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A service provider/retailer offers ancillary service (e.g. shipping by an online retailer) to
two types of customers, impatient and patient, who may be heterogeneous both in their
delay sensitivities and service valuations. She can use prioritization and/or strategic delay
to differentiate them by offering two service classes and charging different prices, potentially
resulting in a split in which a single customer type selects both the classes. Her objec-
tive is to minimize cost while satisfying individual rationality and incentive compatibility
conditions. We characterize the optimal solutions under both exogenous and endogenous
capacities. We examine the conditions under which the following strategically important
features of service delivery are optimal, and relate them to practical scenarios: (i) free ser-
vice, (ii) single/differentiated service, (iii) split of customers, and (iv) strategic delay. We
find that the presence of these features depends on (i) whether the retailer has limited or
sufficient capacity and (ii) whether she sells fashion goods or staple products. A typical
explanation for offering free service is that it increases demand from customers. We make
an operational case for it by showing that even if demand does not change, free service is
still optimal under some scenarios.

Keywords: service operations, heterogeneity, prioritization, e-Commerce, free-shipping

1. Introduction

We consider a service provider (SP) who offers an ancillary service to her customers. We

define a certain service to be an ancillary service if it satisfies the following two aspects:

first, it is not a part of the primary services (or products) that the SP sells to its customers

even though it provides value to these customers; second, the provision of this service is

managed as a cost center, i.e., all the demand from customers needs to be satisfied while

minimizing the cost. As we discuss below, shipping of products by online retailers is an

example of such an ancillary service, and it is our main motivating example for the paper.

Although ancillary services are costly, they are sometimes offered for free. We recognize that
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customers of such services may be heterogeneous both in how much they value them (value

heterogeneity) and their delay sensitivity, the rate at which the valuation decreases over

time (delay heterogeneity). Such heterogeneity is commonly observed in contexts involving

service operations (e.g., see Afeche (2013), Allon and Federgruen (2009)). The SP can

differentiate the customers using two simple mechanisms: (i) prioritization in which she

prioritizes providing the service to some customers and (ii) strategic delay in which she

deliberately delays it to some of them. Strategic delay has been considered in the past in the

service operations management literature1. We investigate the impact of (value and delay)

heterogeneity and SP’s capacity on the optimality of free service and how she delivers the

service and differentiates the customers. Next, we discuss about shipping by online retailers,

how it can be considered as an ancillary service, and different shipping policies.

Shipping is a key business component for most online retailers. While economies of scale

and the lack of maintenance and operating costs associated with “brick and mortar” retail

stores help them, shipping costs them money. For instance, Amazon.com made a loss of about

3.5 billion US dollars due to shipping costs in 2013 (Forbes 2014). Shipping is an important

factor not only for retailers but also for customers. An important reason why more customers

are purchasing their products online is because they can get it shipped conveniently to the

comfort of their homes; however, delays in shipping the orders can have adverse impacts

on customer satisfaction. A vital question for such retailers involves the shipping policy

that is used and how the shipping service is delivered. For instance, Zappos.com offers

free-shipping to all customers (Zappos.com 2014). Amazon.com, its parent company, has

a “standard” paid-shipping option and a “free” shipping option (for products/orders that

qualify). Furthermore, standard shipping typically takes 3-5 business days while free shipping

takes 5-8 business days (Amazon.com 2014), suggesting that customers who choose different

options are heterogeneous in their delay sensitivity and how much they value shipping.

Overstock.com, one of Amazon’s competitors, used to charge a flat rate for standard shipping

earlier but now employs a different strategy by charging it only for smaller orders and

shipping other ones for free (Overstock.com 2014, Investor Press Release 2013).

We use the term retailer to denote the SP in the rest of the paper because the main

application of our research involves online retailers and their shipping services. In the paper,

we consider two types of customers, impatient and patient, with different delay sensitivities.

