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§1. IntroGuction 

Let C c lP~ be a smooth, algebraic curve. We say that C admits 

a cuspidal _ _proj ectj .2E: if th·~re exists a point v ~ ~~ - C such 

that the linear pre j ection 1C : C ~ IP~ from v satisfies 

(i) JC: C ~-n:;(c) is biratLonal, (ii) lC(C) ha3 only cuspidal 

(unibrancl) singul[rities. 

D.FerraLd showed that a c1rve that admits a c..:~.spidal projection 

is a set-theoretic<l comnlece intersection, if the base field k 

has posi tj ve characteristic [F:ij. He therefore asked: which curves 

admit a c:uspidal ~ 1roj ectio 1? What we present t elow grew out of 

an attempt to answ(:r this q ..:~.estion. The problerr, is viewed, and 

attacked, as a gemtetrical Jne, however, in the sense that the 

base fielt'_ k is as: :umed to oe of characteristic 0. 

Suppose a cuspid::.l pro ,j ection 1t": C _, 1?2 e:y ists. Then clearly 

the centrn of proj·~ction v ~1as to lie on the tEngent developable 

of C, and v has to be very singular on this su1face. Namely, if 

C has degree d and genus g, then --n;(c) has ~ = i(d-1) (d-2) - g 

cusps (counted pro1erly), because there are no other kinds of 

sirg;ulari·des (no .:elf-crossings). For example, v could be a 

$ -nul tip~.e point · 1f the developable, or 1C (C) could have cusps 
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of higher order, '1rising from v lying on tangents to 0 at point•· 

of inflection or hyperosculation. 

One expects a "g·eneral" curve 0 c \P3 to be such that its 

tE:.ngent developable has no points of multiplicity greater than 3, 

that it has no potnte of inflection, and that cusps arising from 

projection along tangents at points. of hyperoeculation are· not 

worse then double. Therefore, it is natural to believe· that a 

general curve, with !J ~ 4, does not admit a cuspidal projection. 

What we E:hall prove, is the following: 

Theorem 1: Every c~urve with ~ ~ 3 admits a cuspidal projection. 

Theorem f': A general canonical curve of genus 4 does not admit 

a cusptdal projection. 

Note that a canonical curve 0 c D?3 of t$enus 4: is the completa: 

intersection of a quadric and a cubic surface. Hence. Theorem 2 
(~ 

indicates that there is no relation in.general between the 

property of admit:.;ing a cuspidal projection and that of being a 

(E:et-theoretical) complete intersection. In fact, the curvea in 

Ferrand's theorem are the set-theoretical intersection of a very. 

special surface namely the cone of the cuspidal projection 

with some other surface, and, as he remarked later [F2], this 

ce.n only happen in positive characteristic. 

Theorem 1 is proved by examining each type· of curve satisfying 

b ~ 3. Because of Oastelnuovo's bound on the genus of a space 

curve, there are only three oases: the tvrieted cubic, and th• 

eJliptio and rational quartics. We study·the possible configurations 

of the ts.ngents to these curves; in particular, we use Telling's 

classification of rational quartios {T]. The proof also :i;'equires 

some general factn about t~1.e tangent developable and its 
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sj_ngularities, and thus links up with classical enumerative 

g{!Ometry [i.\ - the necessary material is gathered in §4. 

In the cours·e of this proof, the various types of possible 

cuspidal projections are described. 

Theoreu 2 is proved by showing that the presence of certain 

phenomena, necessary for a cuspidal projection to emst, implies 

that the canonical curve does not have general moduli. We use the 

fact that these C"~rves are complete intersections (to parametrize 

them), and that t-':1ey lie on a quadric surface. However, the proof 

should illustrate what one would need to prove in order to genera\~!:' 

liz• Theorem 2 to other curves. 

I would like to thank Robin Hartshorne for suggesting looking 

at the ctmonical curves of genus 4, in this context. 



3 

§2. Projection of branches 

Fix a base field k, algebraically closed and of characteristic 

0, Let P == J>~ denote projective 3-space over ~ in the 

coordinate free way we shall also write P = IP(V), with V a 

4-dimensional veci;or space over k. Let C0c:.P be a reduced, closed 

ct·rve, and let h:C -+ C0 denote its normalizstion. We shall 

assume that C0 spans P, i.e., C0 is not contained in a plane. 

For each point :J E. C we c·1n choose (affine) coordinates around 

h(p)E P such that the branch of C0 determined by p has a (formal) 

pErametrization at h(p) equal to 

X = atl·1 +1 + ... 
(+) y = btll +2 + ... 

z = ctlJ +3 + • • • 

wj_th abc ~ 0 and 0~ 11' 1 2 '= 1 3 • Even if h(p) is a singular point 

of C0 we shall ca11 the line y = z = 0 for the tangent to C0 

at p, and the plane z = 0 for the osculating plane to C0 at p. 

We call ki(p) = li+1 - lithe ith stationary index of the branch 

ai. the pCbint (or of p, for short); thus k 0 (p) is the number of cusps 

of C0 at p, k 1 (p) the number of flexes (points of inflection), and 

kr,(p) the number of stalls (points of hyperosculation). A point 
' 

p ~ C with 11 = 1 2 = 1 3 = 0 is called regular there are only 

a finite nbmber o,: non-regular points. The triple (1 1 +1 ,12+2,13+3) 

if'1 c~lled the typr~ of p. If C maps to a plane curve, the type of 

p with respect t1) this mar;> will be a pair (m 1+1 ,m2+2). 

Let 7C :P -~vt ~ P ~ IP2 denote the projection from a point v E:P 

onto a plane P. T;1e rational map 7t'fc0 :C 0 ~Pis defined on C0 

if v E C0 , and is in any case defined on C; by abuse of notation, 

w() shall call thi 3 morphism 7e also. 

Set C =ir(C) •. 3uppose pt-C is of type (11 +1,12+2,1 3+3). The 

point lt"'( p) on th'3 corres1~onding branch of 11 will be of type 

(:.1 +1 ,12+2), unle 3S v is on the tangent to C0 at p. 

Suppose vis on the tangent to C0 at p (but vI h(p)). Then 

the plane curve b~nch wiJl have type (12+2,1 3+3). This cusp 

· w:;_ll be ordinary, i.e., of type ( 2, 3), if and only if p was 

rngular on C0 • 
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The nu1n.bar~( p) of ( Ol'di,,ary) double pointe ~ ,f 0 ab~;torbed by 

the cuep l'C(p) der,endn of ('ouree on the t.vpe, .hough :lt ie not alWB:\ e 

determined by it. For exarr:ple, if (1 2+2,13+3) = 1, then 

~(p) = i(l2+1)(13+2) • 

In particular, 

51 if pis a regvlar point 

~ (p) = }3 if p is an ordinary flex (i.e., 1.
1 
= O, 1 2=13= 1 ) . 

If p is an ordinary stall (11 =12=0, 1 3= 1 ), the type is no 

longer s1~ficient to determine S(p). However~ we have the 

following: 

Lemma 1: If pE C has a parametrization 

x = at + ... 
y = b?~2 + b3t3 + ••• 

z = c1t 4 + c5t 5 + ••• 

with ab 2 ·~ 4 I 0 and b 2c 5 I b 3c4 , ther the projection of 

C0 from :1 point on its tangent at p €·ives a cusp with 

S(p) = 2 ; in fact, the cusp is ramproid of the 1st type. 

