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1959 

Inverse scattering method for the already found integrable nonlinear evolution equation 

is presented. A new integrable nonlinear evolution equation 

r, + (1-r) 'rxxx=O, 

which can be transformed into the above-mentioned equation, is shown to have a singular 
spiky soliton solution (cusp soliton). 

§ l. Introduction 

Very recently, we have found a new series of integrable nonlinear evolution 
eq ua tions.n These nonlinear evolution equations have many interesting features 

mathematically and physically. 

The nonlinear Schrodinger type equation, 

was solved by the inverse scattering method. 21 

As for the K-dv type equation, 

it was applied to a physical problem concerning the determination of the shape of 

a one-dimensional droplet in a gravitational field. 31 Also, it has been shown that 
the equation which describes nonlinear transverse vibrations of elastic beams under 
tension is reduced to this K-dv type equation. 41 

In this paper, we shall study an integrable nonlinear evolution equation 

q,-2(1/Vl+q)rr>:=() (1·1) 

under the boundary condition 
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1960 1\1. 1Vadati, Y. H. Ichilwwa and T. Shimizu 

q (x, t) ->0 as [x[~oo. (1· 2) 

The inverse scattering method is applied to Eq. (1·1) according to the same 
procedure as in Ref. 2). 

The outline of the present paper is the following. In § 2, we shall introduce 
fundamental equations of the inverse scattering problem. Using the results, we 
shall derive the Gelfand-Levitan equation for our system in § 3. In § 4, we shall 
obtain one-soliton solution from the Gelfand-Levitan equation. The last section is 
devoted to discussion. There, we find that a new integrable nonlinear evolution 
equation, 

rt + (1- r) 3r x.u = 0 , (1 · 3) 

has a singular spiky soliton solution (cusp soliton). Equations (1·1) and (1· 3) 
are related by a transformation 

(1 + q) -u2 = 1-r. (1· 4) 

We shall also discuss the solutions derived by the inverse scattering method under 
the nonvanishing boundary condition. 

§ 2. Scattering problem 

We consider the following eigenvalue problem: 

(2 ·1) 

The time dependence of the eigenfunctions is chosen to be 

(2· 2) 

By assuming f}Jcjf}t = 0, Eq. (1) arises as a compatibility condition of Eqs. (2 ·1) 
and (2 · 2). 

We introduce the Jost functions by 

cf;(}.,x)->eu.v as x~oo, 

and the scattering coefficients by 

¢(A, x) =a(}.) cf; ( -l, x) + b (A) 'j; (A, x). 

(2 · 3a) 

(2·3b) 

(2. 4) 

We investigate the analytic properties of a (A) and the Jost functions for 
large[}.[. From Eqs. (2·4) and (2·3), we have 

log a= s_oow (J dx' (2·5) 
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Cusp Soliton of a New Integrable Nonlinear Evolution Equation 1961 

where 

Define 

f= if;eii .. r. 

Then, Eq. (2 ·1) becomes 

Substitution of Eq. (2 · 6) with Eq. (2 · 7) into Eq. (2 · 8) yields 

11x+G'-2iA!J+A'q=0. 

We expand G in power series of A: 

(2· 6) 

(2·7) 

(2 ·8) 

(2·9) 

(2 ·10) 

Inserting this into Eq. (2 · 9) and equating the terms of the same powers of A, we 
obtain 

n+l 

Gnx+ L; GzO'n-·l-2Gn+1-0n,-2q=O. 
z~-1 

The first two conserved densities which vanish for q = 0 are 

()_1=1-.Jf+q, 

110 = _l_ _!}____log (1+q). 
4 ax 

From Eqs. (2 · 5) and (2 ·10), we see that 

where 

Using Eqs. (2 · 6) '""-' (2 · 8), we have 

where 

(2 ·11) 

(2·12a) 

(2·12b) 

(2 ·13) 

(2·14) 

(2 ·15) 

(2·16) 
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1962 111[. TVadati, Y. I-I. Ichikawa and T. Shimizu 

Similar analysis 1s possible for <jJ (A.,x). Summing up the results, as !x!~oo, we 

have 

(2·17a) 

rpeucx-q = (1 + q) -t;4 + 0 ( +)' (2·17b) 

¢e-iAC:r:+e,) = (1 + q) -1!4 + 0 ( ~), (2·17c) 

where 

(2 ·18) 

§ 3. Gelfand-Levitan equation 

In this section we shall consider the inverse problem for a system (2 ·l). We 
assume that q is on compact support. Then, a (A) e-ile, rpeiH:r:-q and <jJe-iH:r:+e,) 

are entire functions of A. 
From Eq. (2 · 4), we consider the integral: 

f dA.' rpj_J..'_)_!_i!.:_C:r~e-) 

Jc A.'- A a (A.') e-ws 

= f jl__~~- ¢ (_A.') eil'C:r:+e.J + f _ dA.~ b_(A.'l¢ (A') e"'Cx+e,). 
Jc A.' -A Jc A.' -A a(A.') 

