CUSFIDAL FRO^ ECTIONS (FF SPACE CURVES

Regni Piene

Table of contentis:
§1. Introduction
§2. Projection 0: branches
§3. On the existunce of cuspidal projections
§4. The tangent levelopable and its singularities

§1. Introcuction

Let $C \subset \mathbb{P}_{k}^{3}$ be a smooth, ilgebraic curve. We say that C admits a cuspidal projection if there exists a point $v \in \mathbb{P}_{k}^{3}-C$ such that the linear projection $\pi: C \rightarrow \mathbb{P}_{k}^{2}$ from v satisfies (i) $\pi=C \rightarrow \pi(C)$ is birational, (ii) $\pi(C)$ has only cuspidal (unibranck) singuli rities.
D.Ferrard showed that a cirve that admits a cispidal projection is a set-heoreticil complebe intersection, if the base field k has positive chara teristic [F]]. He therefore asked: which curves admit a cuspidal irojection? What we present kelow grew out of an attempt; to answre this question. The problef is viewed, and attacked, as a geonetrical one, however, in the sense that the base fielc: k is as:umed to be of characteristic 0.

Suppose a cuspid: projection $\pi: C \rightarrow \mathbb{E}^{2}$ exists. Then clearly the centro of projuction v has to lie on the tengent developable of C, and v has to be very singular on this surface. Namely, if C has degree d and genus g, then $\pi(C)$ has $\delta=\frac{1}{2}(d-1)(d-2)-g$ cusps (counted prowerly), because there are no other kinds of singularifies (no elf-crossings). For example, v could be a δ-nultipe point of the developable, or $\pi(C)$ could have cusps
of higher order, arising from v lying on tangents to C at pointe of inflection or hyperosculation.

One expects a meneral" curve $c \subset \mathbb{P}^{3}$ to be such that its tengent developable has no points of multiplicity greater than 3, that it has no points of inflection, and that cusps ariaing from projection along angents at points of hyperosculation are not worse then double. Therefore, it is natural to belleve that a general curve, with $\delta \geqslant 4$, does not admit a cuspidal projection. What we sihall prove, is the following:

Theorem 1: Every curve with $\delta \leqslant 3$ admits a cuspidal projection. Theorem 2: A general canonical curve of genus 4 does not admit a cuspidal projection.

Note that a canonical curve $C \subset \mathbb{P}^{3}$ of genus 4 is the complete irtersection of a quadric and a cubic surface. Hence Theorem 2 indicates that there is no relation in general between the property of admitting a cuspidal projeotion and that of being a (set-theoretical) complete intersection. In fact, the curves in Ferrand's theorem are the set-theoretical intersection of a very special surface - namely the cone of the cuspidal projeotion - with some other surface, and, as he remarked later [F2], this cen only happen in positive characteristic.

Theorem 1 is proved by examining each type of curve aatiafying $\delta \leqslant 3$. Because of Castelnuovo's bound on the genus of a space curve, there are only thres cases: the twisted cubic, and the elliptic and rational quartics. We study the possible configurations of the tengents to these curves; in particular, we use Telling's classification of rational quartics $[T]$. The proof also requires some general fact; about tie tangent developable and its
singularities, and thus links up with classical enumerative geometry [7]: - the neceasary material is gathered in $\$ 4$. In the course of this proof, the various types of possible cuspidal projections are described.

Theoren 2 is proved by showing that the presence of certain phenomena, necessary for a cuspidal projection to exiat, implies that the canonical curve does not have general moduli. We use the fact that these curves are complete intersections (to parametrize them), and that they lie on a quadric surface. However, the proof should illustrate what one would need to prove in order to generae lize Theorem 2 to other curves.

I would like to thank Robin Hartshorne for suggesting looking at the canonical curves of genus 4 . in this context.

§2. Projection of branches

Fix a base field k, algebraically closed and of characteristic 0. Let $P=\mathbb{P}_{k}^{3}$ denote projective 3-space over $x-$ in the coordinate free way we shall also write $\mathbf{P}=\mathbb{P}(V)$, with V a 4-dimensional vectior space over k. Let $C_{0} \subset P$ be a reduced, closed ccrve, and let $h: C \rightarrow C_{0}$ denote its normalization. We shall assume that C_{o} spins P, i.e., C_{o} is not contained in a plane.

For each point $\because \in C$ we can choose (affine) coordinates around $h(p) \in P$ euch that the branch of C_{0} determined by p has a (formal) perametrization $a ; h(p)$ equal to

$$
\begin{aligned}
\mathrm{x} & =\mathrm{a} t^{1_{1}+1}+\ldots \\
\mathrm{y} & =\mathrm{b} t^{1_{2}+2}+\ldots \\
\mathrm{z} & =\mathrm{c} \mathrm{t}^{1_{3}+3}+\ldots
\end{aligned}
$$

with abc $\neq 0$ and $) \leqslant I_{1} \leqslant I_{2} \leqslant I_{3}$. Even if $h(p)$ is a singular point of C_{0} we shall cail the line $y=\dot{z}=0$ for the tangent to C_{0} at p, and the plane $z=0$ for the osculating plane to C_{0} at p.

We call $k_{i}(p)=l_{i+1}-l_{i}$ the i th stationary index of the branch a.t the point (or of p, for short); thus $k_{0}(p)$ is the number of cusps of C_{o} at $p, k_{1}(p)$ the number of flexes (points of inflection), and $k_{r}(p)$ the number of stalls (points of hyperosculation). A point $\mathrm{p} \in \mathrm{C}$ with $I_{1}=I_{2}=I_{3}=0$ is called regular - there are only a finite nomber of non-regular points. The triple $\left(l_{1}+1, l_{2}+2, l_{3}+3\right)$ is called the type of p. If C maps to a plane curve, the type of p with respect to this map will be a pair $\left(m_{1}+1, m_{2}+2\right)$.

Let $\pi: P-\{v\} \rightarrow \overline{\mathbf{P}} \cong \mathbb{P}^{2}$ denote the projection from a point $v \in P$ onto a plane \bar{P}. The rational map $\pi / C_{0}: C_{0} \rightarrow \bar{P}$ is defined on C_{o} if $v \notin C_{0}$, and is in any case defined on C; by abuse of notation, we shall call this morphism π also.

Set $\bar{C}=\pi(C)$. juppose $p \in C$ is of type $\left(I_{1}+1, I_{2}+2, I_{3}+3\right)$. The point $\pi(p)$ on the corresponding branch or \bar{C} will be of type $\left(I_{1}+1, I_{2}+2\right)$, unless v is on the tangent to C_{0} at p.

Suppose v is on the tangent to C_{0} at p (but $v \neq h(p)$). Then the plane curve beanch will have type $\left(1_{2}+2,1_{3}+3\right)$. This cusp will be ordinary, i.e., of type (2,3), if and only if p was regular on C_{0}.

The nuinber $\delta(p)$ of (ordilary) double pointe if $\bar{\sigma}$ absorbed by the curp $\pi(p)$ derende of course on the type, hough it is not alwas s determined by it. For example, if $\left(l_{2}+2, l_{3}+3\right)=1$, then

$$
\delta(p)=\frac{1}{k}\left(l_{2}+1\right)\left(l_{3}+2\right)
$$

In particular,

$$
\delta(p)=\left\{\begin{array}{l}
1 \text { if } p \text { is a regular point } \\
3 \text { if } p \text { is an ordinary flex (i.e., } l_{i}=0, I_{2}=l_{3}=1 \text {). }
\end{array}\right.
$$

If p is an ordinary stall $\left(l_{1}=l_{2}=0, l_{3}=1\right)$, the type is no longer sufficient to determine $\delta(p)$. However, we have the followinf:

Lemma I: If $p \in C$ has a parametrization

$$
\begin{aligned}
& x=a t+\cdots \\
& y=b_{2} t^{2}+b_{3} t^{3}+\ldots \\
& z=c_{4} t^{4}+c_{5} t^{5}+\ldots
\end{aligned}
$$

with $a b_{2} c_{4} \neq 0$ and $b_{2} c_{5} \neq b_{3} c_{4}$, ther the projection of Co from a point on its tangent at p $\underset{\text { fives a cusp with }}{ }$ $\delta(p)=2$; in fact, the cusp is ramproid of the lst type.

Remark: Fecall thist a ramphoid cusp of the str type is one which cen be put in the form

$$
\begin{aligned}
& x=t^{2} \\
& y=a t^{4}+(\text { even powers } 0 ? t)+b t^{2 s+3}+(\text { hicher powers of } t),
\end{aligned}
$$

with $a b \neq 0$. Such a cusp is equivalent to s+1 ordinary double points.
Proof: The cusp $\pi(p)$ is equivalent to one of the form

$$
\begin{aligned}
\bar{y} & =y\left(b_{2}+b_{3} t \cdots \cdots\right)^{-1}=t^{2} \\
\bar{z} & =z\left(b_{2}+b_{3} t \cdots \cdots\right)^{-1}:=\left(c_{4} t^{4}+\ldots\right)\left(b_{2}^{-1}-b_{2}^{-2} b_{3} t+b_{2}^{-3}\left(b_{3}^{2}-b_{2} b_{4}\right) t^{2}+. .\right. \\
& =b_{2}^{-1} c_{4} t^{4}+b_{2}^{-2}\left(b_{2} c_{5}-b_{3} c_{4}\right) t^{5}+\ldots
\end{aligned}
$$

In order to detrrmine how many other tangents a given tangent to C_{0} meet, we necd to know the type of singularity we get when we intersect the angent developable of C_{0} wit 1 a plane containing a tangent.