Rf•mark: Hecall th:Lt a ramphoid cusp of the str type is one which 

c£.n be put in the form 

X = t 2 

y = at4 + (even powers of t) + bt2s+3 + (higher powers of t), 

with ab I 0. Such a cusp i:3 equivalent to s+1 ordinary double point3. 

Pr·oof: The cusp ;c(p) is erluivalent to one of the form --
y = y(b2 + b3t ~! ~ • • • 

)-1 - t2 

z(b 2 
1' 

(c t 4 + ••• ) (b21 -2 -3( 2 ) 2 z = + b3t ... ) - -- b2 b3t + b2 b3-b2b4 t; + •. 4 
-1 4 -·2 ( ) 5 .// = b2 o4t + b;, b2c5-b 3c4 t + ... 

In order to detc!rmine how many other tangenta a given tangent 

to C0 meet, we net:d to kno,·r the type of singul1ri ty we get when 

we intersect the ~;angent dtlVelopable of C0 . wit 1 a plane containing 

a tangent. 
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Set T( >) r. the tanf:ent 'La C0 at p, and let 1 • UP"C T(p) 

donate the tangent developable of C0 • If p E C has a. parametrization 

(+), then h(p)€ X has a (formal) parametriz:::tion 

x = at11+1 + ••• + s(9.(l'\+1)t1 1 + ••• ) 

y = bt1 2+2 + ••• + s(b(l2+2)t1 2+1 + ••• ) 

z = ct1 3+3 + ••• + s(c(l3+3)t1 3+2 + ••• ). 

S:Lnce T(p) is giv'~n by y = z = 0, a plane H containing T(p) has 

an equatj_on o( y + p z = 0, with o( I 0 if and only if H is not the 

onculating plane. Suppose it is not. Then (H" X) red : T(p)v D , 

where the plane. curve n·has a singularity of type (1 ... +1,13+3) 

at h(p). Moreover, T(p) :is the tangent to D at h(p). Thus we have 

proved the following: 

Lemma 2: The inters~ctl6n number of D with T(p) at h(p) is given by 

i(D,T(D);h(p)) = 1 3 + 3 • 

In §4 we shall J:-eturn to a global study of the tangent 

d(:velopable :x;. 
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§3. On the existenc ~ of c:J.S' i_dal _rrojections 

Let c c P be a sm Joth, irreducible curve of dEgree r 0 = d , 

genus g , 1nd assum•3 C is not contained in a plr ne. Denote by 

a the ':lumber of ap Jarent dc·uble points of c ' j. e.' set 

~ = Ha-l)(d-2) - g • 

The.Jrem 1: All curv ;3S C c P with S ~ 3 , adrni t C:1. cuspidal 

projectiJn. 

Pro)f: Castelnuovo' 3 bound on the genus of a space curve shows 

tha; ~ ~ 3 implie:= d(d-2) ~ 12, if d is even, and (d-1) 2 ~ 12, 

if 1 is odd. Therefore therE are only three cases to consider: 

1) CcP is a twisted cub~; c, i.e. , b = 1, d = 3, g = 

2) ccp is an eJliptic q1 ·_artie, i.e.,S = 2, d = 4, 

3) CGP is a rational qw .rtic, i.e. , ~ = 3, d = 4, 

I~ each case we Ehall describe the possible cuspidal 

uroiections. 

o. 

tr; = 1. 

g = o. 

C::1se 1): The targent devulopable x' of C has no singularities 

outside its cuspidcl edge C (see §4). By projecting C from any 

-;:>oi 1.t on X - C , WE obtain a plane cubic with o 1e (ordinary) 

cuso. (Ob:=erve thai, for der;ree reasons, any pr)jection of C 

is :1ecessarily bir£ tional o:1to its image.) 

C ::1se 2): l!,irst c f all, C can have no flexes: Suppose p E: C 

is J. point of type (1,12tJ,l 3+3).The pencil {H;\~ on C cut out by 

olarJ.es containing -1 he tangent T ( p) ha~ase point divisor equal 

to (12+2 )r. By Rier; ann-Roch, then, we must have 

2 = h 0 (H-<= 2+2)p) = 4- (12+2) + 1- g = 2- 1 2 

(since 1 2 is equal to 0 or L, H-(1 2+2)pis non-special), hence 

1 2 = 0. Moreover, -he stall:3 of C are necessarily ordinary: 

since d=4, we have 13 f 1. T:ms C has k 2=16 stalls (§4). 

We shalJ show th~ .t C admi t;s two kinds of cuspidal projections -

one gives a plane curve wi t'l one ramphoid cusp, the other a plane 

curve witb two ordjnary cusJs. 
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Suppose IT€:. P - C is a po:r nt such that the projection from 

v, lt: C ~ lt'(C) , is not btrational. Then necessarily 

deg"''"r = 2 and deg iC(!]) = 2, DO C is on a quadric cone with vertex v, 

Call this cone K. Now we know that C is the base locus of a pencil 

of quadrics~ If C is on at least one smooth quadric, it will be 

on no more than 4 quadric cc,nes, and K must be one of these. 

If C is not on a smooth qua6ric, there is a pencil of quadric 

cones cont3.ining C; we shall see below'-that this is impossible. 

By the Riemann-Hurwitz fol'mula, -rr :C ~ 7C(C) has 4i branch points, 

so K contains the tangents to C at 4 points. Let p be one of 

these. The tangent 0lane H to K along T(p) intersects C only at 

o, hence with inter:;ection rumber 4. Hence H is a hyperosculating 

plane to C, so p is a stall. Each of the 16 stall tangents thus 

intersects exactly 3 others, in the same point, and these 

points of intersection are the vertices of four quadric cones 

containing C. It follows th~t these four cones are the only 

quadric cones that contain C. 

Let p€C be a stall, B.nd vE T(p) any point different from 

o and different fron the vertex of the (unique) quadric cone 

containing C and T(l)). Then the projection 7L o:' C frorr1 vis 

bir1.tional onto its image, ;·,nd -rr:(c) is a )lane elliptic 

qua:L""tic with one rE nphoic:_ c: ,_sp (necessarily of ;he 1st type). 

C )nsider now the nodal curve of C (the "doubl• ~ curve" of the 

tan-;ent developable X). Note that it contains n<• bitangents, 

since C cannot have any. Asr:ume first that the l_odal curve is 

dou'Jle (of multiplicity 2) on X. Then the proje<:tion of C from 

any point on it, not on C and different from th<~ 4 vertices of the 

·~on ;s, is biratior.al onto :' ts image - the argur tent above shows 

that otherwise all tangents are stall tangents ·· and the projected 

cur.re will have 2 ordinary cusps. That the noda:_ curve is non 

empty, follows frorr the fac-; that it has degree (see §4) 

b = i(r 1 (r 1 ~1)-r 2 -3r 0 ) = i(8J7 - 12 - 3~4) = 16. 



Suppose the nodaJ curve hr d a component which was of multi

plici t;y greater thr n 2 on X. Then the projectio 1 of C from any 

point on that component cou-.d not be birational onto its image, 

hence the component would ccmsist of vertices o · quadric cones 

containing C. As Wf have ser:n, this is impossib l_e. 

(ThuE we have shc·vm thnt -;he nodal curve is d )Uble; moreover, 

the fov_r vertices cf the coHes are quadruple po Lnts on the 

nodal curve thjs checks with the fact that ~his curve has 

a· double roint eye:! e of deg~ 1 ee 3T = 48 = 4• 4· 3 , see §4. ) 

c~1se 3): These curves have been classified b~· Telling ~ T); 

Ghe considered the various vays of projecting tLe rational 

normal quartic in IF 4 to \P 3 • We shall distinguisJ t between two 

caS 13S: a) the general rational quartic, b) the r;quianharmonic 

rational quartic. 

