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Abstract

A new method is presented for the visualization of hierarchical in-
formation, such as directory structures and organization structures.
Cushion treemaps inherit the elegance of standard treemaps: com-
pact, space-filling displays of hierarchical information, based on re-
cursive subdivision of a rectangular image space. Intuitive shading
is used to provide insight in the hierarchical structure. During the
subdivision ridges are added per rectangle, which are rendered with
a simple shading model. The result is a surface that consists of re-
cursive cushions. The method is efficient, effective, easy to use and
implement, and has a wide applicability.

CR Categories and Subject Descriptors: H.5.2 [Information In-
terfaces and Presentation] - User Interfaces; I.3.6 [Computer Graph-
ics]: Methodology and Techniques - Interaction techniques; I.3.8
[Computer Graphics]: Applications.

Additional Keywords: Information Visualization, Tree Visualiza-
tion, Treemaps.

1 INTRODUCTION

Hierarchical structures of information are ubiquitous: family trees,
directory structures, organization structures, catalogues, computer
programs, etcetera. Small hierarchical structures are very effective
to locate information, but the content and organization of large struc-
tures is much harder to grasp.

We present a new visualization method for such large hierarchi-
cal structures: Cushion Treemaps. The method is based on tree-
maps, developed by Shneiderman and Johnson [11, 8]. Treemaps
are efficient and compact displays, which are particularly effective
to show the size of the final elements in the structure. Cushion Tree-
maps provide shading as a strong extra cue to emphasize the hierar-
chical structure. For a quick impression, figure 3 and 4 show tree-
maps, figure 7 and 8 show the corresponding cushion treemaps.

In section 2 we discuss existing methods to visualize hierarchi-
cal structures. The new method is presented in section 3. The em-
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bedding of the method in an interactive system for tree visualization
is described in section 4. Finally, we discuss extensions and alter-
natives in section 5, and we summarize the results in section 6.

2 BACKGROUND

Many methods exist to browse through and to display hierarchical
information structures, or, for short, trees. File browsers are the best
known example. Usually a listing of the files and directories is used,
where the levels in the hierarchy are shown by means of indentation.
The number of files and directories that can be shown simultane-
ously is limited, which is no problem if one knows what to search
for. However, if we want to get an overview, or want to answer a
more global question, such as: ”Why is my disk full?”, scrolling,
and opening and closing of subdirectories have to be used inten-
sively. During this process it is hard to form a mental image of the
overall structure [3].

a16

e1         f2                     g2    h4       i4

b3                   c3           d10

j1       k1    l1  m1  n1  o1

Figure 1: Tree diagram

Many techniques have been proposed to show such structures
more effectively. An important category are node and link diagrams
(fig. 1). Elements are shown as nodes, relations are shown as links
from parent to child nodes. Sophisticated techniques have been pre-
sented to improve the efficiency and aesthetic qualities of such di-
agrams, both in 2D and in 3D [9, 7, 1, 2, 10]. Such diagrams are
very effective for small trees, but usually fall short when more than
a couple of hundred elements have to be visualized simultaneously.
The main reason for this limitation is simply that node and link di-
agrams use the display space inefficiently: Most of the pixels are
used as background.
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Figure 2: Treemap

Treemaps [11, 8] were developed to remedy this problem. The full
display space is used to visualize the contents of the tree. Here we



Figure 3: Treemap of file system

present an overview of the concept, an in depth treatment is given
in the original references. Figure 2 shows an example.

Each node (as shown in the tree diagram) has a name (a letter)
and an associated size (a number). The size of leaves may represent
for instance the size of individual files, the size of non-leave nodes
is the sum of the sizes of its children. The treemap is constructed
via recursive subdivision of the initial rectangle. The size of each
sub-rectangle is proportional to the size of the node. The direction
of subdivision alternates per level: first horizontally, next vertically,
etcetera. As a result, the initial rectangle is partitioned into smaller
rectangles, such that the size of each rectangle reflects the size of
the leaf. The structure of the tree is also reflected in the treemap, as
a result of its construction. Color and annotation can be used to give
extra information about the leaves.

