) planes, within the set of 7 orientations
illustrated in Fig. 5.

Fig. 11. Computational cost of RORPO, with respect to
|Ω| (left) and L (right, log scale).

choosing patterns that induce either a partition or a cover
of these 26 points. A partition is not acceptable as it
would eliminate all structures with an orientation lying
between the bounds of two neighboring orientations. A
cover is then the only choice.

In order to respect isotropy requirements and minimal
overlapping, this cover was defined as illustrated in
Fig. 5. The drawback of any covering policy is the exis-
tence of limit cases, corresponding to the paths that lie
exactly at the frontier between more than three orienta-
tions. To solve this problem, we devised a virtually cost-
free solution, described in details in [2]. The essentials
of this solution are given in Appendix A.

5.3 Computational cost

The computation cost of RORPO is dominated by the
path openings. Indeed, the robustness step (Eq. (9)),
ranking (Eq. (4)) and limit case handling only require
infimum / supremum operations which have linear cost
O(|Ω|) with respect to the size of the image, Ω.

Two different algorithms were proposed to compute
path openings: the Talbot-Appleton (TA) algorithm [54]
and the Luengo algorithm [53]. The TA algorithm has
a O(|Ω| log(L)) complexity. We verified experimentally
on synthetic images [58] (see Fig. 11) that the Luengo
algorithm is equivalent, albeit slightly slower and not
natively robust. However it is more generic for defining
orientations, and with our simplified robustness (see
Sec. 5.1), native robustness does not matter. Conse-
quently we used the Luengo algorithm.
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6 EXPERIMENTS AND RESULTS

6.1 Evaluation framework

6.1.1 Compared methods

6.1.1.1 Frangi Vesselness [3] (FV): Initially devel-
oped for the detection of vascular structures, Frangi
vesselness is a local, linear, multiscale measure that
relies on the analysis of the second derivatives of the
image. More precisely, the eigenvalues, λ1, λ2 and λ3

(|λ1| ≤ |λ2| ≤ |λ3|) of the Hessian matrix are involved in
the definition of a function V that quantifies the degree
of “vesselness” of any given point x of an image:

V(x) =



















0 if λ2 > 0 or λ3 > 0

(1− exp(−RA
2

2α2 )) exp(−RB
2

2β2 )(1− exp(− S2

2c2 ))

otherwise
(10)

with RA =
|λ2|

|λ3|
RB =

|λ1|
√

|λ2λ3|
S =

√

λ1 + λ2 + λ3

(11)
The version of Frangi Vesselness we used is from ITK1.

6.1.1.2 Optimally Oriented Flux [4] (OOF): Simi-
larly to FV, the OOF is also a local, linear, multiscale
operator; it is also based on the analysis of eigenvectors
and eigenvalues of a matrix locally computed at each
voxel. The main difference is that OOF relies on first-
derivatives of the image, namely the image gradient
observed on a local sphere around the point of interest.
The spectrum of this gradient is modeled as a 3× 3 ma-
trix, defined with respect to the direction that minimizes
the inward orientation flux. The “vesselness” measure is
then obtained similarly to the one proposed by Sato et
al. [8] in their pioneering works:

M(x) =







√

|λ1λ2| if λ1 ≤ λ2 < 0

0 otherwise
(12)

Multiscale analysis can be achieved by varying the ra-
dius of the sphere. The version of OOF we used is from
a Matlab toolbox2.

6.1.1.3 HDCS: Hybrid Diffusion using a Contin-
uous Switch (HDCS) [5] is a recent method extend-
ing Edge-Enhancing Diffusion (EED) and Coherence
Enhancing Diffusion (CED), both proposed by Weick-
ert [59]. It is based on the eigen-analysis of the structure
tensor Jρ(∇uσ) = Gρ ⋆ (∇uσ∇u⊤

σ ), where Gρ is the
Gaussian kernel of standard deviation ρ and ∇uσ is the
gradient of image u at scale σ. HDCS balances EED and
CED based on the local anisotropy. Our version of HDCS
is provided by TubeTK3.