0Jserve first thEt we neec not worry about birationality: Let 

vfP- C be a point, lt"':C ~IC'(C) the projection i'rom it. If ;c 

is 10t bir3.tional, then necf,ssarily degll a:o 2 , so C lies on a 

quadric cone tr is is im;1ossible since C is rational. 

I"l case a), cc.p is a generic (or almost so) ~orojection of the 

rational normal quE rtic in n ,4. It has only the kind of singularities 

that is predicted ly dimens:ion count - in particula~ the nodal 

curve is double. Tr e tan~en-; developable has T points of multi

oli8ity 3, given b;, (§4) 

T = t(r1 -4) ( (r1-3) (r:_-2)-6g) = 4 • 

. \rnong these triple point::3 a~·e the d(l, 2) = 4 po Lnts where a 

tan~ent meets the curve aga_n- hence there are.!!.£ points 

where 3 distinct t<.ngents intersect (see also [':1, p.55). 

It follows that such a C can not be projected o1to a tricuspidal 

quartic~ 

For the number k- of flex3s and k 2 of stalls, there are three 

uossibili ties (all flexes a11d stalls are ordina :-y, since d = 4). 
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Case a 1 ): k 1 = o, k 2 = 4. (This is the most ~eneral C.) 

The onl;y possiblr: type of cuspidal projection is obtained by 

projecting C fro t the (unLque, see §4) point )f intersection 

of a stc:.ll tangeJLt with a1.othor tangent. Thic· point is not on 

the curve: It is different from the stall ([Tj, pp.46-47). If 

it wr~s E.nother p<1int on t1e curve, by projecting from it we 

would obtain a p:_ane rati)nal cubic with a ranphoid (double) 

cusp - ihis is ir~ossible. 

Thus C; admits a projection onto a plane rational quartic 

with on(; ordinar~" cusp an :l one ramphoid cusp (necessarily of 

the 1st type). 

This curve admits the same type of 

cuspidal project:on as the one above, but als:) an additional one: 

Projecting from ~. point on the flex tangent, Jne obtains a plane 

quartic with one cusp, of type (3,4). 

Case a 3 ): k 1 = 2 k 2 = 0. The projection fron a point of one of 

the two flex tan 1 ~ents is the only type of possible cuspidal 

projection. 

In caE:e b), C c P is the projection of the rational normal 

quar-tic from a g·meral point on a certain que dric hypersurface 

in IP4 ( i;his quad::-ic is the nucleus of the fur damental polarity, 

see rTl' pp.8,65). In this case, the nodal Clrve is triple, there 

are no flexes, a·1d hence 4 stalls (the nodal curve is a plane 

conic through th3se 4 points). The reason fo1 the name of this 

curve, ~-s that t 1e 4 stalls form an equianha1monic set on the 

curve (which mea1s their cross-ratios are eq1ianharmonic). 

Jllso, the d(l,2) = 4 (§4) points where a tant·ent meets the curve 

[tgai~ (the socalLed stei~erian points of C), are just the stalls 

( (TJ, p. 66). The only way of obtaining a cuspidal projection of 

~;he equ:.anharmon Lc quartic, is to project it from a point on its 

nodal curve, not on C. Tbe projected curve is a tricuspidal 

nuartic (and all tricuspidal quartics are obtainable in this way). // 



It seems naturaL to believe 

l!!td genus g, with ~ ~ 4, does 

In fact, this wou_Ld follow if 
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' that a general curve of degree d 

not admit a cusridal projection. 

we could prove ihe following. 

(j) A general curve cc P of degree d and ger .us g has only 

such singulari tie:3 that are predicted by a dinrension count 

(in particular, C has no flexes and only ordirary stalls, the 

nodal curve is dor1ble, and there are no pointE of multiplicity 

greater than 3 on the tangent developable). 

® For a general C c P , the projection from a point on a stall 

tEngent gives a runphoid cusp of the let type. 

If G) and® hold, then, for a general 0 c P , one can 

obtain only (the ·~quivalent of) 3 or fewer cuEps by projection 

- the types of pr,)jections are the ones described in the proof 

of Theorem 1. 

If we want d) to be true (without being tavtological), we 

must of course be careful about how to define "general". We have 

seen that for d=4 and g=O, (D is true when "€: eneral" me~s 

"rr1ost curves of degree 4 and genus 0". With a similar definition, 

G) fails for d=4 and g=l (since these curves all have quadruple 

points on their t 1ngent developable). So thougl: there is a very 

natural definition. of "general" in this case - namely "the 

intersection of two genere"l quadrics" - it is not one that makes 

0.) hold. Moreove ::-, these general curves also have general 

moduli -hence it would not help to impose thEt condition. 

All one can expecG is therefore that an ad hoc version of (!) 
sufficient for our purposes would alwajs be true. We shall 

:prove · ' this for the case d=6 and g=4. These: are' the canonical 

curves of genus 4, and they are the complete intersection of a 

quadric and a cubLc surface. 

Suppose a curve C lies on a quadric surface Q, and that C is 

of type (a,b) on ~. If a orb is greater than 3, then 0 has an 

in.fini ty of quadr L-secants - a phenomenon which is .!!£.! :":Predioted 

b;r a dimension co A.nt". But then, curves that J ie on a quadric 

are not usually (:or big a or b) considered tc be "general". It 

tHrns out, however, that the property in @ j s easier to verify 
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for curvas that ar-e the (complete) intersection of a quadric 

with another surf1ce. We shall prove (ff) for the case d=6 and 

g=:4, i.e., for ca 1onical .curves of genus 4. Note that a curve 

C which is·the intersection of a general quadric and a general 

cubic surface, ha3 general moduli (i.e., Cis general as a curve 

of genus 4). 

Theorem ;~: A gene :::oal canonical curve C c. P of genus 4 does not 

admit 1 cuspidal projection. 

Proof: SLnce the ambedding of C is given by its canonical 

d:ivisor, the non-:::oegular points of ccp are its Weierstrass 

points. _\. general curve of given genus has only nom.al 

Weierstra.ss point:3 (e.g. (G-H], p.277), hence v,e may assume 

that C h1s no fle ces and only ordinary stalls. (If p~ C has 

t~:pe (1, L2+2,13+3), the'n-the gap sequence at p is (1,2,12+3,1 3+4).) 

Lc~mma 3: Let cc::P be a genlral canonical curve, i.e., C = Q" F 

if: the intersecti m of a general quadric Q and a general cubic 

s1:rface / in P. L '3t p ~ C be a stall and v€ P - C a point on 

the tang·~nt to C 1t p. If TC :c~IP 2 denotes thE projection 

of C fr01a v, then 7C( p) t IC (C) CJP2 is a rampr oid cusp of the 

lf;t ·type. 

Assume this lerrna holds. If ·n:C ~ ~ 2 is < cuspidal projection 

o:f a general CC..F , there are only 4 possibil:.ties:lt'(C) has 

6 ordinary cusps, or 4 orcinary and 1 ramphoic cusp, or 2 

oc-dinary and 2 ramphoid c1sps, or 3 ramphoid cusps. The next 

t\vo lemm 1s imply that for a general C, none oi these occur -

J:l.once th3 proof of the thEorem will be completed by establishing 

Lr;mmas 3, 4, and 5. 

LPmma 4: Suppose J is the nom.alization of 

( j.) a pl:1ne sexti J curve of genus 4, with 6 ordinary cusps, or 
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( ii) a plane sexi ic curve of e;enus 4, with 4 ordinary cusps 

and 1 ramphoid c"lsp. 