We are primarily interested in answering the following questions concerning key service

1For instance, see Barnes and Mookherjee (2009), Afeche (2013), and Maglaras et al. (2013)
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delivery features: (i) whether free service is provided, (ii) whether just a single service

is provided or service is differentiated, (iii) whether there is any strategic delay, and (iv)

whether there is a split in which a customer type selects both service classes2. We focus on

these features due to their strategic importance to the retailer. Based on our analyses in the

paper, we find that the answers depend on two crucial factors: (i) whether the retailer has

limited or sufficient capacity and (ii) whether the retailer sells fashion/branded goods or she

sells staple/regular products.
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Retailer Type Product Impatient Single Free Prioritized Strategic Split
(Capacity) Type Fraction q Service Service Service Delay

1 Limited Fashion No impact No Yes Yes No Yes
2 Limited Staple No impact Yes Maybe No No No
3 Sufficient Fashion/ Low No No Yes No No

Staple
4 Sufficient Fashion High No Yes Yes Yes No
5 Sufficient Staple High No No Yes Yes No

Figure 1: Optimal service delivery features under different cases

We classify a retailer as limited or sufficient based on her capacity (relative to her de-

mand) for providing service. Retailer’s capacity might be limited either because (i) her

customer base is small so that she does not have economies of scale, or (ii) she has not yet

made sufficient investment on the capacity. It results in a high waiting time for customers.

On the other hand, a retailer with sufficient capacity can ensure that customers’ waiting

time is low. We refer to a product as a fashion good if its customers have a higher value

heterogeneity than delay heterogeneity. Customers often have different tastes regarding such

products (Jain and Paul 2001), which result in a higher variation of their product valua-

tions than their delay sensitivities. Significant price changes for fashion goods (Pashigian

1988) also imply that its customers have a high value heterogeneity. A staple product, on

2We show that only impatient customers can possibly split, i.e., select both high-type and low-type service
class, under optimality (see §6).
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the other hand, is a product whose customers have a higher delay heterogeneity than value

heterogeneity. There is little variation in how much different customers value such products;

however, some customers can be quite delay-sensitive, and they expect their items to be de-

livered quickly. One reason for that can be because technology, with the resulting ubiquity

of e-Commerce, is making some customers more impatient (Muther 2013).

Figure 1 provides a brief summary from the results of our analyses in §’s 6-8 and their

implications. There are five main cases, as shown in the plots, that result in different service

delivery features. In the first case, the retailer has limited capacity and she sells fashion

goods (∆ < ν). She prioritizes her service but since the capacity is low, she has to provide

free service, and impatient customers split. It is also the only case in which customers split.

In the second case3, the retailer still has limited capacity but she sells staple goods (∆ > ν).

The retailer then does not prioritize, and she offers just a single service class. The other

cases pertain to a retailer with sufficient capacity. The service delivery features, unlike for a

limited capacity retailer, also depend on the fraction of impatient customers q. If this value

is low (so that q < 1/∆ ⇔ ∆ < 1/q), then the retailer prioritizes and does not provide

free service, regardless of whether she sells fashion goods/staple products. If it is high, then

she prioritizes and also uses strategic delay. Furthermore, she offers free service if she sells

fashion goods, but she does not offer it if she sells staple products.

We make an important observation regarding free service (free-shipping) and how we

model it in the paper. An oft-cited explanation for the prevalence of free-shipping is that it

makes customers happy and increases demand either due to behavioral or economic/rational

reasons involving customer behavior. However, we show that even if this demand premium

is ignored and there is no such increase in demand, free-shipping can still be optimal under

some scenarios due to operational factors such as capacity and service delivery4. We thereby

make an operational case for why and when free-shipping can be optimal, which has not

been done in the prior literature to the best of our knowledge.

2. Literature Review

This paper is related to three streams of literature: (i) queuing optimization which looks at

pricing and other operational decisions for service classes in the context of customers who

3In this case, free service occurs only if W (µ) = v1/η1 (see §3 for details regarding the notation).
4Incorporating this demand premium, which is already understood in the literature, will also lead to

confounding and difficulty in separating the two types of benefits of free-shipping.
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may be heterogeneous and self-select, (ii) free service provision (including free shipping) and

why it may be beneficial, and (iii) vertically differentiated product variants with different

quality.