Set $T(y)=$ the tancent to C_{o} at p, and let $\gamma=U_{p \in C} T(p)$ donote the tangent developable of C_{0}. If $p \in C$ has a parametrization $(+)$, then $h(p) \in X$ has a (formal) parametrizetion

$$
\begin{aligned}
& x=a t^{l_{1}+1}+\ldots+a\left(3\left(l_{1}+1\right) t^{l_{1}}+\ldots\right) \\
& y=b t^{I_{2}+2}+\ldots+s\left(b\left(l_{2}+2\right) t^{I_{2}+1}+\ldots\right) \\
& z=c t^{1}+3+\ldots+s\left(c\left(l_{3}+3\right) t^{I_{3}+2}+\ldots\right)
\end{aligned}
$$

Since $T(p)$ is given by $y=z=0$, a plane H containing $T(p)$ has an equation $\alpha y+\beta z=0$, with $\alpha \neq 0$ if and orly if H is not the osculating plane. Suppose it is not. Then $(H \cap X)_{r e d}=T(p) \cup D$, where the plane cuave D has a singularity of type $\left(1_{1}+1,1_{3}+3\right)$ at $h(p)$. Moreover, $T(p)$ is the tangent to D at $h(p)$. Thus we have proved the following:

Lemma 2: The intersection number of D with $T(p)$ at $h(p)$ is given by

$$
i(D, T(p) ; h(p))=I_{3}+3 .
$$

In §4 we shall seturn to a global study of the tangent developable X.

§3. On the existenc of casi idal nrojections

Let $C \subset P$ be a sm.joth, irreducible curve of degree $r_{0}=d$, genus g, and assume C is not contained in a pline. Denote by δ the number of ap parent double points of C, i.e., set

$$
\delta=\frac{1}{2}(d-1)(d-2)-g .
$$

Theorem 1: All curves CCP with $\delta \leqslant 3$, adnit a cuspidal projection.

Prof: Castelnuovo's bound on the genus of a space curve shows that $\delta \leqslant 3$ implies $d(d-2) \leqslant 12$, if d is even, and $(d-1)^{2} \leqslant 12$, if 1 is odd. Therefore there are only three cases to consider:

1) $C \subset P$ is a twisted cubic, i.e., $\delta=1, d=3, g=0$.
2) $C \subset P$ is an elliptic quartic, i.e., $\delta=2, d=4, \varepsilon=1$.
3) CCP is a rational quirtic, i.e., $\delta=3, d=4, \delta=0$.

If each case we shall describe the possible cuspidal projections.

Cise 1): The targent devolopable X of C has no singularities outside its cuspidel edge C (see §4). By projecting C from eny point on \mathbb{X} - C , we obtain a plane cubic with ore (ordinary) cuso. (Observe that, for derree reasons, any pr)jection of C is aecessarily birctional onto its image.)

Case 2): First (f all, C can have no flexes: Suppose p \in is a point of type $\left(1, I_{2}{ }^{+2,} I_{3}{ }^{+3}\right)$. The pencil $\left\{H_{\lambda}\right\}$ on C cut out by planes containing the tangent $T(p)$ hastbase point divisor equal to $\left(1_{2}+2\right)$ r. By Rier ann-Roch, then, we must have

$$
2=h^{0}\left(H-\left(I_{2}+2\right) p\right)=4-\left(I_{2}+2\right)+1-g=2-I_{2}
$$

(since l_{2} is equal to 0 or $l, H-\left(l_{2}+2\right)$ pis non-special), hence $I_{2}=0$. Moreover, the stall; of C are necessarily ordinary: since $d=4$, we have $l_{3} \leq 1$. Thus C has $k_{2}=16$ stalls ($\$ 4$).

We shall show thet C admits two kinds of cusoidal projections one gives a plane curve witi one ramphoid cusp, the other a plane curve with two ordjnary cusjs.

Suppose $v \in P-C$ is a po: nt such that the projection from $v, \pi: C \rightarrow \pi(c)$, is not birational. Then necessarily deg $\pi=2$ and $\operatorname{deg} \pi(y)=2$, so C is on a quadric cone with vertex v. Call this cone K. Now we know that C is the base locus of a pencil of quadrics. If C is on at least one smooth quadric, it will be on no more than 4 quadric cones, and K must be one of these. If C is not on a smooth quacric, there is a pencil of quadric cones containing C; we shall see below that this is impossible.

By the Riemann-Hurwitz formula, $\pi: C \rightarrow \pi(C)$ has 4 branch points, so K contains the tangents to C at 4 points. Let p be one of these. The tangent lane H to K along $T(p)$ intersects C only at p, hence with intersection rumber 4. Hence H is a hyperosculating plane to C, so p is a stall. Each of the 16 stall tangents thus intersects exactly 3 others, in the same point, and these points of intersection are the vertices of four quadric cones containing C. It follows thet these four cones are the only quadric cones that contain C.

Let $p \in C$ be a stall, end $v \in \mathbb{T}(p)$ any point different from p and different fron the vertex of the (unique) quadric cone containing C and $T(p)$. Then the projection π o: C from v is birational onto ite image, and $\pi(C)$ is a plane elliptic quartic with one remphoic crsp (necessarily of ;he lst type).

Consider now the nodal curve of C (the "doubl" curve" of the tan rent developable X). Note that it contains nu bitangents, since C cannot have any. Assume first that the lodal curve is double (of multiplicity 2) on X. Then the projertion of C from any point on it, not on C and different from th: 4 vertices of the cones, is biratioral onto \vdots ts image - the argusent above shows that otherwise all tangents are stall tangents \cdot. and the projected curse will have 2 crdinary rusps. That the noda curve is non empty, follows from the fac; that it has degree (see §4)

$$
b=\frac{1}{2}\left(r_{1}\left(r_{1}-1\right)-r_{2}-3 r_{0}\right)=\frac{1}{2}(8 \cdot 7-12-3 \cdot 4)=16
$$

Suppose the nodal curve hid a component which was of multiplicity greater then 2 on X. Then the projectio: of C from any point on that component cou d not be birational onto its image, hence the component would consist of vertices o:. quadric cones containing C. As we have sern, this is impossible.
(Thus we have shown that he nodal curve is duble; moreover, the forr vertices of the colses are quadruple points on the nodal curve - this checks with the fact that ohis curve has a double foint cycle of deg:ee $3 T=48=4 \cdot 4 \cdot 3$, see 34 .)

Cise 3): These curves have been classified b:r Telling [T]; she considered the various vays of projecting tlie rational nornal quartic in \mathbb{F}^{4} to \mathbb{P}^{3}. We shall distinguisl between two cases: a) the general rational quartic, b) the equianharmonic rational quartic.

Ooserve first thet we neec not worry about birationality: Let $v \in P-C$ be a point, $\pi: C \rightarrow \pi(C)$ the projection Irom it. If π is rot birational, then necessarily deg $\pi=2$, so C lies on a quadric cone - tris is imossible since C is rational.

In case 9), $C \subset P$ is a generic (or almost so) projection of the rationel normal que rtic in \mathbb{J}^{4}. It has only the kind of singularities that is predicted $k y$ dimension count - in particular the nodal curve is double. Tle taņen developable has T points of multiDlicity 3, given b, (§4)

$$
T=\frac{7}{6}\left(r_{1}-4\right)\left(\left(r_{1}-3\right)(r-2)-6 g\right)=4
$$

Among these triple points a e the $d(1,2)=4$ points where a tangent meets the curve aga: n - hence there are no points where 3 distinct tingents intersect (see also [1], p.55). It follows that such a C can not be projected oito a tricuspidal quartic.

For the number k. of flex and k_{2} of stalls, there are three oosíibilities (all flexes and stalls are ordinasy, since $d=4$).

Case a_{1}): $k_{1}=0, k_{2}=4$. (This is the most reneral C.)
The only possibls type of cuspidal projection is obtained by projecting C frol the (unique, see $\widehat{S} 4$) point of intersection of a stell tangent with a 10 ther tangent. Thie point is not on the curve: It is different from the stall ([T], pp.46-47). If it wes enother puint on tie curve, by projecting from it we would obtain a pane rational cubic with a raphoid (double) cusp - this is irnpossible.

Thus C admits ${ }^{(}$projection onto a plane rational quartic with one ordinar: cusp and one ramphoid cusp (necessarily of the lst type).

Case $\left.a_{2}\right): k_{1}=1, k_{2}=2$. This curve admits the same type of cuspidal project: on as the one above, but also an additional one: Projecting from : point on the flex tangent, one obtains a plane quartic with one cusp, of type (3,4).

Case a_{3}): $k_{1}=2 . k_{2}=0$. The projection fron a point of one of the two flex $\tan _{i}$ sents is the only type of possible cuspidal projection.

In case $b), C \subset P$ is the projection of the rational normal quartic from a general point on a certain quedric hypersurface in \mathbb{P}^{4} (this quad ic is the nucleus of the furdamental polarity, see $[\mathrm{T}], \mathrm{pp} .8,65)$. In this case, the nodal curve is triple, there are no flexes, aid hence 4 stalls (the nodal curve is a plane conic through these 4 points). The reason for the name of this curve, \vdots s that tie 4 stalls form an equianharmonic set on the curve (which meais their cross-ratios are equianharmonic). LIso, the $d(1,2)=4(\$ 4)$ points where a tank ent meets the curve again (the socalled steinerian points of C), are just the stalls ([T], p.66). The only way of obtaining a cuspidal projection of the equanharmonic quartic, is to project it from a point on its nodal curve, not on C. The projected curve is a tricuspidal ouartic (and all tricuspidal quartics are obtainable in this way).