Then C does noi have ge11eral moduli. 

Lemme. 5: If C c P is a general canonical curve of genus 4, then 

no two stall tan!'·ents intersect. 

Proof of Lemma 3: Since all smooth quadrics are projectively 

equivalent, we sball fj_x one; call it Q. Then the curves C are 

parametrized by cubic sur::·aces: Let A= k(Fijkll denote the 

ring of coefficiEnts of cnbic, homogeneous polynomials in 4 
~ <l ijkl 

vari2.bles, and sEt Y = ~ F ijklx0x 1x2x 3 , tlJe universal cubic. 

We have a (complEte interDection) map 

ci?: Proj(A(2 0 ,x 1 ,x 2 ,:~ 3 1/(Q,~ )) __.., Proj(A) . 

Let lJC.Froj(A) 1·e the Opi~n subscheme such that, if e =~- 1 (u), 

(J_> : G _,. U if, smooth, of relative dimension l. Thus we have 

a family of canonical cu~res of genus 4, containing the general 

ones. 

The Weierstrasf points m the fibres of ~ form an effective, 

relative divisor W on e., .Jver U. It can be defined as follows: 

There iE a natun .l homomo _"phism ([Pi] , §6) 

g-l ;t...* i1 n l -n,.o--l(n 1 ) 
8 : ~ ':t~~L e;u ~ 3 eju ~L~/U • 

€'-1 -------
Since a is a nap betwe 3n locally free shec;ves of rank g , we 

can takE its det~~rminant 

det eg-1: gt'Jlt .. __, /\g1't/~(Z~u) ~ (Q~;u)2g(g+l) ' 

where we have pu~ J'1 = A·s~ilc'Q~u· The corre3ponding section 

w~u= Oe ~ CQ~;u)Q!)g(g+l) G'~*JVt.-1 

defines the (relE~ive) We~erstrass divisor 
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1eplacing U by a smaller C!pen, we may assume ·;hat all Weierstrass 

points of the fi1:res L,u :.c ~ -l(u) are norma_, i.e., 

=If N u = ( g-1 ) g ( g+ 1 ) ~: 6 0 

for ::;·,11 uE U. 

For p<~ L., set u~q(p) ~ then p~ Lu = Q ~ 1~uG lP3 . Set 

Po = (1,0,0,0) ar.d Q0 the quadric defined by :0x3 = X1X2 . 

""' . D 

DefuLe 8 scheme ~- by 

Let 'f: e_ _...;, e., denoto t'te projection. Then Cf is smooth, of 

relative dimensic n 4: The fibres of Cf are 

Cons::i.del' 

G = ~~tPGL(3)} ;t3(:p0) =Pot, 

s = ~ qm dries th "ough Po)- • 

1here iE a surjective map o: G ~S, given by 6'((3) = (3(Q 0 ), 

end ·x-1 (Qo) = cr~·l(p) . NJW the fibres of ')( J.ave dimension 4, 

Eince tim.G = 1~ - 3 = 1?, and dimS= 9- 1 = 8. 

We shEll now d<~fine a r1tional map 5 
- ~L\ • Su~pose 

""' (p, o( )f e. Then u = ~(p) corresponds to a hJmogeneous cubic 

rolynomjal 

V~here the F ijkl' r: are def Lned up to multi plic 1tion by the same 

non-7,erc scalar. Note that F 3000 = 0 , since J t. t::u = Q ~F. 

In affire coordiJates (x,.r,z), with x0 I 0, t1e equation of 

c; becomEs z = x~ · , and s·1bsti tuting this in the affine equation 

cf F ~ WE get a pc·lynomial in two variables 

h(x,y) =!! hijxi.yj , 
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which, together wLth z = )y, determines Gu • 

Assume now that h 01 -1 0 (i.e., F 2010 I 0). S;hen we normalize 

the hij' :3 so that h 01 = -J. Expand y in terms of x: 

vhere 

al = 110 

2 
a2 = alh02 + 8 lhll + h~o 

+ • • • ' 

2 3 
a3 = 3.2hll + 23.la2h02 -1 h30 + alh21 + alhl;> + alh03 

a4 =. 3.ihl3 + B ih22 + a1h31 + 3al a2h03 + 2a=_a2hl2 + a2h21 

2 
+ a2h02 + a3hll 

etc. 

Thus p E L. c P las a parametrization 
u 

X = X 

( *) y = a 1x -t a 2x 
2 

+ ... 
2 

+ 
3 + z = xy = a1 x a,,x • • • • 

(_ 

"' 
Thus we have a map 1': t~- - ~ !A 5 , define·1 for all points 

(o, o/..) such that h 01 l 0, by~ (p,o<.) = (a1 ,a?, a 3 ,a4 ,a5 ) • 

Suppose (p,~ ) is such that h 01 = 0. Then, since n is a 

snooth point of ~~ u , nec,~ssarily h10 I 0. W 3 may then assume 

blO. = -1 to get r paramet::-ization c 

y = y 
r 

h03)y3 X = ho2Yc + (h02 ·I- + • • • 

z = h02y- + (h02 f- h03)y4 + • • • 
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Since, bJr assumpt Lon, L..u has no flexes, we nust have h02 ,i 0 , 

eo p is a regular point of ~u • Hence "f( p, o1.. ) is defined 

whenever p '= W , 30 we get a morphism 

Suppose "+ is. d 3fined at ( p, o<. ) • The parame·:;rization ( ~) 

is equivalent to 

X:: X 

z = a x 2 + a x3 + 
1 2 • • • 

If p E. W , then 

ordinary - a4 ~ 

-1 2 3.3 = a 1 e. 2 holds, and - since any stall is 

3.l1a 2a 3 . According to Lemma 1, the ramj>hoid 

cusp obtained by ~;>roj ecting the curve from a }lOint on the stall 

tangent T(p), will be of the let type if 

( -1 ) J ( -1 ) a1 a 5 - a1 a;::a4 r a 2 a4 - a1 a 2H3 

holds. 

Set V = {aE IA.5 I a 1,io, a1Ja4 ~ a 2a 3 , a~= a1a 3 t . 
Then "f'( ~ -lw) C. V • Moreover, we claim that 1 : 'f-lw _, V is 

generically surj-ective: By construction, 1=~---1) !A5 factors 

through the map 

Cf : e _.. U = C u E U \ Po ~ 1=" u 1 , 
1'\J ,..._,. 

defined by Cf {p, o() = oL ( Y ~{p)) • 

Both this map and U -·~ A5 are generically surjective. Since 

"t -l( "t' (e) 1'\ V) = Cf-lw , the claim follows. <:=f Cf -lw has more 

than one irreducible component, "t is generically surjective on 

each of them, because of ihe homogeneous natu:~e of the map "t"· • ) 

Set 

vl ={atv ~(a~- a2a.4) = a2(ala4 - a2a3)} 

= tatV l ala5 - a2a4 = a2a4 -
a2 

3 1 . 
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Because of the independence of the defining equations, 

dim vl = dim v - 1 ' 

hence 

holds. 