Treemaps are very effective when size is the most important fea-
ture to be displayed. Figure 3 shows an overview of a file system:
1400 files are shown and one can effortlessly determine which are
the largest ones. Labels are not shown here, but can be shown inter-
actively by pointing at the areas of interest.

However, treemaps have limitations [4]. The problem addressed
here is that treemaps often fall short to visualize the structure of the
tree. The worst case is a balanced tree, where each parent has the
same number of children and each leaf has the same size. The tree-
map degenerates here into a regular grid. Indeed, leaves that are
close in the tree are also close on the screen, but the reverse is not al-
ways true. As an example, figure 4 shows an (artificial) organization
chart, modeled after the structure of our university. The university
has seven faculties, subdivided into departments, which in turn are
divided into sections. Each section is divided into units. Each unit
contains four different types of staff members (full, associate, and
assistant professor, PhD-student). The final 3060 rectangles denote
individual employees. Questions such as ”What is the largest sec-
tion?” or ”Is the division into units balanced?” are hard to answer
from such an image.

Nested treemaps [8] are a partial remedy. During the subdivi-
sion process instead of the initial rectangle a slightly smaller rectan-
gle is used, such that each group of siblings is enclosed by a margin.
However, this consumes screen space and the visual interpretation,
especially for deeply nested trees, requires effort from the viewer.
The variation of properties of the surrounding lines is another op-
tion. However, the number of steps in linewidth or intensity that
can be discerned without effort is small, and also here the user is re-
quired to trace lines in a maze-like image. Coloring the rectangles
would not work either. Color does not provide a natural hierarchi-
cal structure, and furthermore, we want to use color to show other

Figure 4: Treemap of organization

attributes of the elements.
One alternative has not been exploited yet: The use of shading to

visualize the structure. In the remainder of this paper we will show
how this can be done.

3 CUSHION TREEMAPS

3.1 Method
How can we use shading to show the tree structure? The human vi-
sual system is trained to interpret variations in shade effortlessly as
illuminated surfaces [6]. Hence, we can answer the question by con-
structing a surface which shape encodes the tree structure.

Figure 5: Binary subdivision of interval with bumps added

Figure 6: Binary subdivision of interval, viewed from above

We introduce our solution with a simple one-dimensional exam-
ple: binary subdivision of an interval. First, we subdivide the inter-
val and add a bump to each of the two sub-intervals. Next, we repeat
this step recursively. To each new sub-interval we add a bump again,
with the same shape but half of the size of the previous one. If we
do this for three levels, the results are eight segments and the top-
most curve in figure 5. If we interpret this curve as a side view of a



bent strip, and render it as viewed from above, the bumps transform
into a sequence of ridges (fig. 6). The separate segments are clearly
visible, each is bounded by the sharp discontinuities in the shading.
Furthermore, also the binary tree structure is clearly visible, because
the depth of the valleys between the segments is proportional to the
distance between segments in the tree.

We can generalize this idea to the two-dimensional case. Sup-
pose that the x-axis is horizontal, the y-axis is vertical, and that the
z-axis points towards the viewer. If we subdivide the rectangle in
the x-direction, we add ridges aligned with the y-direction, and vice
versa for subdivision in the y-direction. As a result, cushions are
generated: The summation of orthogonal ridges gives a cushion-
like shape. Numerically, the simplest bump that can be used is a
parabola, hence for each rectangle of the treemap we use a segment
of a parabolic surface. The height z of such a surface is given by

z(x, y) = ax2 + by2 + cx + dy + e. (1)

Initially, the surface is flat, all coefficients are zero. Consider now a
new rectangle which results from subdivision along the x-axis. The
ridge 1z we add is:

1z(x, y) =
4h

x2 − x1
(x − x1)(x2 − x), (2)

where x1 and x2 are the bounds of the rectangle in the x-direction.
The height of this ridge is 0 for x = x1 and x = x2, and equal to
(x2 − x1)h in the center (x1 + x2)/2. The parameter h denotes the
height proportional to the width, hence it controls only the shape of
the ridge. The ridge 1z in (2) does not depend on y, the bump has
the same shape at each cross section y = C . Subdivision along the
y-axis is done similarly, here the ridge 1z that is added is:

1z(x, y) =
4h

y2 − y1
(y − y1)(y2 − y). (3)

The same value for h for each level of the tree gives a self-similar
surface. A decreasing value for h is useful to emphasize the global
structure of the tree. A convenient solution is to use:

h i = f i h (4)

where h i is the actual value of h at level i , and f a scale factor be-
tween 0 and 1.