1. http://itk.org
2. http://www.mathworks.com/matlabcentral/fileexchange/

25449-image-edge-enhancing-coherence-filter-toolbox
3. http://www.tubetk.org

6.1.1.4 RORPO 13 directions (RORPO 13): In order
to assess the relevance of considering 7 orientations in
RORPO, we have also developed a version of RORPO
involving a denser sampling of the orientation spaces, by
considering 13 orientations regularly distributed with re-
spect to the structure of the cubical grid, i.e. the 7 orienta-
tions described for RORPO, plus 6 others corresponding
to the secondary diagonals joining the centers of oppo-
site edges of the cube. The philosophy of the approach is
the same as for the “standard” RORPO operator, and the
principal difference lies in the computational cost that
is increased by a factor of almost 2 ≃ 13/7, since the
orientation computations are independent.

6.1.2 Intensity feature evaluation criteria

We considered three standard evaluation criteria for the
evaluation of intensity feature. The first is the Matthews
Correlation Coefficient (MCC) which is well adapted
when the structures of interest only represent a small
proportion of the total image size:

MCC =
TP .TN−FP .FN

√

(TP+FP).(TP+FN).(TN+FP).(TN+FN)

with TP/TN the true positives/negatives and FP/FN the
false positives/negatives.

The second and third criteria are the true positive and
false positive rates (TPR, FPR), respectively. As we deal
with sparse features, the set of voxels belonging to the
ground-truth objects (TPGT) is always much smaller than
the set of voxels belonging to its background (TNGT).
Consequently, the number of false positives is much
larger than the number of true positives. To present
meaningful results, we defined the TPR and FPR with
respect to the ground-truth objects, i.e. TPR = TP

TPGT
and

FPR = FP
TPGT

. With this convention, the FPR can exceed
100%.

6.1.3 Direction feature evaluation criteria

We evaluate directions by estimating the angle in degrees
between the ground-truth and the direction provided
by the considered operators. The mean and standard
deviation of these values over the image constitute the
considered evaluation criteria. We note that the maxi-
mum error between two angles is 90◦, as we compute
an orientation difference, i.e. an angle between lines.

6.2 Evaluation of the intensity features

In this section, we evaluate the performance of RORPO
for preserving curvilinear features. We do this on both
synthetic and real data.

6.2.1 Synthetic data

Since publicly available images of curvilinear features
with ground-truth are rare, we used synthetic data pro-
duced by the free software package VascuSynth [58].
This package models vessels in 3D in the presence of
various amounts of noise. We produced 10 images of

http://itk.org
http://www.mathworks.com/matlabcentral/fileexchange/25449-image-edge-enhancing-coherence-filter-toolbox
http://www.mathworks.com/matlabcentral/fileexchange/25449-image-edge-enhancing-coherence-filter-toolbox
http://www.tubetk.org
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Fig. 12. First row: 2D slices of one of the synthetic
grey-level image generated with VascuSynth [58], with
background inhomogeneity, and various levels of Gaus-
sian white noise (σ = 0, 10 and 18). Second row: The
associated “vascular model” ground-truth.

size 100 × 100 × 100 and each image is degraded by 7
levels of additive white Gaussian noise (70 images in
total). On all images, we added a Gaussian Random
Field background (the same for all images) to simulate
undesired, non-homogeneous, smooth, blob-like features
(see Fig. 12). We compared the results of RORPO 7 and
RORPO 13 with OOF, HDCS and FV. The parameters
of all these methods were independently optimized for
each method and each noise level on the first VascuSynth
image using a grid search. These parameters were then
used to process the 9 remaining images.

All these methods filter curvilinear structures and
return grey-level images. To compute the TPR and FPR,
we thresholded each result with the optimal threshold
(i.e. the one maximizing the MCC). Table 1 shows the
mean MCC of each best thresholded result and Table 2
shows their associated mean TPR and mean FPR. The
ROC curve of one of the 10 images is shown in Fig. 13.