Since the property (p,o<) E "t-1 (v1 ) of t:,le point (p, o() 

is independent of ot , the above inequality implies 

dim 1 ( "t -l (V 1 ) ) < dim W • 

Set u1 = ~ ( 'f ( 't -Iyl)), and let u1 denote its closure. The 

map ~~W:'N ~ U is finite and onto, therefore 

dim U 1 < dim U • 

Hence we have found u0 = U u1 , open and non-empty, with the ' 

property that any curve ~ u , u ~ u0 , is such that its stalls 

satisfy the condition of the lemma. // 

Proof of Lemma. 4:: Suppose C c.IP2 is a plane, irreducible curve 

of degree d. Let :'f denote its normal bundle, 

J = Fl<n..lc)c &a 

its jacobian ideal, and 'JC: C ~ C its normalization. Set 

-:fc 
~=1tNa>J£9c. 

Denote by r the dimension of the space of a:.l plane curves of 

degree d with the same type (and number) of s~_ngulari ties ae c, 
or, r is the dimension of the space of locall~' trivial deformation~; 

o:c C. It is known ( [.A) ; [ Z:ar], VIII, §5), tha·; if ~ is non

B'Jecial, then 

r = dim H0 (c,£,) = deg.t + 1 - g = d2 - deg(J$0 )-l + 1 - g • 

T:1is gives ( [P2] , 3. 9) 

r = 3d + 2g - 2 - deg J-l + 1 - g = 3d + g - 1 - deg r-1 ' 

W:1ere I = F 0 (.0.1 010 ) is t:he ramification idea:. of 1C: c _.., c • 
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The line bundle L is non-special if 

~ -1 . 
deg ~ = 3d + 2g - 2 - deg I > ?g - 2 

hence if 
-1 

deg I < 3d • 

Apply the above to d = 6 , g = 4. In case :i), we have 

deg I-l = 6 and in case (ii), deg I-l = 5. ~n both cases, 

therefore, ~ is r1.0n-spec:;_al. Thus we get r = 15 in case (i), 

and r = 16 in case (ii). 

Module projective trans/ormations, the dime tsion of the family 

is r - t • Hence Jlane se:;:tics with (exactly) 6 ordinary cusps 

form a family of dimension 7, and plane sexti~s with 4 ordinary 

and 1 rBmphoid e1np form :t family of dimensio 1 8. Since the 

moduli £pace of g·enus LJ., curves has dimension ~g - 3 = 9, a curve 

C which is the normalizat:_on of either of the above plane curvee, 

csnnot lave generll modul:_. I I 

Remark: For plane sextics with the other two ~~onfigurations of 

ctJ.sps 2 ordin 1ry and ;~ ramphoid, or 3 ram· 1hoid we get 

f:mlilieE of dimen3ions 9 nnd 10, respec::tively Hence the above· 

method eives no conclusion in those cases. 

P:roof of Lemma 5: Suppose Q is a smooth quadr.c, and C = Q"F 

a canonical curve. We obsnrve that if p and q are distinct 

p )ints of C lying on the name ruling L of Q, ;hen the tangents 

T(p) and T(q) of G do not intersect. For, sup1ose they did. 

Since tbe tangent planes -,;o Q at p and q inte :>sect in L, this 

iapliee T(p) = T(q) = L. Hence Lis a bitangmt to C and has 

i1tersection multiplicity at least 4 with C, contrary to the 

f 1ct thEt L intersects th~! cubic surface F, hence also C, in 

(the equivalent of) three points. 

Let p, q E: C be two points not on the same :"'Uling of Q. After 

a projective transformation, we may assume 

Q: x0x3- X1X2= 0 

p = (l,C,O,O) 

q = (O,C,O,l) • 



The choice of coo:·dinates sives us the coefficients (Fijkl) 

of a cub:_c polyn01lial F (determined modulo Q and up to scalar 

multipli<!ation). :Iince p, 1€C = Qf"'F, we have F 3000 = F 0003 = 0. 

The tangr~nt plane 1 to Q an1 to F at p and q are given by 

T0 (:r:;): x3 = o 

TQ (q): x0 = 0 

TF(p): F2100X1+F2010X2+F2001X3= O 

TF ( q): F 1002XO+F 0102Xl +F 0012X2= O • 

The tang~nts to C at p and q are 

T(p): _c3 = 0 ·~21oox1 + F2o1ox2 = 0 

T(q): ~o = 0 ' ~0102x1 + Foo12x2 = 0 • 

The two tangents Lntersect if and only if 

F 210if C )12 = F OJ02F 2010 

holds. 

As-sume F 2010 I 8 • The computations made in the proof of 

Lemma 3 show thai the condition that p be a s~all, is that the 

following equaliiy holds: 

F~OJ if i200 - F ~Old' 2l()cf lllOF 1200 - F ~010 :' 2100F 2001F 1200 

F4 _w _w + p3 _w 2 F + F3 ,, 2 -~ 
- 20Jlf210lf0~00 20Llf2100 0210 2010-210lfll01 

- F~OJ_c1~10clo= 20 - F~OLOF~lOOFlOll + F2010~~1o<f'oo30 

+ F 201if ~loaf lU20F 1110 t F 2010F ~10if 102c! 2C Jl - F~10if 1020 = O • 

(This i::; the equ: ltion a~. - a 1 a 3 = 0 , where a 1 = h 10 = 

··1 
-- F2010 F2100' a2 = ••• ) 

No-:;e ~;hat this equation is invariant 1-mder the change 

}ijkl~ Fikjl. Since at least one of F 2010 and F 2100 is 

Hon-:?;ero, our as mmption ? 2010 I 0 does not n ean any· loss of 

{ :eneral i_ ty. 

If we change Fljkl to Wljki in the above equation, we 

obtain the condition thai the point q be a s·;all. These 
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conditions are seen, by inspection, to be indEpendent, i.e., 

the fact that T(p) and T(q) intersect a:nd p if. a stall does 

not impl~r that q is a stall; or, if p and q a1·e stalls, then 

by movinr~ F (and 1{eeping the stalls) we get a curve such that 

T(p) and T(q) don't intersect. Thus we may asr:ume this to be true 

for any nair of stalls: on a general canonical curve. In fact, 

similarly to the proof of Lemma 3, one can define 

1) = f (p,q, oL )£ txut:. X PGL(3) I p., q stall~·., o<..(p) = Po ' 1. 
<X-(q) = q0 = (o,o,o,l), o<..(Q)=Qo) 

and consider the nap J) ~ { u e- U \ p0 , q0 € j~ f and argue 

as in that proof. // 

Remark: :Sy perforning the same computations for a curve which is 

the intersection of two quadrics (an elliptic quartic curve), we 

find that, if T(p) and T(q) intersect and p i:1 a stall, then 

necessarily q is '3. stall too. This is just as expected, since 

we have already seen (in the proof of Theorem 1, Case 2)) that 

for such curves, any stall tangent intersects three other stall 

t·mgents but no other tancents. 

Theorem 2 says that general canonical curve:3 of genus 4 do 

not admit a cuspidal projection. There exist, however, canonical 

curves that do. Recall the following: 

Let S c P be a smooth surface of degree d, and suppose 7C:S --+ lP2 

is the projection of S from a general point v. The curve of 

contact c·c. S of S with respect to 1t can be defined as the 

r~ification divisor Z1 (1C) of 1C. Another d3SCription of c 
is that it is thE inters~ection of S With the lst pola:n" Sl of S 

with respect to v. The curve C has degree d(d-1) and genus 

g = id(d-1) (2d-5)+1 ; mor(3over, the number of cusps of 1C(C): 

(these are ordin£ry, sinco 7C is· a generic prJjection) is equal 

to the degree d(d-l)(d-2) of the re.mificatiJn dtvisor 

L]l'l(lt') = z:' 1 (1C\C) of 1GjC:C __,. -,t;(C) ( [:P3j , §5) • 
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:Apply this to Cl = 3. Them S:F = 0 is a cubLc surface, its 
'"\I d 1'' 

l3t polar s1 : Q = ~ v. ~-~ = 0 is a quadric, and the inter-
J. 0 ""-i 

section of the c1..1bic and nuad:ric· (not general aa such) is a 

canonical curve C. The projected! curve "1'C" (C) has 6 ordinary 

cusps, hence no other singularities, and so ~-:c ~ ~ 2 is 

a cuspidal projection of c. 