Hassin and Haviv (2003) provide a comprehensive review of earlier literature on the first

stream, we focus here on the more recent and relevant papers. Two papers from this stream

come close to our research: Afeche (2013) and Katta and Sethuraman (2005). As in this

paper, they consider (i) heterogeneity among customers in both their service valuations and

delay sensitivities, and (ii) individual rationality (IR) and incentive compatibility (IC) con-

ditions. They also analyze the optimization problem from the service provider’s/retailer’s

view and maximize her revenue. However, they do not model ancillary services for which

the arrival rate/demand cannot be optimized and all the customers are satisfied at the min-

imum cost. We only consider prioritization and strategic delay to differentiate customers

because these policies are simple and easy to implement; however, we allow for the splitting

of a customer type between two service classes. These aspects fundamentally change the

formulation of the retailer’s optimization problem and also lead to some key differences in

the results (see §’s 4-6). Some research papers have considered pricing/service decisions that

satisfy IC conditions in other contexts. Lederer and Li (1997) show that a competitive equi-

librium results in incentive compatible pricing. Rao and Peterson (1998) study the optimal

pricing of priority services in a static service facility with n customers that maximize their

own profits. Van Mieghem (2000) and Hsu et al. (2009) consider socially optimal pricing

and scheduling. Afeche and Mendelson (2004) consider pricing and priority auctions under

a generalized delay cost. Zhang et al. (2007) model the pricing of communication services

with delay guarantees in the presence of customers that are heterogeneous in their service

valuations but homogeneous in their delay sensitivity. Zhao et al. (2012) analyze whether a

firm should have uniform or differentiated price and lead time quotations in the presence of

customers who are heterogeneous in their product valuations and delay cost rates. Li et al.

(2012) consider competition between two service providers with naive customers who select

them based on their prices and queue sizes. And Afeche et al. (2013) analyze how to price

time-sensitive services based on realized lead times in the presence of customers who may be

risk-averse. Other papers have considered similar decisions in other scenarios but without

explicitly incorporating IC constraints (e.g., see So and Song (1998), Boyaci and Ray (2003),

Maglaras and Zeevi (2003), Ray and Jewkes (2004), Allon and Federgruen (2009), Jayaswal

et al. (2011), and Anand et al. (2011)).
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There has been no prior research, to the best of our knowledge, in the queuing opti-

mization literature, which (i) requires that all the demand from customers be satisfied (a

key feature of ancillary services which we model in this paper), (ii) analyzes free service

and when it can be beneficial operationally, and (iii) allows for splitting of a customer type

between different service classes.

Because shipping is a key example for ancillary services in this paper, we next discuss

about some articles and research papers that have considered free-shipping and its benefits.

Customers attach a high level of importance to shipping charges when they shop with online

retailers; e.g., in one survey, 93% of customers said they will buy more products online if

shipping is free (eMC 2014) and in another, higher than expected shipping costs is a major

reason for shipping cart abandonment (PayPal 2009). Some research from the marketing

literature has analyzed whether the retailer would be better off by having the shipping free

but instead inflating the base price of the product. They find that it is sometimes better

to charge separately for shipping because customers perceive (and recall) a lower total price

(Morwitz et al. 1998), but at other times, e.g., for books purchases, customers are much

more sensitive to shipping prices than the price of product itself which makes it better to

incorporate the shipping charge into the base price (Hamilton et al. 2010). For a review of

research on price partitioning, we refer the reader to Morwitz et al. (2014). Gümüş et al.

(2013) characterize the market equilibrium under competition among retailers who either

charge shipping prices or offer free-shipping. Some papers (e.g., see Shampanier et al. (2007),

Ariely (2008), and Kannan et al. (2009)) have reasoned the prevalence of free-shipping (and

free provision of other services/products) by showing that zero price is a special price which

can attract consumers and change their behavior. Leng and Parlar (2005) and Leng and

Becerril-Arreola (2010) analyze contingent free-shipping (CFS), in which the retailer offers

free -shipping only beyond a certain threshold order size, under B2B and B2C transactions

respectively. The retailer benefits from CFS in both the papers because customers purchase

more or the probability of repurchase increase. They do not model the time-sensitive nature

of shipping services.

All the research above considers the benefit of free-shipping from changing customer be-

havior, either through purchase of more products/services, attraction to it due to the special

zero price and willingness to pay a higher base price, or having a competitive advantage

over retailers who do not offer it. In this regard, they analyze its benefits primarily from

a marketing perspective. Although we recognize its key marketing implications, we take a
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different approach. We analyze its benefits primarily from an operational perspective by

considering shipping as an ancillary service in which (i) the retailer is constrained by her

capacity and minimizes the cost while satisfying all the demand, and (ii) the customers may

be heterogeneous in their valuations and delay sensitivities.