(3·1) 

Here an integral path C is the contour in the complex A plane, starting from 

A= - oo + iO+, passing over all zeros of a (A), and ending at A= + oo + iO+ .. Simi­

larly, we define C to be the contour starting from A=- oo +iO-, passing under all 

zeros of a (-A.), and ending at A= + oo + iO-. As the contour C becomes far away, 

then from Eqs. (2 ·l7a) and (2 ·17b), we have 

l.h.s. of Eq. (3 ·1) = -in (1 + q) - 114• 

From Eq. (2 ·17c), similarly, we have 

r.h.s. of Eq. (3 ·l) 

= -2in¢( -A.) eocx+e,J 

+ f _:!_A.~~¢ (_A.') ei''Cx+e,) + f _dA' __ b_ (J..'j_¢ (A.') e"'Cx+e,) 
Ja .1 1 -A Jo }/-A. a(A') 

= - 2in¢ (-A) eilC.v+e,J +in (1 + q) - 114 

+ f _!iA' b_(J..'_l¢ (A.;) eH'(x+e,). 
Jc A1 - A a (.1 1 ) 
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Cusp Soliton of a New Integrable Nonlinear Evolution Equation 1963 

Therefore, we obtain 

vVe introduce a kernel K by 

(3· 3) 

The kernel K is assumed to satisfy 

lim K (x, s) = 0. (3 ·4) 
s-)co 

Substitution of Eq. (3 · 3) into Eq. (2 ·1) gives 

1 + q = [1- K (.r, x)] - 1• (3. 5) 

From Eqs. (3 · 2) and (3 · 3), we have 

(1+q)-1f4_1+ s=iJ..K(x s)ei!,(x-s)ds+ 1 l _d).' b(A')e2iA'(x+8,) 
.~ ' 2rci Jc ).'-). a (A') 

+ 1 . f -~-A'_ b(A/ s=iA' K(x, s) e0 '<S+x+zs.)ds=0. (3·6) 
2rcz Jc A -). a (A ) x 

Multiplying Eq. (3 · 6) by (l/2n) ewy-,rl jiA and integrating with respect to A from 
- oo to oo, we arnve at the Gelfand-Levitan equation: 

K(x, y) -F(x+ y)- I=K(x, s)F' (s+ y)ds=O 

for x::;;:y, Here F(z) and F' (z) are defined by 

1 i b(A) eiA(Z-f28,(X)) 
F(z) =- - - -dl 

2rc c a (A) i). ' 

F' (z) = 8_1[ =_:!.- f !J_(A) eiA(z+Zt,(x))d).. 
az 2rc Jc a (A) 

(3·7) 

(3 · 8a) 

(3·8b) 

The time-dependences of the scattering coefficients are determined from Eq. (2, 2). 
The result is 

a (}c, t) =a (A, 0) , 

b (A, t) = b (A, 0) exp (8iA 3t). 

(3. 9) 

(3 ·10) 

The zeros of a (A) in the upper half A-plane are the bound state eigenvalues, 
which we shall designate by Ak (k = 1, 2, .. ·, N). When all the zeros of a (l.) are 
simple, F(z) can be expressed as 
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1964 "~1. ~Vadati, Y. 1-I. Ichilwwa and T. Shimizu 

(3 ·11) 

where the time dependences of ck (t) and p (}., t) are 

p (}-, t) = p (}., 0) eswt. (3 ·12b) 

The set of Eqs. (3 · 5), (3 · 7), (3 ·11) and (3 ·12) determines a sought function 
q (x, t). Given the scattering data {p (}., 0), A real; lk, ck (0), k = 1, 2, ···, N}, we 
construct F (z, t) by Eq. (3 ·11) with Eq. (3 ·12), then we solve Eqs: (3 · 7) for 
K (x, y; t), and by Eq. (3 · 5) we can obtain q (x, t). The function c+ (x) is 
determined from Eq. (2 ·18). 