We can see that RORPO generally performed better
at detecting curvilinear structures, as it detects far fewer
false positives than the other methods, while preserving
a high TPR. It is only with a high level of Gaussian noise
that OOF performs slighly better than RORPO. However,
this degree of artificial noise is not representative of
the noise in real images. The intensity feature results of
RORPO13 are slightly better than RORPO7 ones, but at
a cost of a computation time increased by almost 2.

6.2.2 Real data

An experimental comparison of the intensity feature
from RORPO versus FV was already conducted in [1]

Fig. 13. The ROC curves comparing the filtering of one of
the ten VascuSynth images with a noise level of σ = 10.

TABLE 1
Filtering performances on synthetic images, for various

levels of Gaussian white noise – MCC scores.

Noise (σ) 0 5 8 10 12 15 18

RORPO 7 0.869 0.873 0.844 0.835 0.829 0.771 0.743

RORPO 13 0.871 0.875 0.848 0.838 0.832 0.775 0.746

FV [3] 0.197 0.192 0.193 0.197 0.199 0.187 0.185

OOF [4] 0.825 0.829 0.818 0.813 0.811 0.772 0.755

HDCS [5] 0.798 0.807 0.792 0.777 0.780 0.725 0.700

using CTA images of coronary arteries of the Rotterdam
Repository [60]. However this database only provides
the skeleteon ground-truth of the coronaries, which did
not allow for a comparison as accurate as with a full
segmentation ground-truth. In this article, we use a
coronary CT scan image of size 507 × 476 × 469 voxels,
with its associated high-quality, manually defined full
segmentation ground-truth. This data was kindly pro-
vided by the HeartFlow company [61].

We performed the same experiment as on the synthetic
data, except that we did not use HDCS. Indeed, HDCS
is more a noise filtering method than a true curvilinear
feature detector. It is relevant to compare HDCS with
RORPO, OOF and Frangi on images containing only
curvilinear structures such as VascuSynth images; but
on a cardiac CT scan presenting other structures than
blood vessels, HDCS does not perform well enough.

The evaluation of each method was peformed in an
area of 70 pixels around the coronaries ground-truth to
avoid the other curvilinear structures like the ribs. The
quantitative results are shown in Table 3 and the volume
rendering of each result is presented in Fig. 14.

The Frangi filter gives the worst results as it de-
tects many more false positives. OOF and RORPO both
present good results but RORPO again performs the best
as it detects fewer false positives than OOF for a similar
TPR, which is confirmed by the better MCC value.

6.3 Evaluation of the directional feature
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TABLE 2
Filtering performances on synthetic images, for various levels of noise (Gaussian) – TPR / FPR scores.

Noise (σ) 0 5 8 10 12 15 18

RORPO 7 0.784 / 0.026 0.795 / 0.031 0.753 / 0.038 0.743 / 0.043 0.732 / 0.04 0.646 / 0.052 0.613 / 0.062

RORPO 13 0.790 / 0.029 0.798 / 0.030 0.756 / 0.035 0.744 / 0.040 0.739 / 0.045 0.657 / 0.057 0.622 / 0.066

FV [3] 0.682 / 8.766 0.713 / 9.981 0.567 / 6.577 0.613 / 7.238 0.624 / 7.238 0.580 / 7.092 0.641 / 8.763

OOF [4] 0.733 / 0.053 0.745 / 0.058 0.727 / 0.059 0.716 / 0.055 0.714 / 0.057 0.654 / 0.058 0.626 / 0.056

HDCS [5] 0.684 / 0.045 0.699 / 0.046 0.677 / 0.047 0.656 / 0.050 0.659 / 0.050 0.589 / 0.065 0.554 / 0.065

(a) (b) MCC = 0.541

(c) MCC = 0.529 (d) MCC = 0.405

Fig. 14. The coronary ground-truth (a) and the filtering
results with RORPO (b), OOF (c), FV (d) (volume render-
ing).