It seems natural to believe that a general curve of degree d and genus g, with $\delta \geqslant 4$, does not admit a cusfidal projection. In fact, this would follow if we could prove the following.
(I) A general cucve CCP of degree d and gerus g has only such singularitie:s that are predicted by a dinension count (in particular, C has no flexes and only ordirary stalls, the nodal curve is doable, and there are no points of multiplicity greater than 3 on the tangent developable).
(2) For a general CCP, the projection from a point on a stall tengent gives a remphoid cusp of the lst type.

If (1) and (2) hold, then, for a general $C \subset P$, one can obtain only (the equivalent of) 3 or fewer cueps by projection - the types of projections are the ones described in the proof of Theorem 1.

If we want (1) to be true (without being tavtological), we must of course be careful about how to define "general". We have seen that for $d=4$ and $g=0$, (1) is true when " $£$ eneral" means "most curves of degree 4 and genus 0 ". With a similer definition, (7) fails for $d=4$ and $g=1$ (since these curves all have quadruple points on their tingent developable). So thougk there is a very netural definition of "general" in thia case - namely "the intersection of two generel quadrics" - it is not one that makes (I) hold. Moreovec, these general curves also have general moduli - hence it would not help to impose thet condition. AIl one can expect is therefore that an ad hoc version of (1) - sufficient for our purposes - would always be true. We shall prove "this for the case $\alpha=6$ and $g=4$. These are the canonical curves of genus 4 , and they are the complete intersection of a quadric and a cubic surface.

Suppose a curve C lies on a quadric surface Q, and that C is of type (a, b) on 2. If a or b is greater than 3, then C has an infinity of quadri-secants - a phenomenon which is not "predioted by a dimension cont". But then, curves that lie on a quadric are not usually (a (or big a or b) considered tc be "general". It turns out, however, that the property in (2) is easier to verify
for curvas that are the (complete) intersection of a quadric With another surface. We shall prove (2) for the case $d=6$ and $g=4$, i.e., for canionical curves of genus 4. Note that a curve C which is the intersection of a general quadric and a general cubic surface, has general moduli (i.e., C is general as a curve of genus 4).

Theorem ?: A geneal canonical curve CCP of genus 4 does not admit l cuspidal projection.

Proof: Since the mbedding of C is given by its canonical divisor, the non-egular points of CCP are its Weierstrass points. A general curve of given genus has only normal Weierstrass point; (e.g. [G-H], p.277), hence ve may assume that C has no fleses and only ordinary stalls. (If $p \in C$ has trepe $\left(1,1_{2}+2,1_{3}+3\right)$, then the gap sequence at p is $\left(1,2,1_{2}+3,1_{3}+4\right)$.)

Lemma 3: Let $C<F$ be a genral canonical curve, i.e., $C=Q \cap F$ is the intersection of a general quadric Q and a general cubic strface $\mathrm{F}^{\text {in }} \mathrm{F}$. L $\because \mathrm{t} \in \mathrm{C}$ be a stall and $\mathrm{V} \in \mathrm{P}$ - C a point on the tangent to C at p. If $\pi: C \rightarrow \mathbb{P}^{2}$ denotes the projection of C fron v, then $\pi(p) \in \pi(c) \subset \mathbb{P}^{2}$ is a ramploid cusp of the lst type.

Assume this lemna holds. If $\pi: C \rightarrow \mathbb{P}^{2}$ is : cuspidal projection 0 a general CCF , there are only 4 possibilities: $\pi(C)$ has 6 ordinary cusps, or 4 orcinary and l ramphois cusp, or 2 ordinary and 2 remphoid cisps, or 3 ramphoid cusps. The next tro lemmas imply that for a general C, none of these occur hence the proof 0 ? the theorem will be completed by establishing Lemmas 3, 4, and 3.

Lemma 4: Suppose 3 is the normalization of
(i.) a plane sexti: curve of genus 4, with 6 ofdinary cusps, or
(ii) a plane sextic curve of cenus 4 , with 4 ordinary cusps and 1 ramphoid clsp.

Then C does not have gereral moduli.

Lemme 5: If CCP is a general canonical curve of genus 4, then no two stall tanধents intorsect.

Proof of Lemma 3: Since ail smooth quadrics are projectively equivalent, we shall fix one; call it Q. Then the curves C are parametrized by cubic sur aces: Let $A=k\left[F_{i j k l}\right]$ denote the ring of coefficients of cubic, homogeneous polynomials in 4 variebles, and stt $\mathcal{F}=\sum F_{i j k I} X_{0}^{i} X_{1}^{j} X_{2}^{k} X_{3}^{l}$, the universal cubic. We have a (compltte intersection) map
$\Phi: \operatorname{Proj}\left(A\left[\bar{I}_{0}, X_{1}, X_{2}, X_{3}\right] /(Q, F)\right) \rightarrow \operatorname{Proj}(A)$.
Let $U \subset \operatorname{Froj}(A)$ le the open subscheme such that, if $\zeta=\Phi^{-1}(U)$,
$\Phi: C \rightarrow U$ is smooth, of relative dimension l. Thus we have a family of canorical curres of genus 4, containing the general ones.

The Weierstrass: points on the fibres of Φ form an effective, relative divisor W on C vver U. It can be defined as follows: There is a naturel homomonphism ([P] , §6)

$$
a^{g-1}: \Phi^{*} \bar{\Phi}_{*} \Omega_{e / U}^{1} \rightarrow \mathcal{P}_{e / U}^{g-1}\left(\Omega_{e / U}^{1}\right)
$$

Since $a^{\varepsilon^{-1}}$ is a rap betwe locally free sheaves of rank g, we can take its determinant

$$
\operatorname{det} \varepsilon^{g-1}: \Phi^{*} \Omega, \rightarrow \Lambda^{\xi} \rho-\frac{1}{C / U}\left(\Omega_{C / U}^{1}\right) \cong\left(\Omega_{C / U}^{1}\right)^{\operatorname{mg}(g+1)},
$$

where we have put $M=\Lambda \cdot \Phi_{*} \Omega \frac{1}{G / U}$. The corresponding section
defines the (rele.tive) Weierstrass divisor

$$
W=\operatorname{div}(v e / U) \in \operatorname{Di}^{r^{+}}(E / U)
$$

Replacing U by a smaller open, we may assume ;hat all Weierstrass points of the fires $\mathcal{C}_{u}=\Phi^{-1}(u)$ are norma, ie.,

$$
\# w_{u}=(\xi-1) g(g+1)=60
$$

for ell $u \in U$.

For $p \in C$, set $u=\Phi(p)$; then $p \in \mathcal{C}_{u}=Q \cap \mathcal{F}_{u}^{\prime} \subset \mathbb{P}^{3}$. Set $p_{0}=(1,0,0,0)$ ard Q_{0} the quadric defined by $r_{0} X_{3}=X_{1} X_{2}$. Define a scheme $\stackrel{\text { on by }}{ }$

$$
\left.\tilde{e}=\{(p, \alpha) \in e \times \text { GL } 3) \mid \alpha(p)=p_{0}, \alpha(1)=Q_{0}\right\} .
$$

Let $\varphi: \check{o}, \vec{e}$ denote tie projection. Then φ is smooth, of relative dimension 4: The fibres of φ are

$$
\varphi^{-1}(p)=\left\{\beta \in \operatorname{PGL}(3) \mid \beta\left(p_{0}\right)=p_{0}, \beta\left(Q_{0}\right)=Q_{0}\right\}
$$

Consider

$$
\begin{aligned}
& G=\left\{\beta \in \operatorname{PGJ}(3) \mid \beta\left(p_{0}\right)=p_{0}\right\} \\
& S=\left\{\text { quadrics though } p_{0}\right\}
\end{aligned}
$$

There is a surjertive map $\gamma: G \rightarrow S$, given by $\gamma(\beta)=\beta\left(Q_{0}\right)$, end $\gamma^{-1}\left(Q_{O}\right)=\varphi^{-l}(p)$. N ww the fibres of γ lave dimension 4 , since $\operatorname{cim} G=1!-3=1$, and $\operatorname{dim} S=9-1=8$.