Figure 7: Cushion treemap of file system, h = 0.5, f = 1

h = 0.5, f = 1

h = 0.5, f = 0.75

h = 0.5, f = 0.5

Figure 8: Cushion treemaps of organization



For the shading of the geometry a simple model, i.e. diffuse re-
flection, suffices [5]. The normal n follows from:

n = [1, 0, ∂z/∂x] × [0, 1, ∂z/∂y]
= [−∂z/∂x, −∂z/∂y, 1]
= [−(2ax + c), −(2by + d), 1].

(5)

The intensity I is then given by:

I = Ia + Is max(0,
n·l

|n||l|
) (6)

where Ia is the intensity of ambient light, Is is the intensity of a di-
rectional light source, and l is a vector that points towards this light
source.

Results of this method are shown in figure 7 and figure 8: a cush-
ion treemap of the file system, and three cushion treemaps of the or-
ganization, with different values for the scale factor f . All images
have a resolution of 640×480 pixels. If we compare these with the
treemap versions, it is clear that the shading provides a strong cue
for the hierarchical structure: substructures can be identified effort-
lessly. With the scale factor f a continuous trade off between the
visualization of global and detailed information can be made.

3.2 Algorithm
With the ingredients supplied in the previous section, the complete
algorithm can be derived. We present it here in full detail, not be-
cause of its complexity, but to show its simplicity. First, we define
a few data types. The directions X and Y are encoded via array-
indexing to enable a compact algorithm. The surface is described
by its linear and quadratic coefficients for the X- and Y-direction.
For a Surface s the coefficients a, b, c, and d of equation (1) cor-
respond to s[X,2], s[Y,2], s[X,1], and s[Y,1] respectively. The con-
stant coefficient e can be ignored here, because it is not used in the
shading calculation.

Each tree record has an associated size, and a pointer to its par-
ent, to its first child, and to the next sibling.

type Dir = (X,Y);
Bound = (Min, Max);
Degree = (1, 2);
Rectangle = array[Dir, Bound] of real;
Surface = array[Dir, Degree] of real;
TreeRecord = record

real size;
Tree parent, child, next;

end;
Tree = pointer to TreeRecord;

The procedure CTM generates the cushion treemap recursively, fol-
lowing the same lines as the original treemap algorithm. The main
extension is that during the generation of the rectangles the surface
s is constructed. The surface is bent in the direction d. If the tree
is a leaf, the cushion is rendered, else the direction is changed and
its children are visited. The height h is updated according to equa-
tion (4).

procedure CTM(Tree t; Rectangle r; real h, f; Dir d; Surface s)
var Tree tc; real w;
begin

if t.parent 6= nil then
AddRidge(r[d, Min], r[d, Max], h, s[d,1], s[d,2]);

if t.child = nil then RenderCushion(r, s)
else
begin

if d = X then d := Y else d := X;

w := (r[d, Max] – r[d, Min])/t.size;
tc := t.child;
while tc 6= nil do
begin

r[d, Max] := r[d, Min] + w*tc.size;
CTM(tc, r, h*f, f, d, s);
r[d, Min] := r[d, Max];
tc := tc.next

end
end

endfCTMg;