TABLE 3
Comparison of RORPO, OOF and FV results on a

coronary CT scan.

MCC TPR FPR direction error
in degrees:
mean (std)

RORPO 7 0.541 0.557 0.475 16.9 (13.3)

FV [3] 0.405 0.492 0.911 14.8 (13.4)

OOF [4] 0.529 0.582 0.594 21.4 (24.6)

To the best of our knowledge, the precision of the
directional feature of vesselness-like filters has not been
studied extensively. As far as we know, no publicly
available ground-truth for directions exists. As above,
we perform an evaluation on synthetic and real data.

6.3.1 Evaluation on synthetic data

Here we use again the same synthetic data based on
VascuSynth as for the intensity feature. Since the Vas-
cuSynth ground-truth consists of a union of cylinders of
various orientations and diameter, its local directions can
be computed easily.

We computed the directional feature of RORPO 7
and RORPO 13 as presented in Section 4.3. As HDCS
does not provide directional information; we compare
only with OOF and FV. The local direction of OOF
and FV is given by the eigenvector associated to the
lowest absolute eigenvalue at each pixel. For a fair
comparison, and to avoid errors due to false positives,
we only compare directions at pixels that are detected as
belonging to a curvilinear structure by all three of OOF,
FV and RORPO. The false positives were already taken
into account in the evaluation of the intensity feature.

The results are shown in Table 4. The best directions
are provided by RORPO 7 almost at all noise levels. We
note that the RORPO results are very stable with respect
to noise. Indeed, RORPO uses paths, which are semi
global structures. The RORPO directions integrate the
orientation information over the whole path which are,
by their non-locality and anisotropy, a more meaningful
neighborhood for the analysis of curvilinear structures
than the isotropic neighborhood used by Frangi and
OOF. We also note that augmenting the number of
sampling directions with RORPO 13 does not improve
the results. We experimentally observed that the best se-
lected scale is usually larger for RORPO 13 than RORPO
7, which induces worse results for RORPO 13. Indeed, a
longer path length implies a poorer local adaptation in
curvilinear structures

6.3.2 Evaluation on real data

We evaluated the directional feature on the CTA exam
provided by HeartFlow. The ground-truth direction is
given by reference to that of the centerline, also provided
by HeartFlow. With optimal parameters, we computed
the RORPO, OOF and FV directional features on this
exam and evaluated the angular error. As before, we
only compare directions for pixels detected as curvilinear
structures by the three methods. A selected example of
results is shown in Fig. 15 and quantitative results of the
comparison are shown in Table. 3.

We see that FV performs slightly better on the accuracy
of directions. However it is important to note that this
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TABLE 4
Direction error (in degrees) on synthetic images, for various levels of noise (Gaussian) – Mean values and standard

deviation into brackets.

Noise (σ) 0 5 8 10 12 15 18

RORPO 7 15.23 (13.83) 15.86 (13.67) 16.16 (14.15) 14.91 (13.40) 15.04 (13.35) 15.13 (13.55) 15.66 (13.66)

RORPO 13 20.86 (14.38) 22.75 (14.93) 21.90 (15.20) 19.86 (14.06) 19.77 (13.86) 19.98 (13.88) 21.05 (14.23)

FV [3] 16.26 (13.28) 16.44 (13.64) 16.95 (13.93) 17.64 (14.85) 17.93 (15.14) 18.16 (15.19) 19.91 (16.96)

OOF [4] 15.42 (13.51) 16.86 (15.64) 15.14 (13.37) 15.92 (14.21) 16.14 (14.54) 17.00 (15.31) 17.87 (15.89)

error is computed only for the voxels inside the segmen-
tation ground-truth. That means that all the false positive
directions detected are not taken into account in the
error. Indeed, the Frangi Vesselness provides about two
times more false directions. In contrast, RORPO provides
a slighly worse error (17◦ vs. 15◦) for the orientation of
blood vessels but also computes far fewer false positives
directions.