We shell now define a rational map $\tilde{e}--\rightarrow A^{5}$. Suppose $(p, \alpha) \in \widetilde{\mathscr{E}}$. Then $u=\Phi(p)$ corresponds to a homogeneous cubic Folynomial
where the $F_{i j k l}$ ': are defined up to multiplication by the same non-zerc scalar. Note that $F_{3000}=0$, since $\nu \in \mathcal{C}_{u}=Q \cap F$. In afire coordis ate (x, f, z), with $X_{O} \neq 0$, tie equation of Q becomes $z=x_{i}^{\top}$, and substituting this in the affine equation cf F. we get a priynomial in two variables

$$
h(x, y)=\sum h_{i j} x^{i} y^{j},
$$

which, together with $z=\Sigma y$, determines C_{u}.
Assume now that $h_{01} \neq 0$ (i.e., $F_{2010} \neq 0$). S'hen we normalize the $h_{i j}^{\prime \prime}$: so that $h_{O l}=-1$. Expand y in terms of x :

$$
y=a_{1} x+a_{2} x^{2}+\ldots+a_{5} x^{5}+\ldots
$$

wiere

$$
\begin{aligned}
a_{1}= & 1_{10} \\
a_{2}= & a_{1}^{2} h_{02}+a_{1} h_{11}+h_{10} \\
a_{3}= & a_{2} h_{11}+2 a_{1} a_{2} h_{02}+h_{30}+a_{1} h_{21}+a_{1}^{2} h_{12}+a_{1}^{3} h_{03} \\
a_{4}= & a_{1}^{2} h_{13}+a_{1}^{2} h_{22}+a_{1} h_{31}+3 a_{1} a_{2} h_{03}+2 a_{-} a_{2} h_{12}+a_{2} h_{21} \\
& +a_{2}^{2} h_{02}+a_{3} h_{11} \\
a_{5}= & a_{4} h_{11}+2 a_{1} a_{4} h_{02}+2 a_{2} a_{3} h_{02}+a_{3} h_{21}+a_{2}^{2} h_{12}+2 a_{1} a_{3} h_{12} \\
& +3 a_{1}^{2} a_{3} h_{13}+a_{2} h_{3}+2 a_{1} a_{2} h_{22}+3 a_{1}^{2} a_{2} l_{13}+a_{1}^{2} h_{32}+a_{1}^{3} h_{23}
\end{aligned}
$$

etc.
Thus $p \in C_{U} \subset P$ ras a parmetrization

$$
x=x
$$

(*) $\quad y=a_{1} x+a_{2} x^{2}+\cdots$

$$
z=x y=a_{1} x^{2}+a_{1} x^{3}+\ldots
$$

Thus we have a map $\psi: \tilde{\zeta}^{\prime},-\rightarrow \mathbb{A}^{5}$, definel for all points $(0, \alpha)$ such that $h_{O 1} \neq 0$, by $\psi(p, \alpha)=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$.

Suppose (p, α) is such that $h_{O l}=0$. Then, since p is a snooth point of i_{u}, necossarily $h_{10} \neq 0$. W may then assume $h_{10}=-1$ to get ε paramet:rization

$$
\begin{aligned}
& \mathrm{y}=\mathrm{y} \\
& \mathrm{x}=\mathrm{h}_{\mathrm{O} 2} \mathrm{y}^{c}+\left(h_{\mathrm{O} 2}+h_{\mathrm{O} 3}\right) \mathrm{y}^{3}+\ldots \\
& \mathrm{z}=\mathrm{h}_{\mathrm{O} 2} \mathrm{y}^{-}+\left(h_{\mathrm{O} 2}+h_{03}\right) \mathrm{y}^{4}+\ldots
\end{aligned}
$$

Since, by assumption, \mathcal{C}_{u} has no flexes, we rust have $h_{02} \neq 0$, so p is a regular point of e_{u}. Hence $\psi(p, \alpha)$ is defined whenever $p \in W$, so we get a morphism

$$
\psi: \psi^{-1}(W) \rightarrow \mathbb{A}^{5} .
$$

Suppose ψ is defined at (p, α). The parametrization (*) is equivalent to

$$
\begin{aligned}
& x=x \\
& z=a_{1} x^{2}+a_{2} x^{3}+\ldots \\
& y=\left(a_{3}-a_{1}^{-1} a_{2}^{2}\right) x^{3}+\left(a_{4}-a_{1}^{-1} a_{2} a_{3}\right) x^{4}+\left(a_{5}-a_{1}^{-1} a_{2} a_{4}\right) x^{5}
\end{aligned}
$$

If $p \in W$, then $a_{3}=a_{1}^{-1} e_{2}^{2}$ holds, and - since any stall is ordinary - $a_{4} \neq a_{1}^{-1} a_{2} a_{3}$. According to Lemma 1 , the ramphoid cusp obtained by projecting the curve from a joint on the stall tangent $T(p)$, will be of the lat type if

$$
a_{1}\left(a_{5}-a_{1}^{-1} a_{c} a_{4}\right) \neq a_{2}\left(a_{4}-a_{1}^{-1} a_{2}{ }_{3}\right)
$$

holds.
Set $V=\left\{a \in \mathbb{A}^{5} \mid a_{1} \neq 0, a_{1} a_{4} \neq a_{2} a_{3}, a_{2}^{2}=a_{1}{ }^{\prime \prime} 3\right\}$.
Then $\psi\left(\varphi^{-1} W\right) \subset V$. Moreover, we claim that $\psi: \varphi^{-1}{ }_{W} \rightarrow V$ is generically surjective: By construction, $\psi: \tilde{\varepsilon} \rightarrow \mathbb{A}^{5}$ factors through the map

$$
\tilde{\varphi}: \tilde{E} \rightarrow \tilde{U}=\left\{u \in U \mid p_{0} \in \mathcal{F}_{u}\right\}
$$

defined by $\tilde{\varphi}(p, \alpha)=\alpha\left(\mathcal{F}_{\Phi(p)}\right)$.
Both this map and $U \rightarrow \mathbb{A}^{5}$ are generically surjective. Since $\psi^{-1}(\psi(\tilde{e}) \cap V)=\varphi^{-1} W$, the claim follows. ($\because f \varphi^{-1}{ }_{W}$ has more than one irreducible component, ψ is generically surjective on each of them, because of the homogeneous nature of the map ψ.)

Set

$$
\begin{aligned}
V_{1} & =\left\{a \in V \mid a_{1}\left(a_{1}^{2}-a_{2} a_{4}\right)=a_{2}\left(a_{1} a_{4}-a_{2} a_{3}\right)\right\} \\
& =\left\{a \in V \mid a_{1} a_{5}-a_{2} a_{4}=a_{2} a_{4}-a_{3}^{2}\right\} .
\end{aligned}
$$

Because of the independence of the defining eruations,

$$
\operatorname{dim} V_{1}=\operatorname{dim} V-I
$$

hence

$$
\operatorname{dim} \psi^{-1}\left(V_{1}\right)<\operatorname{dim} \varphi^{-1} W
$$

holds.
Since the property $(p, \alpha) \in \psi^{-1}\left(V_{1}\right)$ of tine point (p, α) is independent of α, the above inequality impliea

$$
\operatorname{dim} \varphi\left(\psi^{-1}\left(V_{l}\right)\right)<\operatorname{dim} W
$$

Set $U_{1}=\Phi\left(\varphi\left(\psi^{-1} V_{1}\right)\right)$, and let U_{1} denote its closure. The $\operatorname{map} \Phi \mid W: W \rightarrow U$ is finite and onto, therefore

$$
\operatorname{dim} U_{1}<\operatorname{dim} U
$$

Hence we have found $U_{0}=U-U_{1}$, open and non-empty, with the property that any curve $\mathcal{E}_{u}, u \in U_{O}$, is such that its stalls satisfy the condition of the lemma. //

Proof of Lemma 4: Suppose $\bar{C} \subset \mathbb{P}^{2}$ is a plane, irreducible curve of degree d. Let V denote its normal bundle,

$$
J=\mathrm{F}^{I}\left(\Omega_{\overline{\mathrm{C}}}^{I}\right)<\theta_{\overline{\mathrm{C}}}
$$

its jacobian ideal, and $\pi: C \rightarrow \bar{C}$ 1ts normalization. Set

$$
\mathscr{L}=\pi^{*} N \otimes J \theta_{C} .
$$

Denote by r the dimension of the space of $a=1$ plane curves of degree d with the same type (and number) of s ngularities as $\overline{\mathrm{C}}$, or, r is the dimension of the space of locally trivial deformations 0 C. It is known ($[\mathrm{A}]$; [̌ar], VIII, §5), tha; if \mathscr{L} is nonsoecial, then

$$
r=\operatorname{dim} H^{0}(C, \mathscr{L})=\operatorname{deg} \mathscr{L}+1-g=d^{2}-\operatorname{de}\left(J \theta_{C}\right)^{-1}+1-g .
$$

This gives ($\left[\mathrm{P}_{2}\right]$, 3.9)

$$
r=3 d+2 g-2-\operatorname{deg}]^{-1}+1-g=3 d+g-I-\operatorname{deg} I^{-1}
$$

wiere $I=F^{0}\left(\Omega_{C / \bar{C}}^{I}\right)$ is the ramification idea of $\pi: C \rightarrow \bar{C}$.

The line bundle \mathcal{L} is non-special if

$$
\operatorname{deg} \mathscr{L}=3 d+2 g-2-\operatorname{deg} I^{-1}>\quad \operatorname{g}-2
$$

hence if $\operatorname{deg} \mathrm{I}^{-1}<3 \mathrm{~d}$.
Apply the above to $d=6, g=4$. In case i), we have $\operatorname{deg} I^{-1}=6$, and in case (ii), deg $I^{-1}=5$. in both cases, therefore, \mathcal{L} is non-spec al. Thus we get $r=15$ in case (i), and $r=16$ in case (ii).

Modulc projective trans:ormations, the dime sion of the family is $r-\mathcal{E}$. Hence olane sextics with (exactly) 6 ordinary cusps form a family of dimension 7, and plane sexti ss with 4 ordinary and 1 remphoid cusp form a family of dimensio. 8. Since the moduli space of genus 4 curves has dimension $3 g-3=9$, a curve C which is the normalization of either of the above plane curves, cannot rave general modul... //

Remark: For plane sextics with the other two :onfigurations of cusps - 2 ordinary and \therefore ramphoid, or 3 ram hoid - we get families of dimensions 9 and lo, respectively Hence the above method gives no conclusion in those cases.

Proof of Lemma 5: Suppose Q is a smooth quadr c, and $C=Q \cap F$ a canonical curve. We obsorve that if p and q are distinct points of C lying on the same ruling L of Q, then the tangents $T(p)$ and $T(q)$ of c do not intersect. For, sup ose they did. Since the tangent planes ;o Q at p and q inte sect in L, this inplies $T(p)=T(q)=L$. Hence L is a bitang nnt to C and has irtersection multiplicity at least 4 with C, contrary to the fact thet L intersects the cubic surface F, hence also C, in (the equivalent $o l$) three points.