It is known that a smooth curve D = S1 1'"\ s2 , where Si is 

a surface of degree di, is such that all its :!hords through a geney•al 

point vE P- D lie on a cone of degree (d1-l)(d2-l) 

(Valentiner, Noether- see [B], p.204). This Ls seen as follows: 

The projection from v, '1t' :D ~IP 2 , is l:tirati,)nal onto its 

image D = 1C'(D). rhe conductor ideal C = Homj("J;_J9D' <9D) of 

D in ~ satisfies 

~s~ = w:o <!> c , 

where Wjj = C9D ( d1 d2- 3) a enotes the dualizing sheaf of D. 

Since .Q..~ = c9D(:i1 +d2-4) holds, one sees tha·; 

if and only if m ~ (d1-l) (d2-l) • Therefore, -;;he singularities of 

the plane curve D (as defined by the conductor) lie on a curve 

of degree (d1-l)(:i2-l). 

The following C·Jnverse is also true (Halpher' - see [B], p. 204; 

[G-P], p.32): SupJose a curve DC::P has degre€· d1d2 and does not 

l:Le on a surface Jf degree < min(d1 ,d2 ). If ihe chords to D 

through a (general) point v lie on a cone of cegree (d1-l)(d2-l), 

then :D iB the com Jlete· intersection of two su1·faces of degrees 

d1 and d2 • 

Therefore, a se~tic curve cc P2 of genus~' with 6 cusps, 

io the proj action of a canonical curve C c P if and only if the 

cusps lie on a CO'lic. As Zariski observes ([Z£r1, p.223), there 

are 6-cuspidal se:dics without this property - they also form 

a 15-dimensional 'amily. 
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Remark: I do not know whe-:.;her any 6-cuspidal 3extic· with all its 

cuepe on a conic, can be obtained ae the proj3ction of the 

intersection of t= cubic surface with its 1st 'JOlar. 

Another que,sticn one can ask, is the following: Given d and g 

such that there exist space curves of degree i and genus g , do&s 

there exist one that admits a cuspidal projection? 

Here are some cases where the answer is kno·rm to be yes: 

1. g = 0 , all d • 

1 IV 3 ( ) The rational curves IPk ~ C C:IPk , given by u,v ~ 

(ud ,ud-lv,uvd-l ,vd) , were shown by Hartshorn3 (1964, [H1) to 

be set-theoretical complete intersea:tions if Jhar k > 0 • Ferrand 

[F1] observed tbat they admit a cuepidal projection: the 

projection of C from a point on one of the tw1) inflectionary 

tangents give a rlane curve with a monomial CllSP of type (d-l,d); 

hence that plane curve can have no other sin~1larities. 

(Ferrand went on to prove that any curve whic:1 admits a 

cuspidal projection is a net-theoretical compLete intersection 

in positive chars cteristic ( [F1], 2. 3).) 

2. g = 1 ' d = 4 . 

All curves ad.mi t a cuspj.dal projection (The )rem 1). 

3. g = 4 ' d = 6. 

Examples were given above. 

4. g = l or 2 , a = 5 or E>. 

Suppose C c.JP2 is a curve of degree d and :~enus g , with 

1{:;:: t(d-l){d-2) - g ordinary cusps (hence no other singularities), 

and let lt : C -+ C denote its normalization. Cf d > 2g , then 

c9c(l)= .. {OIP2(l)l C is ver;· ample, hence it em.Jeds C in D?N , 

where· N = d - g. By factoring the given proje1Jtion zPN --~ [p2 

generically via a 1>3, we obtain C embedded in JP3 and such that 

the projection 7t:C -.I) cc.P2 is cuspide.l. 

Since there exist plane curves (because d ~ l), see [zad, p. 222) 
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with 
g = 1 d = 5 .K= 5 

d ::: 6 K..= 9 

g = 2 d = 5 K.= 4 

d = 6 K= 8 

the above methoct applies to these cases. 

(There also e):ist .plane curves of genus 3 :1nd degree 5 (resp.6), 

with 3 (resp. 7) cusps, but here d > 2g no longer holds .• ) 
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§1. The tangent developabJe and its singulari~ies 

Let h:O -+ C c. I? be as in the beginning of ·~2. Recall that WB 
0 

o~1.n describe the tangent a evelopable of C 0 in the following WB.J 

tPl] : Let 1> ~(1) ienote the (m+l)-bundle of p::-incipal parts of 

order m of the li~e bundle (9c(l) = l'f(9p(l) • There are canonical 

maps 

am: H0 (P,<9p(l))c = vc ~'}'~(1). 

The coke:rnel of a 1 is ison:orphic to Q~/P ®£9<:(1) • Hence, since 

C is a smooth cur;re, the image ~l = Im(a1 ) i~J a rank 2 bundle 

on c. Setting Y = IP(J>1 ) we get a closed embedding Y 4 C x P. 

The tangent devel )pable X<..:. P is then the imagn of Y under the 

projection onto t 1e second factor. Note that ·;he map f :Y ~ X 

is finite (this i 3 true ir1 arbitrary characte:'istic provided 

the curve C0 is n)t strange) and birational, hence the singularities 

of X are resolved by normalization. 

Form= 2,3 the homomorrhisms am are also gnnerically surjective, 

since C0 spans P. Set rJ> m = Im(am). The bundle Jl 2 represents 

the osculating pl1nes of C 0 , while "J>3 is isonorphic to V C. 

Let r 0 denote t 1e degreE of C0 and g its (g!!Ometric) genus. The 

rank r 1 of C0 , de:'ined as the number of tangents to C0 meeting 

a given (general) line, iE equal also to the ctegree. of the tangent 

dBvelopable X. Th 3 class r 2 of C 0 is defined ~ .s the number of 

0:3culating planes containj ng a given (general point. 

Set k1 =L:p~C kL(p) , i = 1,2,3. We shall u::e repeatedly the 

following formulas ( [Pl] , 3. 2): 

rl = 2r0 + 2g - c - ko 

(1) r2 = j(rJ + 2g - 2) - 2k0 - kl 

k2 = 4(rJ + 3g - 3) - 3k0 - 2kl 

The rank and cl~ss also have interpretationn in terms of dual 
v "n 

varieties. Recall that the dual variety zc 1P of a variety 

, Z C:[Pn in defined as the closure of the set of hyperplanes tangent 
. ..., v 

to Z at maooth points. The dual variety c..::.p of C0 c:::P is thus 

a ruled surface, Ln fact j_ t is the tangent developable x* of 

the curve c1rc P, w~ose points are the osculating pluee of C0 • 



24 

We shall call c* the dual curve of C • Since char k = 0, biduality 
-./ * 0 

holds: The dual variety o:;:' C'X is the curve C0 (which is also the 

dual curve of c*), and the dual variety of C~ is the tangent 

developable X of C0 • One of the characterizations of a developable 

surface is just that it is a ruled surface whose tangent planes 

are constant along a generator, i.e., whose Clual variety is a curve. 

We have 
r 1 = degree of X = degree of X* 

* r 2 = degree of C = rank of X • 

For the stationa1y indices kr of cfr we have the duality 

k~ = ~2-i ' i .::: 0,1,2. 