The main input for CTM consists of the root of the tree to be ren-
dered, the initial rectangle to be used, and settings for h and f . A
simple driver routine:

procedure MakeCushionTreeMap(Tree root; integer width, height)
var Rectangle r; Surface s;
begin

r[X, Min] := 0; r[X, Max] := width;
r[Y, Min] := 0; r[Y, Max] := height;
s[X, 1] := 0; s[X, 2] := 0;
s[Y, 1] := 0; s[Y, 2] := 0;
CTM(root, r, 0.5, 0.75, X, s)

end; fMakeCushionTreeMapg

The procedure AddRidge takes care of the update of the coefficients
of the parabolic surface according to equation (2) and (3):

procedure AddRidge(real x1, x2, h; var real s1, s2)
begin

s1 := s1 + 4*h*(x2+x1)/(x2–x1);
s2 := s2 – 4*h/(x2–x1)

end;fAddRidgeg

If in CTM a leaf node has to be rendered, RenderCushion is called.
The rectangle, defined in continuous space, is scan converted via
sampling the centers of the pixels that fall within the rectangle. The
intensity of a pixel is calculated according to equation (5) and (6).
A straightforward implementation is given below. For clarity, no
optimization is applied here. Early outs (if the rectangle does not
cover the center of any pixel), a priori calculation of common sub-
expressions, removal of constant sub-expressions out of the loops
and incremental evaluation of the quadratic expression can easily
be added. Other extensions are the rendering of lines that separate
the rectangles and the use of color to visualize some property of the
leaf. The fixed settings used here for the light source give good re-
sults. The frontal light is slightly offset to the right and to above:
l = [1, 2, 10].

procedure RenderCushion(Rectangle r; Surface s)
const Ia = 40;

Is = 215;
Lx = 0.09759; Ly = 0.19518; Lz = 0.9759;

var integer ix, iy; real nx, ny, cosa;
begin

for iy := trunc(r[Y, Min]+0.5) to trunc(r[Y, Max]–0.5) do
for ix := trunc(r[X, Min]+0.5) to trunc(r[X, Max]–0.5) do
begin

nx := –(2*s[X,2]*(ix+0.5) + s[X,1]);
ny := –(2*s[Y,2]*(iy+0.5) + s[Y,1]);
cosa := (nx*Lx + ny*Ly + Lz)/ sqrt(nx*nx + ny*ny + 1.0);
SetPixel(ix, iy, Ia + max(0, Is*cosa))

end
end;fRenderCushiong

This concludes the presentation of the complete algorithm. It shows
that cushion treemaps can be easily implemented in a compact way.



4 INTERACTION

Presentation of hierarchical structures is only one aspect, for effec-
tive visualization of such structures interaction is equally important.
We have embedded cushion treemaps in SEQUOIAVIEW, our inter-
active system for the analysis and visualization of large tree struc-
tures. The cushion treemaps are generated with a slightly extended
version of the previous algorithm. This takes less than a second on
an SGI O2, even for larger images and trees. Upon each interac-
tion the image is copied to the screen, annotation is overlaid, se-
lected rectangles are colored by superimposing transparent rectan-
gles. Various coloring options are available, to show the size, the
level, and other attributes of the leaves. Regeneration of the image
is done only if the tree or one of the image parameters change.
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Figure 9: Cushion treemap trie

Many options are provided for navigation and selection. The
user can click on rectangles, upon which the properties of the leaf
are displayed in a separate window. The current node is highlighted
with a red outline. The arrow keys can be used to select siblings
(left, right), the parent (up) and the first child (down). The selected
elements are continuously updated and highlighted, which enables
fast and accurate navigation. Elements within a user-defined size
range can be selected, and elements can be selected by matching
their name with regular expressions. The user can zoom in on sub-
trees, and zoom out again.

SEQUOIAVIEW has been used now for various applications: file

systems, organization charts, lexical parse trees, and software struc-
tures. The cushion treemaps, supported by multiple options for nav-
igation and selection, turned out to be highly effective.

Figure 9 shows an example of an interactive session: inspection
of a trie. A trie is a data structure that stores elements in a tree, where
the path from the root to the leaf is described by the key. As an ex-
ample: A record with the key hello is stored in /h/e/l/l/o/hello, us-
ing directory notation. A trie is very useful to store information us-
ing words or strings as keys; the retrieval time is proportional to the
length of the word and the density of the trie.