Let $p, q \in C$ be two points not on the same :ruling of Q. After a projective transformation, we may assume

$$
\begin{aligned}
& Q: X_{0} X_{3}-X_{1} X_{2}=0 \\
& p=(1, C, 0,0) \\
& q=(0, C, 0,1)
\end{aligned}
$$

The choice of coo:dinates gives us the coefficients ($\mathrm{F}_{\mathrm{ijkl}}$) of a cub.c polynorial F (determined modulo Q and up to scalar multiplication). ©ince $p, i \in C=Q \cap F$, we have $F_{3000}=F_{0003}=0$. The tangent plane; to Q and to F at p and q are given by

$$
\begin{array}{ll}
T_{Q}(\mathrm{p}): X_{3}=0 & T_{F}(p): F_{2100} X_{1}+F_{2010} X_{2}+F_{2001} X_{3}=0 \\
T_{Q}(q): X_{0}=0 & T_{F}(q): F_{1002} X_{0}+F_{0102} X_{1}+F_{0012} X_{2}=0 .
\end{array}
$$

The tang ants to C at p and q are

$$
\begin{aligned}
& T(p): r_{3}=0,2100 X_{1}+F_{2010} X_{2}=0 \\
& T(q): \zeta_{0}=0,010 Z_{1} X_{1}+F_{0012} X_{2}=0 .
\end{aligned}
$$

The two tangents intersect if and only if

$$
\mathrm{F}_{2100} \mathrm{~F}_{\mathrm{C} O 12}=\mathrm{F}_{03.02} \mathrm{~F}_{2010}
$$

holds.
Assume $\mathrm{F}_{2010} \neq 0$. The computations made in the proof of Lemma 3 show that the concition that p be a soall, is that the following equality holds:

$-F_{2010^{F_{2}}}^{2100^{F_{0}} 000}+F_{20.1 F^{3}}^{2} 2100^{F_{0210}}+F_{2010}^{3} 2100^{2} 1.101$

(This is the equation $a_{2}^{2}-a_{1} a_{3}=0$, where $a_{1}=h_{10}=$ $-F_{2010}{ }^{-{ }^{-1} F_{2100}}, a_{2}=\ldots$)

Note that this equation is invariant under the change
$F_{i j k l} \leadsto F_{i k j l}$. Since at least one of F_{2010} and F_{2100} is ron-zero, our as sumption ${ }^{\mathbb{E}}{ }_{2010} \neq 0$ does not n ean any loss of renerality.

If we change $F_{i, j k I}$ to ${ }^{T_{1 j k i}}$ in the above equation, we obtain the condition that the point q be a siall. These
conditions are seen, by inspection, to be independent, i.e., the fact that $T(p)$ and $T(q)$ intersect and p is a stall does not imply that q is a stall; or, if p and q are stalls, then by movin F (and reeping the stalls) we get a curve such that $T(p)$ and $T(q)$ don't intersect. Thus we may assume this to be true for any pair of stalla on a general canonical curve. In fact, similarly to the proof of Lemma 3, one can define

$$
D=\left\{(p, q, \alpha) \in C X_{U} C \times \operatorname{PGL}(3) \mid p, q \operatorname{stalls}, \alpha(p)=p_{0}, \quad, \quad \alpha(Q)=Q_{0}\right\}
$$

and consider the nap $D \rightarrow\left\{u \in U \mid p_{0}, q_{0} \in \mathcal{F}_{u}\right\}$ and argue as in that proof. //

Remark: By perforning the same computations for a curve which is the intersection of two quadrics (an elliptic quartic curve), we find that, if $T(p)$ and $T(q)$ intersect and p is a stall, then necessarily q is a stall too. This is just as expected, since we have already seen (in the proof of Theorem 1, Case 2)) that for such curves, any stall tangent intersects three other stall tangents but no other tangents.

Theorem 2 says that general cenonical curve; of genus 4 do not admit a cuspidal projection. There exist, however, canonical curves that do. Recall the following:

Let $S C P$ be a smooth surface of degree d, and suppose $\pi: S \rightarrow \mathbb{P}^{2}$ is the projection of S from a general point v. The curve of contact $C C S$ of S with respect to π can be defined as the ramification divisor $\Sigma^{l}(\pi)$ of π. Another degcription of C is that it is the intergection of S with the lat polar S_{1} of S with respect to v. The curve C has degree $d(d-1)$ and genus $g=\frac{1}{2} \alpha(d-1)(2 d-5)+1$; moroover, the number of cusps of $\pi(c)$ (these are ordinery, since π is a generic projection) is equal to the degree $\alpha(\alpha-1)(\alpha-2)$ of the ramification divisor $\Sigma^{1,1}(\pi)=\Sigma^{1}(\pi \mid c)$ of $\pi \mid c: C \rightarrow \pi(C)([P 3], \S 5)$.

Apply this to $\bar{c}=3$. Then $S: F=0$ is a cubic surface, its Ist polar $S_{1}: Q=\sum v_{i} \frac{\partial F_{i}}{\partial F_{i}}=0$ is a quadric, and the intersoction of the cubic and cuadric (not general as such) is a canonical curve C. The projected curve $\pi(c)$ has 6 ordinary cusps, hence no other singularities, and so $\pi: C \rightarrow \mathbb{P}^{2}$ is a cuspidal projection of (.

It is known thet a smooth curve $D=S_{1} \cap S_{2}$, where S_{i} is a surface of degree d_{i}, is such that all its shords through a general point $v \in P-D$ lie on a cone of degree $\left(d_{1}-1\right)\left(d_{2}-1\right)$ (Valentiner, Noether - see [B], p.204). This is seen as follows: The projection from $v, \pi: D \rightarrow \mathbb{P}^{2}$, is birational onto its image $D=\pi(D)$. The conductor ideal $\underline{C}=\underline{H o m} ;\left(\pi_{*} \theta_{D}, \theta_{\bar{D}}\right)$ of D in $\overline{\mathrm{D}}$ satisfies

$$
\pi_{*} \Omega_{\bar{D}}^{I}=\omega_{\bar{D}} \otimes \underline{C},
$$

where $\omega_{\bar{D}}=\theta_{\bar{D}}\left(d_{1} d_{2}-3\right)$ denotes the dualizin $;$ sheaf of \bar{D}. Since $\Omega \frac{1}{D}=\theta_{D}\left(A_{1}+d_{2}-4\right)$ holds, one sees the;

$$
H^{O}\left(\bar{D}, \underline{C} \otimes O_{\bar{D}}(m)\right) \neq 0
$$

if and only if $m \geqslant\left(d_{1}-1\right)\left(d_{2}-1\right)$. Therefore, the singularities of the plane curve \bar{D} (as defined by the conductor) lie on a curve of degree $\left(d_{1}-1\right)\left(A_{2}-1\right)$.

The following converse is also true (Halpher - see [B], p.204; [G-P], p. 32): Sup jose a curve $D \subset P$ has degree $d_{1} d_{2}$ and does not Lie on a surface $f f$ degree $<\min \left(d_{1}, d_{2}\right)$. If the chords to D through a (general) point v lie on a cone of cegree $\left(d_{1}-1\right)\left(d_{2}-1\right)$, then D is the comolete intersection of two surfaces of degrees d_{1} and d_{2}.

Therefore, a sextic curve $C \subset \mathbb{P}^{2}$ of genus 4 , with 6 cusps, is the projection of a canonical curve $C \subset P$ if and only if the cusps lie on a conic. As Zariski observes ([Zer], p.223), there are 6-cuspidal sextics without this property - they also form a l5-dimensional amily.

Kemark: I do not know whe her any 6-cuspidal sextic with all its cusps on a conic, can be obtained as the projection of the intersection of ε cubic surface with its lst polar.

Another questicn one can ask, is the following: Given d and g such that there \in xist space curves of degree 1 and genus g, does there exist one that admits a cuspidal projection?

Here are some cases where the answer is known to be yes: 1. $g=0$, all d.

The rational curves $\mathbb{P}_{k}^{1} \leadsto \subset \subset \mathbb{P}_{k}^{3}$, given by (u, v) \leadsto $\left(u^{d}, u^{d-1} v, u v^{d-1}, v^{d}\right)$, were shown by Hartshorn ${ }^{(1964,[H]}$) to be set-theoreticel complete intersections if shar $k>0$. Ferrand
[F1] observed that they admit a cuspidal projection: the projection of C from a point on one of the two inflectionary tangents give a rlane curve with a monomial cisp of type ($\mathrm{d}-1, \mathrm{~d}$); hence that plane curve can have no other singגlarities. (Ferrand went on to prove that any curve whici admits a cuspidal projection is a set-theoretical complete intersection in positive characteristic ([F1], 2.3).)
2. $g=1, d=4$.

All curves admit a cuspidal projection (Therem l).
3. $g=4, d=6$.

Examples were given above.
4. $g=1$ or $2, d=5$ or f .

Suppose $\bar{C} \subset \mathbb{P}^{2}$ is a culve of degree d and renus g, with $K=\frac{1}{2}(d-1)(d-2)-g$ ordinary cusps (hence no other singularities),
and let $\pi: c \rightarrow \bar{c}$ denote its normalization. [f $d>2 g$, then $\hat{O}_{C}(1)=\pi^{*} \theta_{\mathbb{P}^{2}}(1) \mid C$ is verr ample, hence it emiods C in \mathbb{P}^{N}, where $N=d-g$. By factojing the given projection $\mathbb{P}^{\mathbb{N}} \rightarrow \mathbb{P}^{2}$ generically via a \mathbb{P}^{3}, we obtain C embedded in \mathbb{P}^{3} and such that the projection $\pi: C \rightarrow \overline{\mathrm{C}} \subset \mathbb{P}^{2}$ is cuspidal.