Remarks: 1) For the duality between C0 and c*, see e.g. [Pi\. 

Moreover, let G == Grass2 (v) denote the Grassmann variety of lines 

in P and G~ = Gre ss2 (V"') the Grassmannian of :_ines in P . Then 

X can be consider·ed as a curve r c.. G; in fact. C -... G, defined 

by the quot:Lent v 0 ~:P 1 , is the let associatod map of c0 • 

* - .. * r Likewise, X corresponds i o a curve r c G , and the curves 

and r"* are equal under the natural identificntion -,G ~ G*( (Pl1 , 5. 2). 

The fact that the ruled svrface X (reap. x*) ~s developable, is 

reflected on the curve r ( resp. r'* ) by the fac!t that its tangents 

are all contained in G (rLsp. G*). 
v ~ 

2) A proof,_aloJ.g the sEme lines, of the eqHality X= C can 

be obtained using the functoriality of the bulldles of principal 

parts ( (J?:i} , §6): If q:Y = l.P(1'1 ) ~ C denoten the structure map, 

one showr3 that c{a1 :cfvc ~ <f1> 2 factors thJ·ough ai:vy --"~i(l), 

where 1>~;(1) deno t;es the principal parts of oJ·der 1 of the line 

* 1 bundle Oy(l) = f ({9p(l)\ x> • Since ay is gen( rically surjectj_ve, 

Im(a1 ) and cfs> 2 1re isomorphic as quotients cf Vy, and hence the 

dual map of X c. P ~s defined on the normalizatj on Y of X and has 
* \1 for image q c P. 

3) .Since the du.Ll map of X is defined on Y, it follows that the 

Nash transformati1>n of X is equal to the norm£ lization f :Y --.. X. 

Now Y is smooth, hence the singular points of X are such that the 

local Eu:_er obstrHction is equal to the multirlicity ([L-Tl, 6.1.4). 
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Let us examine the singv.lari ties of the tan, :ent developable 

X of C0 • Since X has smooth normalization, it is of the type 

studied in [P31 - we shall use results and n•)tations from there. 

The surface X bas degree fo = r 1 , rank f 1 = r 2 , and class 

f 2 = 0 • Its cuE pidal edr~e consists of the c 1rve C 0 and the 

tangents at flexe·s (taken with proper multiplicities) of C0 , 

hence has degree 

c = ro + kl. 

This can (also) be seen as follows: The cuspida L edge is the image 

of the ramification divisor R of f :Y ~ X , h :moe it is defined 
. 0 1 0 1 ~ 1 

by the J.deal F (Q.Y/X) = F (Coker a.y: Vy ~J>y(l)). A local 

study of ai giveE the supnort of R; moreover, it follows that the 

rational equivalEnce clas~1 of R is given by 

tR1 = (c1 ("PiC'-)) - c1 (q-"3> 2 ))"" fy1 

since Im ( aj) = rf "P2 • Usinr~ the standard exact sequences 

(2) 0 

and 

C 3) o ~ n ~ ;c <!'C\C'-> ~ <!"~ 1 ~ By(l) _, o , 

one obtains 

[ R 1 = ( q* ( c1 (.Q. ~ ) + c1 ('y l) - c1 ( --p2 )) + c1 ( Jy ( 1) ) ) '"' [ Y 1 . 
1his gives 

c = deg f* fRl = 2g-2+r1-r2+r1 = r 2-2r1 +rc+kl +2r1-r2 = r 0+k1 • 

In addition to the cuspLdal edge, the developable X has a 

couble (or higheJ' multipl•3) curve, called the nodal curve of cQ. 

lt consists of pcints tha~ are on more than one tangent to c0 • 

Eventual bi tanger .ts to C 0 are part of the nodal curve. 

Let b denote tlle degree of the nodal curve. If the nodal curve 

is double and th£~ flexes l)f C0 are ordinary, we get from ([P31, Th.4) 

Jf the nodal CU!'"''e consists of curves Dj, where Dj is ordinary 

j-multiple, then the degr3es bj of Dj satisf;y ([P3], §4) 
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~j(j-l)bj = r 1 (r1-l) - r 2 - 3(r0+k1 ) 

(still assuming the flexen to be ordinary). 

.... 
" 

The cuspidal edge and the nodal curve may t:1eme•:·lves be singular, 

and also they have points of intersection - the points on X of 

higher multiplicjty are found among these. In particular, if the 

nodal curve is double and the flexes ordinary, X will have a 

finite number of points of multiplicity ~ ). Cn fact, one can 

define a triple point cycle [M~ on Y, with r 3Spect to f :Y -+ X 

(tK), Ch.V), and the number 

T = t-dcg fffM 3'\ 

will be called tbe (total) number of triple p)ints of X. Note that 

this number is wr}.l defined even if the nodal curve is not double 

and the flexes E1.1e :.ut ord.inary, since [M~ :L3 defined as the 

double point cycJ e rJf the map from the double point scheme of f 

toY (see(Kl, loc.cit.). l~S in ([P31, §5) we 3ha1.i apply Kleiman's 

triple point forrrula (~K1 , V82) to compute T. 

Proposition 1 : Tre total number T of triple p )ints of the 

tangent developalle X of C0 is given by 

1 
T = o (r1-4J((r1-3)(r1-2) - 6g) • 

Remarks: 1) Suppc se S c P is a ruled (non-de ;.relopable) surface 

of degree m and t:enus g, 'Vith ordinary singul3..rities, i.e., a 

double curve, a jinite number of pinch points, a.nd a finite number 

t of (ordi.nary) ';riple poLnts. Then t is given by (e.g. (Kl, V84) 

t = i<m-4 )( (m-3 )(m-2) - 6g). 

Now t is also eq1.'al to th13 number of tri tangent planes to S: 
v v 

since the dual vr .ri ety S c P is a ruled surf3..ce which is also 

of degree m and t:enus g, the number t of trirle points of ~ 

has the same expression a:3 t, 

the tri tangent p: .anes of :3. 

...,. . 
and the triple points of S are just 

Similarly, ·;he tri tangent planes to the developable X 

correspond to th~~ triple uoints of' the dual variety of C0 , which 

is the tangent d!!Velopable x* of tc. P. Since ofr has the same rank 
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v ~ 

and genu:3 as C 0 , the number T of triple pointf: of X is equal to T. 

2) The observations made in 1) show "';hat the total 

n'mtber o::' triple ooints orJ a ruled surface ( dE~velopable or not) 

is equal to its n.xcnber of tritangent planes, Hnd that this 

ncmi"oer is determi :led by its genus and its degJ•ee viewed ae a curve r 
in the Grassmann variety G of lines in P. NotE! that a triple point 

of the ruled surf:tce corresponds to a Schubert cycle <r2 , 0 

(consisting of alL lines through the point) on G which is 

to r. A tritange1t plane corresponds to a Schubert cycle 

trisecani 

a-1 1 
' 

(lines in the pla:1e) which is trisecant to r . Now 

planes in G corre 3ponds to the <r1 1 -planes in G*; 