This work is also related to research on product differentiation in which the product

variants have different quality. Examples of such research can be found in Anderson et al.

(1992), Moorthy (1984), and some references contained therein. The price(s) and quality

measure(s) of the product variant(s) are akin to the price(s) and waiting time(s) for the

service class(es) we model here5. However, there are two main differences. First, there

is a negative externality which increases the waiting time as more customers purchase the

service, while quality of a product is usually unaffected by its demand. Second, we consider

an ancillary service in which the retailer has to provide adequate service to all her customers,

while a monopolist selling differentiated product variants can partially satisfy the market.

3. Model

Customer arrivals for the ancillary service follow a Poisson process with rate λ. The retailer

can provide at most two classes of service, h and l. She has two options to differentiate these

service classes: prioritization and strategic delay. She may or may not prioritize, and she

can strategically delay either service class. We focus our analysis on two service classes and

these two differentiation options because they are relatively simple and easy to implement.

Under prioritization, we refer to high priority and low priority service classes as high-type

service (class h) and low-type service (class l) respectively. If there is no prioritization,

strategic delay is the only way to differentiate, and we refer to the service class experiencing

a lower (higher) delay as high-type (low-type) service. For each customer, the retailer charges

prices of ph and pl (ph, pl ≥ 0) for high- and low-type services respectively, and she incurs

a marginal cost of r > 0. Strategic delay for high- and low-type services are denoted by dh

and dl respectively (dh, dl ≥ 0).

We do not consider the price of the primary product/service in our main analysis of the

optimization problem involving ancillary service for the following reasons. First, firms typi-

cally set similar shipping policies for multiple ranges of products that may have very different

(product) prices. It then becomes difficult to optimize each one of them in conjunction with

5The author thanks an anonymous reviewer for suggesting this connection.
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the shipping price(s). Second, behavioral aspects become important and customers may not

just look at the total price when they view the primary product/service and ancillary service

together. Considerations involving pricing structure such as partitioned prices vs. single

total price (Morwitz et al. 1998), which are not the focus of this paper, can then become

pertinent. So we mainly focus on the pricing and service delivery decisions involving the an-

cillary service. In Appendix D, we show that our model and analysis can be easily extended

to consider the impact of an exogenous primary product/service price; however, this price

does not affect the key results so we omit it in the main paper for the sake of conciseness

and easier exposition.

Customers are time-sensitive and they belong to two types. Type 1 and Type 2 customers

have different delay sensitivities of η1 and η2 (η1 6= η2) respectively. They value the ancillary

service at v1 and v2 respectively. We assume wlog that η1 > η2, and we refer to Type 1

(Type 2) customers as impatient (patient) customers. The fraction of Type 1 customers is q

(0 < q < 1). A Type i (i = 1, 2) customer purchases service class j (j = h, l) only if his net

utility given by vi − pj − ηi · total expected delay in service class j ≥ 0, in which the total

expected delay is the sum of the expected waiting time and strategic delay. We measure

delay and value heterogeneity among customers by ∆ ≡ η1/η2 and ν ≡ v1/v2 respectively.

The retailer knows the values of v1, v2, η1, η2, and q; however, she does not know the

customer type of an individual customer. Because the retailer provides an ancillary service,

she minimizes the net cost of providing the service to customers, while ensuring that all

the customers use the service. A customer’s choice of a service class is strategic because

the expected waiting time is not only affected by it but also by similar choices of other

customers. The retailer anticipates the behavior by customers, and she sets the prices for

service classes and decides how to provide them so that her net cost is minimized. We

consider the retailer’s cost minimization under two cases: (i) her capacity µ is exogenous

and (ii) her capacity is optimized so that the total net cost including the capacity cost is

minimized. Next, we discuss how the expected waiting time without strategic delay is related

to different parameters.