Since there exist plene curves (because $\alpha \leqslant \sigma$, see [zar], p.222)
with

$$
\begin{array}{lll}
g=1 & d=5 & K=5 \\
& d=2 & d=6 \\
& d=5 & k=9 \\
& d=6 & K=8,
\end{array}
$$

the above method applies to these cases.
(There also exist plane curves of genus 3 and degree 5 (resp.6), with 3 (resp. 7) cusps, but here $d>2 g$ no longer holds.)

§1. The tangent developable and its singulari ies

Let $h: C \rightarrow C_{0} C P$ be as in the beginning of 3 . Recall that we oan describe the tangent developable of C_{0} in the following way [PI]: Let $\mathcal{\rho} \frac{m}{C}(1)$ lenote the $(m+1)$-bundle of pincipal parts of order m of the line bundle $\theta_{C}(1)=h^{*} \theta_{p}(1)$. There are canonical maps

$$
a^{m}: H^{O}\left(P, \vartheta_{P}(I)\right)_{C}=V_{C} \rightarrow \mathcal{P}{ }_{C}^{m}(I) .
$$

The cokernel of a^{l} is isomorphic to $\Omega_{c / p}^{l} \otimes \theta_{(1)}(1)$. Hence, since C is a smooth curse, the image $\rho^{l}=\operatorname{Im}\left(a^{l}\right)$ is a rank 2 bundle on C. Setting $Y=\mathbb{P}\left(\mathcal{P}^{1}\right)$ we get a closed embedrling $Y \Longleftrightarrow C \times P$. The tangent devel pable $X \subset P$ is then the image of Y under the projection onto tie second factor. Note that ;he map $f: Y \rightarrow X$ is finite (this is true in arbitrary characte:istic provided the curve C_{o} is not strange) and birational, hence the singularities of X are resolved by normelization.

For $m=2,3$ the homomorchisms a^{m} are also generically surjective, since C_{0} spans P. Set $\mathcal{\rho}^{m}=\operatorname{Im}\left(a^{m}\right)$. The bundle ρ^{2} represents the osculating planes of C_{o}, while ρ^{3} is isororphic to V_{C}.

Let r_{0} denote tie degret of C_{0} and g its (grometric) genus. The runk r_{1} of C_{0}, de ined as the number of tangents to C_{0} meeting a given (general) line, is equal also to the (egree of the tangent
 o;sculating planes containjing a given (general point.

Set $k_{i}=\sum_{p \in C} k_{i}(p), i=1,2,3$. We shall u_{i} e repeatedly the following formulas ([PI], 3.2):
(1)

$$
r_{1}=2 r_{C}+2 g-\varepsilon-k_{0}
$$

$$
\begin{align*}
& r_{2}=3\left(r_{0}+2 g-2\right)-2 k_{0}-k_{1} \tag{1}\\
& k_{2}=4\left(r_{\jmath}+3 g-3\right)-3 k_{0}-2 k_{1} .
\end{align*}
$$

The rank and class also have interpretations; in terms of dual varieties. Recall that the dual variety $\underset{\mathbf{Z}}{\mathbf{C}} \mathbb{\mathbb { P }}^{11}$ of a variety $Z \subset \mathbb{P}^{n}$ is defined as the closure of the set of hyperplanes tangent to Z at smooth points. The dual variety $\check{C} \subset \stackrel{\sim}{P}$ of $C_{0} \subset P$ is thus a ruled surface, in fact it is the tangent developable X^{*} of the curve $C^{*} C^{\breve{P}}$, wase points are the osculating planes of C_{0}.

We shall call C^{*} the dual curve of C_{0}. Since char $k=0$, biduality holds: The dual variety of ${ }_{C}^{C}=X^{*}$ is the curve N_{0} (which is also the dual curve of C^{*}), and the dual variety of C^{*} is the tangent developable X of C_{0}. One of the characterizations of a developable surface is just that it is a ruled surface whose tangent planes are constant along a generator, i.e., whose dual variety is a curve.

We have

$$
\begin{aligned}
& r_{1}=\text { degree of } X=\text { degree of } X^{*} \\
& r_{2}=\text { degree of } C^{*}=\text { rank of } X
\end{aligned}
$$

For the stationary indices k_{i}^{*} of C^{*} we have the duality

$$
k_{i}^{*}=k_{2-i}, i=0,1,2
$$

Remarks: 1) For the duality between C_{0} and C^{*}, see e.g. [PI]. Moreover, let $G=\operatorname{Grass}_{2}(V)$ denote the Grassminn variety of lines in P and $G^{*}=G r e s s_{2}\left(V^{V}\right)$ the Grassmannian of .ines in \mathscr{P}. Then X can be considered as a curve $\Gamma \subset G$; in fact. $C \rightarrow G$, defined by the quotient $V_{C} \rightarrow \mathcal{P}^{l}$, is the lst associated map of c_{0}.
Likewise, X^{*} corresponds to a curve $\Gamma^{*} \subset G^{*}$, and the curves Γ and Γ^{*} are equal under the natural identification $\left.G \cong G^{*}([P]], 5.2\right)$. The fact that the ruled strface X (resp. X^{*}) is developable, is reflected on the curve Γ (resp. Γ^{*}) by the fact that its tangents are all contained in $G\left(r \in s p . G^{*}\right)$.
2) A proof, alolg the seme lines, of the equality $\check{X}=C^{*}$ can be obtained using the functoriality of the bundles of principal parts $([1], \S 6):$ If $q: Y=\mathbb{P}\left(\rho^{l}\right) \rightarrow C$ denotes; the structure map, one shows that $q^{*} a^{I}: q^{*} V_{C} \rightarrow \rho^{*} \rho^{2}$ factors thiough $a_{Y}^{I}: V_{Y} \rightarrow \rho_{Y}^{I}(1)$, where $\mathcal{P}_{Y}^{L}(I)$ denotes the principal parts of order 1 of the line bundle $\theta_{Y}(I)=f^{*}\left(\left.\theta_{P}(1)\right|_{X}\right)$. Since a_{Y}^{1} is gentrically surjective, $\operatorname{In}\left(a^{1}\right)$ and $A^{*} \rho^{2}$ are isomorphic as quotients ($f V_{Y}$, and hence the dual map of $X \in P$ s defined on the normalization Y of X and has for image $C^{*} C$ P.
3) Since the $d u \cdot i$ map of X is defined on Y, it follows that the Nash transformation of X is equal to the normelization $f: Y \rightarrow X$. Now Y is smooth, lence the singular points of X are such that the local Euer obstmction is equal to the multiflicity ([$L-T], 6.1 .4$).

Let us examine the singularities of the tan rent developable X of C_{0}. Since X has smooth normalization, it is of the type studied in [P3] - we shall use results and notations from there.

The surface X has degree $\mu_{0}=r_{1}$, rank $\mu_{1}=r_{2}$, and class $\mu_{2}=0$. Its cuspidal edse consists of the curve c_{0} and the tangents at flexes (taken with proper multiplicities) of C_{0}, hence has degree

$$
c=r_{0}+k_{1}
$$

This can (also) be seen as follows: The cuspidal edge is the image of the ramification divisor R of $f: Y \rightarrow X, h$ nce it is defined by the ideal $\left.F^{0}\left(\Omega_{Y / X}^{1}\right)=F^{0}\left(\text { Coker } a_{Y}^{1}: V_{Y} \rightarrow\right]_{Y}^{1}(1)\right)$. A local study of a_{Y}^{I} gives the support of R; moreover, it follows that the rational equivalence class of R is given by

$$
[R]=\left(c_{1}\left(\rho_{Y}^{1}(1)\right)-c_{1}\left(q^{*} \rho^{2}\right)\right) \cap[Y]
$$

since $\operatorname{Im}\left(a_{Y}^{1}\right)=q^{*} \rho^{2}$. Usin the standard exact sequences
(2)

$$
0 \rightarrow \mathrm{q}_{\mathrm{K}}^{*} \Omega_{\mathrm{C}}^{1} \rightarrow \Omega_{\%}^{Y} \rightarrow \Omega_{\mathrm{Y} / \mathrm{C}}^{1} \rightarrow 0
$$

and

$$
\begin{equation*}
0 \rightarrow \Omega_{\mathrm{Y}}^{\mathrm{J}} / \mathrm{C} \otimes \theta_{\mathrm{Y}}(\mathrm{l}) \rightarrow{ }_{q}^{*} \rho^{1} \rightarrow \theta_{\mathrm{Y}}(1) \rightarrow 0, \tag{3}
\end{equation*}
$$

one obtains

$$
[\mathrm{R}]=\left(\mathrm{q}^{*}\left(\mathrm{c}_{1}\left(\Omega_{l}^{]}\right)+c_{1}\left(\rho^{1}\right)-c_{1}\left(\rho^{2}\right)\right)+c_{1}\left(g_{Y}(1)\right)\right) \cap[Y] .
$$

This gives

$$
c=\operatorname{deg} f_{*}[R]=2 g-2+c_{1}-r_{2}+r_{1}=r_{2}-2 r_{1}+r_{C}+k_{1}+2 r_{1}-r_{2}=r_{0}+k_{1} .
$$

In addition to the cuspidal edge, the developable X has a couble (or higher multiple) curve, celled the nodal curve of C_{0}. It consiste of pints that are on more than one tangent to C_{0}. Eventual bitanger.ts to C_{0} are part of the nodal curve.