' 

the a-2 , 0-

since r = r* 
under the identification G = G.:t-, the equality between the nu.r:D.ber 

of triple points- :tnd the number of tri tangent planes is justified .• 

Proof: W:L th notations as j n ( [J?3] ' §5)' let r c c y denote I the 

rr3duced ramification locu:: of f:Y ~X , and ,,bc:..Y the reduced 

Llverse image via f of thE nodal curve. Set i = ( rb' rc)' and let 

\Ill= ~~ - .ni d:mote the virtual conormal b1ndle of f:Y ~ P • 

We shall apply {leiman' s triple point formu:'.a ( [Kl , V. 82) 

as in ( ~P31 , p. 22 S) to the map f • This WE~ can do, because 

the double point 3Cheme of f has the expected dimension, namely 1 

([K], p • .387). Ass.lDle now that the nodal curve is double and the 

flexes o:::' C are )rdinary. Then the formula yjelds 
0 

Lemma 6 
) 

(i) ere-) c: 2-2e+ko+2kl 

(ii) (r 3
2 ) = (rJ-l)(r1

2-7r1-2k0-4k1 :+9r1+6k0+12k1 

(iii) i = (r1-4)(r0+k1 )-k0-2k1 

(iv) c2 (JV) = 2(r1+2g-2) • 

Proof of the lernm ~= ( i) Write r c = c v UiF i ' Hhere ~ f (Fi)\1 are 

the flex tangents to 0 0 , end C c. Y is the sec· ;ion of q :Y --. C 

given by the quotient ']'1 ~ <.9 0 (1) • If··t!'lfc/Y denotes the 
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conormal bundle of C in Y, then' (c2 ) =- deg~;y• From the 

exact sequences ( 2 ) , ( 3 ) , and 

o ~ UVa/Y ~nile -.n~ ~ o' 

end the fact q ... .Q..6) c = n ~ ' it follows that 

deglfl/c/Y = degQf ;a = deg'f1 - 2deg(9y(l) = r 1-2r0 = 2g-2-k0 • 

~·he formula follcws from this, since we have (C,Fi) = 1 and (Fi,Fj)=O. 

(ii) SetH= c1 (i\.9x(l))l')rY1 and H = c1 (f-il(9:P(l))"fY1, where 

~ v ~ * 
f:Y......, P denoter the dual map of X (recall t.1at f(Y) = C , the 

dual curve of C0 ). Then W!~ have ( rp)l, §5) 

v 

- H • 

r, ~ "'2 
Since we have (H< ) = fvo == r 1 , (H ,H) =)AI = r 2 , and (H ) = r 2 = ·) , 

this and (i) imply 

<rb2 ) = r 1 (r1:-1) 2+9(2k1+1c0-2g+2)-6(r1-l)(r0+{1 )-2r2 (rJJ-1)+6r2 • 

The stated formuJ.a is a rewriting of this one, using_ the relations (1). 

between the ri's and ki's stated in the begin1ing of §4. 

(iii) The expresr:ions for frbl and fpcl given above give 

i :;: crb,rc) = (r 1 -1)(r 0 +k 0 )-3(2-2g+ko+2~ 1 )-~ 

where <r= 
v 

( rc,H) is the class of immersion of :f(rc> in X 
' 

i.e., 
v v v 

- ,., it-IJ is the degree of f( rc) in P • But f( rc) - v 

' 
hence(]' = r 2 . 

The rest is agaill formal ·,aanipulations. 

(iv) By the defildtion of JV, 

.,. 1 1 
= c 2 1f..Q.p -~L.y) 

= c2(f*..Q.~)- cl(t'..Q.~)cl(Q.i) 
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cl (Q.~) = cl ((~ n ~) + cl (Q t/c) 

= c 1 ((f..Q~) + c 1 (q~ 1 )- 2c 1 (~y(l)) , 

01(~~) 2 = -4(2g-2). 

Hence, 

c2 (.p/) = 6r1+4(2g-2+r1-2r1 )-2(2g-2) = 2(ri+2g-2) • II 

To finish the proof of the proposition, use tae lemma on the 

terms in the triJ!le point formula to obtain 

3T = ir1 ( (r1-l) ( r 1-2 )-3r0-3r2+22-3k1 )-10r0+2r2+6k0+2k11-2(2g-2), 

end then apply ( 1 ) to eliminate r 0 , r 2, and k 0 • 

Though we assurred for stmplicity the nodal Jurve to be double 

end the flexes to be ordinary, the same fornJ.ULa is valid in the 

general case: Replace rb by z j (j-l)Pb ' Lf f(rb ) is 
j j 

j -multiple on X. If the flexes are not ordina:~y, each F i will 

count with a multiplicity mi in the double poLnt cycle of f. 

Adjusting the ex:peoessions of the lemma accord ;_ngly, and plugging 

them into the triple point formula, one obserres. that .the "bad" 

.terms disappear, '3.nd one is left with exactly the same expression. II 

Assume now th3.t the nodal curve is double and the flexes 

ordinary. The poiats of multiplicity -~3 of X contains: the 1t 

points where thre3 distinct tangents to C0 meE~t,. the 'l i~ter

sections (outside C0 ) of the nodal curve with the flex tangents, 

the d(l,2) points where a tangent to C0 cuts C0 again, the k 0 

cusps and the k1 :'lexes of C0 • 

Zeuthen gives t.1e following formulae for t and d(l, 2) ( z]: 

t =% r 1 (r1
2-3r 1_-9r0-3r2-9k1 ) + j (39r0-29r1+2lr2+39k1 ), 

d(l,2) = r 1 (r0-t;)+4r0-6k0-2k1 • 

(For a proof when k 0 = k 1 ~ 0, see [G-H1, p.2~4. A formula for 

d(l,2), including ·i;he flexes is given by Le· Ba!z (LB1, also under 
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The assmnption th~t C0 is smooth.) 

Lemma 7 : 

Proof: Let H be a plane containing a tangent ~~(p) to C0 , and 

assume H is not osculatin{'·. Then Hn X = D u (:::_ 2-11+l)T(p) , 

where the plane curve D hns degree r 1-(12-11.;-l) and a singularit;)" 

of type (11+1,13+3) at h(p). By lemma 2 , D alld T(p) have 

intersection number 13+3 at h(p). The number of intersections 

of T(p) and X outside h(p) is thus equal to 

¥Cp) = r 1-(1 2-11+1)-13-3 = rn-4-~ 3 -1 2 +1 1 

= r 1-4-k2 (p)-2k1 (p)-k0(p). 

In particular, tbe tangent T(p) meet~ 

r 1-4 p is a r()gular point 

r 1-5 other tanEents if p is an c>rdinary cusp 

or an ordinary stall 

r 1-6 p is an <>rdinary flex. 

Remarks: 1) With the above formulas, we obtain the following 

equality: 

T = t + d(l,2) + r + k 0 + 2k1 • 

Why the flexes, £ s opposed to the other tripl(} points of X, 

appear with multiplicity?, remains a mystery .•• 

II 

2) The stalls of C0- are also pointe where the nodal curve 

intersects the c1.:·spidal eC::_ge, but these pointn are singular on 

neither curve ano are of multiplicity 2 on X :~hey are in fact 

11 cuspi dal 11 WhitnEy umbreL! as) • 

In (fp~ ,5.l(ii)) it is shown that the dual (plane) curve of 

a generic plane r:rojection of C c:. P , is equa:_ to the corre-
. 0 * v 

spending plane section of the dual variety X .::.. P of C0 • Going 
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through that proof, one verifies that the gen1!rici ty assumption 

is in fact unnecessary. Therefore, the resultr: on the nature of 

the singularities of plane sections of the de,·elopable (§2), 

could also have been obtained by duality from the knowledge 

of the singularities of plane projections. No·;e that if p is 

a point of type (11+1,1 2+?,13+3), then the co:Tesponding point 

on the dual curve · C is of type (13-12+1,13--11+2,13+3) (see 

e.g.[B] ,p.l84). 
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