Here we zoomed in on a subset of a trie with Dutch words. All
2200 words that start with the letter p and that are up to eight let-
ters long are shown. Within this trie, words that contain the letter
o are selected and highlighted with color. The color indicates the
level in the trie, which corresponds here to the word length: from
blue (two letters) to red (eight letters). Some representative words
are labeled. From the image we see for instance that the letters a and
o occur most often as the second letter, because the words that start
with pa and po form the largest horizontal bands. Also, we see that
pro is an often occurring prefix, because those words form a large
block. Furthermore we see, not surprisingly, that the earlier the let-
ter o occurs in a word, the stronger the clustering in the trie with
other words that contain an o. Words that have an o as second letter
form a single band, while words like patio are isolated.

5 DISCUSSION

Both simpler and more complex variants of the cushion treemap pre-
sented here are conceivable. We consider both here to show that the
version presented is optimal, in the sense that these variants are no
improvements.

We have chosen to use a geometric model, which is shown as a
shaded surface viewed from above. We could also have used a di-
rect, 2D model for the shading. This could lead to a more efficient
algorithm, without the normalization of the normal per pixel. For
instance, the value of z(x, y) as defined before could directly de-
note an intensity. However, such a simple model does not work sat-
isfactorily. The result is that each rectangle is filled with an ellipse-
shaped spot. More sophisticated 2D models could work, but their
control is cumbersome, when compared to the intuitive model with
two parameters (h, f ) presented here. The use of a geometrically
based shading leads automatically to an image that is easy to inter-
pret.

Figure 10: Cushion treemap file system, oblique view

Another option is to view the surface from an oblique angle (figure
10). This leads to odd pictures. They show clearly that the cushion
surface is not continuous: If two siblings have different numbers of



children, then the surface makes a jump when the line between fam-
ilies is crossed. When viewed from above, this does not cause a vi-
sual disturbance.

This artifact can be removed if not ridges, but bumps are used
for the offset per rectangle. Only the interior of the rectangle is off-
set, the boundaries remain in place. Figure 11 shows a result. Cubic
Bezier patches were used to represent the surface, upon each subdi-
vision the four central control points were offset in the z-direction.
The surface is continuous now, but thin rectangles still emerge as
large, narrow ridges. Also, details in the structure are smoothed out.

Figure 11: Continuous cushion treemap file system

In general however, 3D views do not pay off. The 3D view is
more expensive to generate, the absolute height direction does not
provide a direct cue on the structure, and the only view where all
rectangles can be viewed simultaneously is the top view.

Rather, we will spend effort in other areas. Some open questions
are:

– How can anti-aliasing be provided, to handle rectangles that fall
between pixels?

– How can we effectively present multi-dimensional attributes per
leaf?

– How can graph-information (e.g. symbolic links in file systems)
be included?

– Does the combination of this representation with other types of
presentations pay off?

– Can the presentation of size be improved, such that perceptual
characteristics are taken into account?

Summarizing, still much work has to be done in the area of tree vi-
sualization.

6 CONCLUSIONS

We have presented a new method to visualize hierarchical informa-
tion. Cushion treemaps inherit the elegance of standard treemaps,
and add intuitive shading to provide insight in the hierarchical struc-
ture. Their features can be summarized as follows:

– efficient: generation of an image typically takes less than a sec-
ond;

– effective: the structure is visualized much more effective com-
pared with standard treemaps. This is obvious if we compare for
instance figure 4 with figure 8;

– compact: the display area is used very efficiently, more than 3000
leaves can be displayed easily in an image with 640×480 reso-
lution. As a result, no scrolling or opening/closing of nodes is
needed to view the whole structure;

– easy to implement: the complete algorithm fits on one page;

– easy to control: the appearance can be controlled with a few in-
tuitive parameters, for which default values often suffice.

Finally, cushion treemaps address one of the most important top-
ics in visualization. Their wide applicability is probably what has
struck us most during our research.
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