The directions provided by OOF are generally worse
than those given by Frangi and RORPO, mostly because
of errors on the contours of the vessels. It seems that
the OOF directions are very sensitive to the chosen
scale. In this experiment, the scales were optimized to
provide the best OOF intensity feature, which results
in directions errors on the contours of larger vessels.
Nonetheless, the OOF directions seem, qualitatively,
better for small vessels than the Frangi ones.

In real image processing applications, a directional
feature can usually be used at two different stages: either
to guide a segmentation method directly on the grey-
level image, or to guide a post processing pipeline on a
segmentation image. In the first case, RORPO provides
better results than FV as it computes directions with
a similar error but many fewer false positives, and so
resulting in generally more accurate directions. In the
second case, when the segmentation is already available,
the Frangi Vesselness can be used, but it was not the
problem we sought to address.

7 CONCLUSION

In this article, we have proposed RORPO, a new frame-
work for the characterization of curvilinear structures.
It consists of an intensity feature which measures the
presence of a curvilinear structure, and a directional
feature providing at each point the orientation of this
curvilinear structure. We have shown that RORPO is
a convincing alternative to derivative-based operators
which constituted, until now, the reference frameworks
proposing both intensity and directional features for
grey level images. Indeed, FV, OOF and HDCS rely on
local and isotropic eigen-analysis, whereas curvilinear
structures are intrinsically anisotropic. RORPO, by us-
ing path operators, considers non-local and anisotropic
neighborhoods which are well adapted to curvilinear
structures.

(a)

(b)

(c)

Fig. 15. Illustration of the RORPO (a), FV (b) and OOF
(c), directional feature on the coronary CT scan provided
by the HeartFlow company [61].

Experimental quantitative and qualitative evaluations
show that both of our features yield state-of-the-art
results for the analysis of curvilinear structures. The
intensity feature is indeed reliable, as it detects many
fewer false positives than other state of the art methods,
and the directional feature is more robust as it relies on
non-local SE.
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As a low level operator for the characterization of
curvilinear structures, RORPO can be used as prior
information in segmentation frameworks in the same
way as the Hessian [62]. As future work, we plan on em-
bedding RORPO features in a learning-based framework
for segmentation, and we are working on accelerating
the computations.

RESOURCES

Free, open-source C++ implementation, test data and
documentation is available at http://path-openings.
github.io/RORPO.
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(a) 5-orientation tubes

(b) 4-orientation tubes pattern 1

(c) 4-orientation tubes, pattern 2

Fig. 16. The red tube lies within the border between 5 (a)
or 4 (b-c) cones resulting in a limit case.

APPENDIX A
LIMIT CASES

In Sec. 4, we propose a method to compute both in-
tensity and directional features for regular curvilinear
structures, i.e. the one detected in 1, 2 or 3 path opening
orientations. Here we propose a simple post processing
procedure to deal with the 4 and 5-orientations tubes.

Intensity feature

Cones need to overlap in order to detect some tortuous
structures. Curvilinear structures lying entirely within
the border between more than two cones may be de-
tected either 4 times or 5 times. We propose a three-step
post processing approach to deal with them.

Detecting the 4- and 5-orientation tubes

The 5-orientation tubes lie in one cone Ce⋆
plus the 4

cones Cd⋆
(an example is shown in Fig. 16.(a)) so the

intersection between the 4 cones Cd⋆
, denoted Γ5, detects

them:
Γ5(I) = min

i∈J1,4K

{

A
Cdi

L (I)
}

(13)

There are 2 pattern of 4-orientation tubes: tubes lying in
2 cones Ce⋆

and 2 cones of Cd⋆
(an example is shown in

Fig. 16.(b)) and tubes lying in 3 cones of Ce⋆
and 1 cone

of Cd⋆
. The union of every combinations Oi of such 4

cones, denoted Γ4, detects the 4-orientations tubes:

Γ4(I) = max
i∈J1,10K

min
c∈Oi

{

Ac
L(I)

}

(14)

Removal of remaining non-1D thin structures

Γ4 and Γ5 are computed by intersection of 4 path
opening responses, which means that both may contain
non-curvilinear structures. We define ∆i as the first
ranked path opening orientation that does not contain
i-orientation tubes. In particular, we have ∆4(I) = γ5

L(I)
and ∆5(I) = γ6

L(I). ∆i(I) contains more non-curvilinear
structures than those present in Γi(I). Consequently, the

(a) e
′

1
(b) e

′

2
(c) d

′

1
(d) d

′

2

Fig. 17. 2D orientations. The blue arrows represent the
adjacency relation.

geodilation [27, chapter 1], ρ(∆i(I), γ
4
L(I)), of ∆i in γ4

L(I)
is used instead of ∆i. Finally, the removal of remaining
non-curvilinear structures is performed as follows:

LCi(I) = Γi(I)−min
{

Γi(I), ρ(∆i(I), γ
4
L(I))

}

(15)

Addition of limit tubes to RORPO result

The post processed RORPO result is then obtained from
the standard RORPO (Eq. (5)), by adding the extracted
limit cases (Eq. (15)):

Φpost(I) = max
{

Φ(I), LC4(I), LC5(I)
}

(16)

More details and justifications about these steps can be
found in [2].

Directional feature

To deal with 4 and 5-orientations tubes, we need to find
the 4 or 5 path opening orientations involved in their
detection. Then, we can apply the standard procedure,
i.e. compute the mean of the orientations of interest. For-
tunately, the 4 and 5 path opening orientations involved
in each limit case have already been computed while
handling the limit cases as shown above. Each set of
intersection gives us one group of limit cases that we
can then label with the correct direction, i.e. the mean
of all the path openings orientations involved in this
intersection.

APPENDIX B
THE 2D CASE

In this article, we chose to present our operator in 3D.
Nevertheless, a 2D version is simple. The few changes
required are presented here.

2D Orientations

In 2D, space is discretized in 4 orientations. Two main
orientations corresponding to the vectors of the orthog-
onal basis {0, 1}, {1, 0} denoted e′1 and e2’, and two
diagonals corresponding to {1, 1} and {−1, 1} denoted
d′1 and d′2. These orientations are illustrated in Fig. 17.

2D RORPO operator

The only necessary changes is the value of it. In 2D,
we only have to distinguish 1D thin structures (line-line)
from isotropic (blob-like) structures. Blob structures are
detected in all the 2D orientations. Curvilinear structures
cannot be detected in more than 3 orientations. It is then
trivial to set it = 3 in the 2D case. The reader should
note that this is only a coincidence that the threshold
value it is the same for the 2D and 3D case.


	Introduction
	Related blackwork: blackcurvilinear structure filtering
	Linear approaches
	Non-linear approaches
	SE-based approaches
	Connectivity-based approaches
	Path-based approaches


	Proposed framework
	General strategy
	Path operators
	Paths
	Binary and grey-level path opening
	Orientation-space sampling


	RORPO: Ranking the orientation responses of path operators
	 Methodology
	Filtering blackcurvilinear structures
	Direction estimation of blackcurvilinear structures
	Multiscale length analysis

	Algorithmic considerations
	Simplified robust path opening
	Parameters
	Path length
	Robustness parameter
	Orientations sampling
	Angular cones

	Computational cost

	Experiments and results
	Evaluation framework
	Compared methods
	Intensity feature evaluation criteria
	Direction feature evaluation criteria

	Evaluation of the intensity features
	Synthetic data
	Real data

	Evaluation of the directional feature
	Evaluation on synthetic data
	Evaluation on real data


	Conclusion
	References
	Biographies
	Odyssée Merveille
	Hugues Talbot
	Laurent Najman
	Nicolas Passat

	Appendix A: Limit cases
	Appendix B: The 2D Case