Let b denote the degree of the nodal curve. If the nodal curve is double and the flexes of C_{o} are ordinary, we get from ([P3], Th.4)

$$
2 b=\mu_{0}\left(\mu_{0}-1\right)-\mu_{1}-3 c=r_{1}\left(r_{1}-1\right)-r_{2}-3\left(r_{0}+k_{1}\right) .
$$

If the nodal cume consists of curves D_{j}, where D_{j} is ordinary j-multiple, then the degrees b_{j} of D_{j} satisfy ([P3], §4)

$$
\sum j(j-1) b_{j}=r_{1}\left(r_{1}-1\right)-r_{2}-3\left(r_{0}+k_{1}\right)
$$

(still assuming the flexes to be ordinary).
The cuspidal edge and the nodal curve may tiemselves be singular, and also they have points of intersection - the points on X of higher multiplicity are found among these. In particular, if the nodal curve is double and the flexes ordinary, X will have a finite number of points of multiplicity $\geqslant 3$. [n fact, one can define a triple point cycle $\left[\mathrm{N}_{3}\right]$ on Y, with respect to $f: Y \rightarrow X$ ($[\mathrm{K}], \mathrm{Ch} . \mathrm{V}$), and the number

$$
T=\frac{1}{6} d \epsilon g \quad f_{*}\left[M_{3}\right]
$$

will be called the (total) number of triple points of X. Note that this number is w wl defined even if the nodal curve is not double and the flexes ale nut ordinary, since $\left[M_{3}\right]$ is defined as the double point cycle of the map from the double point scheme of f to Y (see $[K]$, loc.cit.). k in ($[\mathrm{P} 3]$, §5) we shal. apply Kleimen's triple point formula $([K], V 82)$ to compute T.

Proposition 1: Tre total number T of triple points of the tangent developalle X of C_{0} is given by

$$
T=\frac{1}{6}\left(r_{1}-4\right)\left(\left(r_{1}-3\right)\left(r_{1}-2\right)-6 g\right)
$$

Remarks: 1) Suppcse $S \subset P$ is a ruled (non-derelopable) surface of degree m and $\{e n u s g$, with ordinary singularities, i.e., a double curve, a jinite nunber of pinch points, and a finite number t of (ordinary) riple points. Then t is given by (e.g.[K], V84)

$$
t=\frac{1}{6}(m-4)((m-3)(m-2)-6 g)
$$

Now t is also equal to the number of tritarigent planes to S : since the dual veriety $\check{S} \subset \stackrel{\vee}{P}$ is a ruled surface which is also of degree m and ξ;enus g, the number \check{t} of triple points of S has the same expression as t, and the triple points of S are just the tritangent p-anes of 3 .

Similarly, The tritangent planes to the developable X correspond to the triple ooints of the dual variety of C_{0}, which is the tangent duvelopable X^{*} of $C^{*} \subset \check{P}$. Since S^{*} has the same rank
and genus as C_{0}, the number \mathscr{T} of triple points of X^{*} is equal to T.
2) The observations made in 1) show that the total namber 0 triple points on a ruled surface (developable or not) is equal to its number of tritangent planes, and that this nimioer is determi led by its genus and its degree viewed as a curve Γ in the Grassmenn variety G of lines in P. Note that a triple point of the muled surface corresponds to a Schubert; cycle $\sigma_{2,0}$ (consisting of all lines through the point) on G which is trisecant to Γ. A tritange it plane corresponds to a Schubert cycle $\sigma_{1,1}$ (lines in the plaie) which is trisecant to Γ. Now the $\sigma_{2,0^{-}}$ planes in G corresponds to the $\sigma_{1,1}$-planes in G^{*}; since $\Gamma^{*}=\Gamma^{*}$ under the identification $G=G^{*}$, the equality between the number of triple points and the number of tritangent planes is justified.

Proof: With notations as in ([P3], §5), let $\Gamma_{c} \subset Y$ denote the reduced ramification locuc of $f: Y \rightarrow X$, and $\Gamma_{b} \subset Y$ the reduced iaverse image via f of the nodal curve. Set $i=\left(\Gamma_{b}, \Gamma_{c}\right)$, and let $W=\mathcal{A}^{*} \Omega_{P}^{I}-\Omega_{Y}^{1}$ denote the virtual conormal bindle of $f: Y \rightarrow P$.

We shall apply Kleiman's triple point formuia ([K], V.82) as in ([p3], p.225) - to the map f. This we can do, because the double point scheme of f has the expected dimension, namely l ([K], p.387). Assume now that the nodal curve is double and the flexes of C_{0} are ordinary. Then the formula yields

$$
3 T=\frac{1}{2} \operatorname{deg} \varepsilon_{*}\left[M_{3}\right]=\left(\Gamma_{b}^{2}\right)+4\left(\Gamma_{c}^{2}\right)+4 i \cdots r_{1}(b+c)+c_{2}(\mathcal{W})
$$

Lemma 6: (i) $\left(\Gamma_{\mathrm{c}}{ }^{2}\right)=2-2 \xi+\mathrm{k}_{\mathrm{O}}+2 \mathrm{k}_{1}$
(ii) $\left(\Gamma_{j}{ }^{2}\right)=\left(r_{1}-1\right)\left(r_{1}{ }^{2}-7 r_{1}-2 k_{0}-4 k_{1} .+9 r_{1}+6 k_{0}+12 k_{1}\right.$
(iii) $i=\left(r_{1}-4\right)\left(r_{0}+k_{1}\right)-k_{0}-2 k_{1}$
(iv) $c_{2}(N)=2\left(r_{1}+2 g-2\right)$.

Proof of the lemmi: (i) Write $\Gamma_{c}=C u U_{i} F_{i}$, where $\left\{f\left(F_{i}\right)\right\}$ are the flex tengents to C_{0}, and $C \subset Y$ is the sec ion of $q: Y \rightarrow C$ given by the quotient $\mathcal{P}^{l} \rightarrow \theta_{C}(I)$. If $\mathcal{W}_{C, Y}$ denotes the
conormal bundle of C in Y, then $\left(C^{2}\right)=-\operatorname{deg} N_{C / Y}$. From the exact sequences (2), (3), and

$$
\left.0 \rightarrow \mathcal{N}_{\mathrm{C} / \mathrm{Y}} \rightarrow \Omega_{\mathrm{Y}}^{1}\right|_{\mathrm{C}} \rightarrow \Omega_{\mathrm{C}}^{1} \rightarrow 0,
$$

and the fact $\left.q^{*} \Omega_{\mathrm{C}}^{\mathrm{l}}\right|_{\mathrm{C}}=\Omega_{\mathrm{c}}^{\mathrm{l}}$, it follows that

$$
\operatorname{deg} N_{C / Y}=\operatorname{deg} \Omega_{Y / C}^{I}=\operatorname{deg} P^{I}-2 \operatorname{deg} \theta_{Y}(I)=r_{I}-2 r_{0}=2 g-2-k_{0}
$$

The formula follcws from this, since we have $\left(C, F_{i}\right)=1$ and $\left(F_{i}, F_{j}\right)=0$.
(ii) Set $\left.H=c_{1}\left(f^{*} \theta_{X}(1)\right) \cap \mid Y\right]$ and $\check{H}=c_{1}\left(V^{*} \theta_{\bar{P}}(1)\right)_{n}[Y]$, where $\stackrel{\sim}{f}: Y \rightarrow \stackrel{Y}{\mathbf{F}}$ denotes, the dual map of X (recall tat $\breve{f}(Y)=C^{*}$, the dual curve of $\left.C_{0}\right)$. Then we have ($[P 3]$, §5)

$$
\left[\Gamma_{b}\right]=\left(r_{-}-1\right) H-3\left[\Gamma_{c}\right]-\check{H}
$$

Since we have $\left(H^{\prime \prime}\right)=\mu_{0}=r_{1},(H, \breve{H})=\mu_{1}=r_{2}$, and $\left(\stackrel{\rightharpoonup}{H}^{2}\right)=\mu_{2}=0$, this and (i) imply

$$
\left(\Gamma_{b}^{2}\right)=r_{1}\left(r_{1}-1\right)^{2}+9\left(2 k_{1}+1 r_{0}-2 g+2\right)-6\left(r_{1}-1\right)\left(r_{0}+s_{1}\right)-2 r_{2}\left(r_{1}-1\right)+6 r_{2}
$$