§ 4. One-soliton solution 

We shall analyze a one-soliton solution. For the purpose, we restrict our­
selves to the case that a(}.) has only one simple zero in the upper half A-plane 
and p (}., 0) = 0 for real ),. Then Eqs. (3 · 8) become 

(4·1a) 

F' (z) = cl (t) eu,czi-2E,J. (4·1b) 

Substitution of Eqs. ( 4 ·1) into the Gelfand-Levitan equation (3 · 7) yields 

We put i},1 = fC ( <O) and from Eq. (3 ·12a), we have 

C1 (t) = C-8~"t-2/Cx0 
2i }q ' 

where the constant x 0 is defined by 

Combining Eq. (4·2) with Eqs. (4·3) and (3·5), we obtain 

1 + q (x, t) =tanh - 4 [tc (x- .:r0 - 4tc't + c-c)]. 

Differentiating Eq. (2 ·18) and using Eq. ( 4 · 5), we have 

(4· 2) 

(4· 3) 

(4·4) 

(4· 5) 
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Cusp Soliton of a New Integrable Nonlinear Evolution Equation 1965 

(4· 6) 

From Eqs. (4·5), (4·6) and (2·18), we find that ::;,_(x) satisfies a relation 

:::+ = 2_{1 + tanh[tc (x- x 0 -4tc2t + ::;+) ]} . 
/C 

(4·7) 

We observe that the one-soliton solution cannot be expressed in a closed form, 

however Eqs. (4·5) and (4·7) describe it completely. 

§ 5. Discussion 

First, we shall examme the one-soliton solution of Eq. (1· 3). From Eqs. 

(1·4) and (4·5), we obtain 

r(x, t) =sech2 [tc(x-x0 -4tc2t+:::+)]. (5·1) 

Except for the presence of a function ::; (x), Eq. (5 ·1) is in a similar form to the 

one-soliton solution of the K-dv equation. Since ::;+ is given by Eq. (4·7), we 

can evaluate r(x, t) numerically. The function ::;+ (u) (u=x-4tc2t) and the one­

soliton sol uti on r (u) for tc = -1/2 are plotted in Figs. 1 and 2, respectively. 

As shown in Fig. 2, the one-soliton solution of Eq. (1· 3) has a singularity at the 

peak of the soliton. Therefore, we shall call it a singular spiky soliton (cusp 

soliton). The (regular) spiky envelope soliton has been first obtained in the study 

of circular polarized Alfven wave. sl 

Second, we consider the inverse scattering scheme under the nonvanishing 

boundary condition 

(5. 2) 

instead of Eq. (1· 2). By the same analysis as given in the previous sections, we 

obtain the following results: 

where 

1 + q(x, t) = (1 + q0) tanh-4 [tc( h+(]~(x-x0) -4tc2t+ ::;+) J, 

8+ = 2_{1 +tanh [tc ( Vl + qo (x- Xo) -4tc2t + 8+)], 
/C 

(5. 3) 

(5. 4) 

(5·5) 

We can obtain these results more directly. Equation (1·1) is invariant under the 

following scale transformations: 
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1966 Jf. 11'adati, Y. 1 f. lchilwwa and T. Shimizu 

2.0 u 

0 

0.5 -------------------------

1.0 ---------~--=-=--:-=--~ 

Pig. 1. The curve of E + (u) for K = -1/2. 

r(u) 

1 .0 -------------------------

0 u 

Fig. 2. The curve of the singular spiky soliton solution r (u) for K = -1/2 (cusp soliton). 

t-->t, 

1 + q > (1 + q0) _, (l + q). (S · 7) 

\Vith this transformation, Eqs. ( 4 · 5) and (4 · 7) reduces to Eqs. (5 · 3) and (5 · 4), 
respectively. Corresponding to the transformation (5 · 7), Eq. (1· 3) is invariant 
under a transformation 

t-+ t , 

(5· 8) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/64/6/1959/1863723 by guest on 20 August 2022



CusjJ Soliton of a ~New Integrable 1Vonlinear Evolution Equation 1967 

Therefore, the relation between Eqs. (5 ·1) and (5 · 5) is clear. 

The application of Eqs. (1·1) and (1· 3) to the physical system 1s under 

investigation. 
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