The stated formula is a rewriting of this one, using the relations (l) between the $r_{i}^{\prime} s$ and k_{i} 's stated in the beginaing of $\S 4$.
(iii) The expressions for $\left[\Gamma_{b}\right]$ and $\left[\Gamma_{c}\right]$ given above give

$$
i=\left(\Gamma_{\mathrm{b}}, \Gamma_{\mathrm{c}}\right)=\left(r_{1}-1\right)\left(r_{0}+k_{0}\right)-3\left(2-2 g+k_{0}+2{s_{1}}\right)-\sigma,
$$

where $\sigma=\left(\Gamma_{c}, \breve{H}\right)$ is the class of immersion of $f\left(\Gamma_{c}\right)$ in X, i.e., τ is the degree of $\left.\underset{f}{\underset{f}{(})} \Gamma_{c}\right)$ in $\stackrel{\vee}{P}$. But $\underset{f}{f}\left(\Gamma_{c}\right)=\sigma^{*}$, hence $\sigma=r_{2}$. The rest is again formal anipulations.
(iv) By the definition of \mathcal{N},

$$
\begin{aligned}
c_{2}(\mathcal{N}) & =c_{2}\left(f^{*} \Omega_{P}^{1}-\Omega_{Y}^{1}\right) \\
& =c_{2}\left(f^{*} \Omega_{P}^{1}\right)-c_{1}\left(f^{*} \Omega_{P}^{1}\right) c_{1}\left(\Omega_{Y}^{1}\right)+c_{1}\left(\Omega_{Y}^{1}\right)^{2}-c_{2}\left(\Omega_{Y}^{1}\right) \\
& =6 c_{1}\left(\theta_{Y}(1)\right)^{2}+4 c_{1}\left(\theta_{Y}(1)\right) a_{1}\left(\Omega_{Y}^{I}\right)+c_{1}\left(\Omega \frac{1}{Y}\right)^{2}-c_{2}\left(\Omega_{Y}^{1}\right) .
\end{aligned}
$$

Now $q: Y \rightarrow C$ is i ruling, so $c_{1}\left(\Omega_{Y}^{1}\right)^{2}=2 c_{2}\left(S_{Y}^{1}\right)$ and

$$
\begin{aligned}
c_{1}\left(\Omega_{Y}^{I}\right) & =c_{1}\left(\Omega_{C}^{1}\right)+c_{1}\left(\Omega \frac{I}{Y} / C\right) \\
& =c_{1}\left(n_{1}^{*} \Omega_{C}^{I}\right)+c_{1}\left(q^{*} \rho^{1}\right)-2 c_{1}\left(\theta_{Y}(1)\right), \\
c_{1}\left(\Omega_{Y}^{I}\right)^{2} & =-4(2 g-2) .
\end{aligned}
$$

Fence,

$$
c_{2}(N)=6 r_{1}+4\left(2 g-2+r_{1}-2 r_{1}\right)-2(2 g-2)=2\left(r_{1}+2 g-2\right) \cdot / /
$$

To finish the proof of the proposition, use the lemma on the terme in the trijle point formula to obtain

$$
3 T=\frac{1}{2} r_{1}\left(\left(r_{1}-1\right)\left(r_{1}-2\right)-3 r_{0}-3 r_{2}+22-3 k_{1}\right)-10 r_{0}+2 r_{2}+6 k_{0}+2 k_{1}-2(2 g-2),
$$

and then apply (1) to eliminate r_{0}, r_{2}, and k_{0}.
Though we assumed for simplicity the nodal surve to be double and the flexes to be ordinary, the same formula is valid in the general case: Replace Γ_{b} by $\sum_{j}(j-1) \Gamma_{b_{j}}$, if $f\left(\Gamma_{b_{j}}\right)$ is
$j-m u l t i p l e ~ o n ~ X . ~ I f ~ t h e ~ f l e x e s ~ a r e ~ n o t ~ o r d i n a: r y, ~ e a c h ~ F_{i}$ will count with a multiplicity m_{i} in the double point cycle of f. Adjusting the expeessions of the lemma accordingly, and plugging them into the triple point formula, one obsermes that the "bad" terms disappear, and one is left with exactly the same expression.

Assume now that the nodal curve is double and the flexes ordinary. The poiats of multiplicity $\geqslant 3$ of X contains: the Z points where thres distinct tangents to C_{0} meet, the γ intersections (outside C_{o}) of the nodal curve with the flex tangents, the $d(1,2)$ points where a tangent to C_{0} cuts C_{0} again, the k_{0} cirsps and the k_{1} ?lexes of C_{0}.

Zeuthen gives the following formulas for t and $d(1,2)[z]:$

$$
\begin{aligned}
& t=\frac{1}{6} r_{1}\left(r_{1}{ }^{2}-3 r^{\left.-9 r_{0}-3 r_{2}-9 k_{1}\right)+\frac{1}{3}\left(39 r_{0}-29 r_{1}+21 r_{2}+39 k_{1}\right),}\right. \\
& d(1,2)=r_{1}\left(r_{0}-1\right)+4 r_{0}-6 k_{0}-2 k_{1} .
\end{aligned}
$$

(For a proof when $k_{0}=k_{1}=0$, see $[G-H]$, p.2ऽ4. A formula for d(1,2) including the flexes is given by Le Barz [LB], also under

The assumption that C_{0} is smooth.)

Lemma 7 : $\quad \gamma=\left(r_{1}-6\right) k_{1}$.
Proof: Let H be a plane containing a tangent $I(p)$ to C_{0}, and assume H is not osculating. Then $H \cap X=D \cup\left(I_{2} I_{1}+1\right) T(p)$, where the plane curve D has degree $r_{1}-\left(1_{2}-I_{1}-1\right)$ and a singularity of type $\left(I_{1}+1, I_{3}+3\right)$ at $h(p)$. By lemma $2, D$ and $T(p)$ have intersection number $I_{3}+3$ at $h(p)$. The number of intersections of $T(p)$ and X outside $h(p)$ is thus equal to

$$
\begin{aligned}
\gamma(p) & =r_{1}-\left(I_{2}-I_{1}+1\right)-1 \\
& =r_{1}-4-k_{2}(p)-2 k_{1}(p)-k_{0}(p) .
\end{aligned}
$$

In particular, the tangent $T(p)$ meets

$$
\left.\begin{array}{l}
r_{1}-4 \\
r_{1}-5 \\
r_{1}-6
\end{array}\right\} \quad \text { other tangents if }\left\{\begin{array}{l}
p \text { is a regular point } \\
p \text { is an ordinary cusp } \\
\text { or an ordinary stall } \\
p \text { is an ordinary flem. }
\end{array}\right.
$$

Remarks: l) With the above formulas, we obtain the following equality:

$$
T=t+d(1,2)+\gamma+k_{0}+2 k_{1}
$$

Why the flexes, es opposed to the other tripla points of X, appear with multiplicity 2, remains a mystery...
2) The stalls of C_{b} are also points where tio nodal curve intersects the cuspidal edge, but these pointis are singular on neither curve and are of rultiplicity 2 on X they are in fact "cuapidal" Whitney umbrellas).

In ([Pl],5.1(ii)) it is shown that the dual (plane) curve of a generic plane rrojection of $C_{0} \subset P$, is equa to the corresoonding plane section of the dual variety $\mathrm{X}^{*}: \check{\mathrm{P}}$ of C_{0}. Going
through that proof, one verifies that the gen ricity assumption is in fact unnecessary. Therefore, the result: on the nature of the singularities of plane sections of the derelopable (§2), could also have been obtained by duality from the knowledge of the singularities of plane projections. No;e that if p is a point of type $\left(l_{1}+1, l_{2}+2, l_{3}+3\right)$, then the co:responding point on the dual curve c is of type $\left(1_{3}-1_{2}+1,1_{3} \cdot 1_{1}+2,1_{3}+3\right)$ (see e.g.[B],p.184).

Bibliography

[A] M.Artin, Deformation theory, Course at M.I.T., 1974.
[B] H.F.Baker, Princlples of geometry, Vol.V, Cambridge Univ. Press, Cambridge 1939.
[FI] D.Ferrand, "Jet-theoretical complete intersections in chacecteristic p>0". In Algebraic Geomet ry, Copenhagen 1978, ed.K.Lønsted, Springer LNM, Vol. 732 (197s),
[F2] - , "Commentaires à "Set-theoretical ..."". Preprint, 1979.
[G-H] P.Griffiths and J.Harris, Principles of Elgebraic geometry, Wiley Intersoience, New York 1978.
[G-P] L.Giuson and C.Peskine, "Genre des courbes de l'espace projectif". In Algebraic Geometry, Tromse 1977, ed.I.Olson, Springer LNM, Vol. 687 (1978), 31-59.
$[H]$ R.Hartshorne, "Complete intersections in characteristic $p>0$ ". Am. J.Math., LOI(1979), 380-383.
[K] S.L.Kleiman, "The enumerative theory of singulerities". In Real and complex sineularities, Oslo 197E, ed.P.Holm, Sijthoff \& Noordhoff, Groningen 1978.
[I-T] Lê J.T. and 3.Teissier, "Variétés polaires locales et classes de Cherm des variétés singulières". Preprint, Ecole Polytechnique 1979.
[LB] P.LeBarz, "Validité e certaines formules de geometrie énunerative". To appear in C.R.Acad.Sc.Ptris.
[P]] R.Piene, "Nunerical characters of a curve in projective n-space". In Real and complex singularities, Oslo 1976, ed. P.Holm, Sijthoff \& Noordhoff, Groning(n 1978.
[Pc] - , "Polar classes of singular varieties". Ann.scient. Éc. vorm.Sup., 11 (197ध), 274-276.
$[P .3]$ - , "Some formules for a surface in $\mathbb{P}^{3} "$. In Algebraic Geonetry, Tromsø 1977, ed.L.Olson, Sprin̨ er LNM, Vol. 687 (1978), 196-235.
[T] H.G.Telling, The rational quartic curve in space of three and four dimensions, Cambridge Tracts no. 34, Cambridge Univ. Press, Cambridge 1936.
[Zar] 0.Zariski, Algebreic surfaces, 2nd ed., ipringer Verlag, Berlin-Heidelberg-Nev York 1971.
[Z] H.G.Zeuthen, "Sur les singularités ordineires d'une courbe gauche et d'une surffce développable". Ar n. di Met., Ser. 2, 3(1369), 175-217.

Matematisk institutt
Universitetet i Oslo
P.b. 1053 Blindern

Oslo 3
Norway