When the retailer does not prioritize, all the customers are serviced in a first-come-first-

serve (FCFS) manner. We denote the expected waiting time in this case by W (µ) in which

µ is the retailer’s capacity. We assume that W (µ) is a strictly decreasing and strictly convex

function, i.e., W ′(µ) < 0 and W ′′(µ) > 0. Note that even though this waiting time is the

same across different customers, the retailer can still differentiate the two service classes by
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Online 
Retailer

Capacity 
µ = 125 

Single shipping service (FCFS)
Expected wait W(125) 
= 1/(125 – 100) = 0.04  

Customer arrival 
rate λ = 100

Online 
Retailer

Capacity 
µ = 125 

λ = 100

High‐priority shipping service
Expected wait W

h
(125, 0.25) 

= 1/(125 – 0.25∙100) = 0.01

Low‐priority shipping service
Expected wait W

l
(125, 0.25) 

= 125/((125 – 0.25∙100)*(125 – 100)) = 0.05

Single service, No Prioritization

High‐type service is Prioritized

Figure 2: Illustration of retailer’s system and key model notation

using strategic delay. When the retailer prioritizes high-type service customers, there are two

key aspects: (i) the expected waiting time will be the same for all customers from the same

service class but a high-type service customer will have a different expected waiting time

from that of a low-type service customer and (ii) the expected waiting times for high- and

low-type services will depend not only on the retailer’s capacity but also on δ (0 ≤ δ ≤ 1), the

fraction of customers who choose high-type service. We denote the expected waiting times

for high- and low-type services by Wh(µ, δ) and Wl(µ, δ) respectively. However, for brevity,

we also use just Wh and Wl to denote these waiting times. We assume that ∂Wj/∂µ < 0,

∂2Wj/∂µ
2 > 0, ∂Wj/∂δ > 0, ∂2Wj/∂δ

2 > 0, and ∂Wh/∂δ < ∂Wl/∂δ; j = h, l. These

assumptions are intuitive (e.g., they are satisfied by M/M/1 queues with non-preemptive

and preemptive priorities6); the expected waiting times decrease with a higher capacity at a

diminishing rate but they increase with a higher load on the high-type service at an increasing

rate; and an increase in the fraction of prioritized customers affects the expected waiting time

of high-priority service less than that of low-priority service. Further, we assume that work

conservation applies, i.e., δWh(µ, δ) + (1 − δ)Wl(µ, δ) = W (µ) ∀µ, δ. Figure 2 illustrates

the retailer’s system7 with M/M/1 queues and preemptive priority (Gross 2008), so that

6They also hold in M/G/1 queues with non-preemptive priority. Furthermore, the conditions on W are
satisfied by the approximate waiting time for a general queue (Cox and Smith 1991), which is given by
1

µ
+ 1

λ
· ρ

√
2(m+1)

1−ρ
·
CV 2

a
+CV 2

s

2
in which m is the number of servers, ρ ≡ λ

mµ
is the utilization, and CVa (CVs)

is the coefficient of variation in inter-arrival times (service times).
7While our analysis in §6 applies to more general queuing systems, we use M/M/1 queues and preemptive
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W (µ) = 1/(µ− λ), Wh(µ, δ) = 1/(µ− λδ), and Wl(µ, δ) = µ/ ((µ− λδ) · (µ− λ)). Next, we

formulate the retailer’s optimization problem when there is no prioritization.

4. No Prioritization

The retailer does not prioritize, and she just uses strategic delay to differentiate high- and

low-type services. We allow for the possibility that she can set the prices of high- and

low-type services so that even the same type of customers split, i.e., some of them choose

high-type service and others select low-type service (in §5 we show that splitting is optimal

under certain cases). We let γi denote the fraction of Type i customers who choose the

high-type service. The retailer’s optimization problem can then be written as

(N ) : min
ph,pl,dh,dl,γ1,γ2

λr − λ (γ1q + γ2(1− q)) ph − λ ((1− γ1)q + (1− γ2)(1− q)) pl

s.t. γi (ph + ηi(W (µ) + dh)) ≤ γivi i = 1, 2 (1)

(1− γi) (pl + ηi(W (µ) + dl)) ≤ (1− γi)vi i = 1, 2 (2)

γi (ph + ηi(W (µ) + dh)) ≤ γi (pl + ηi(W (µ) + dl)) i = 1, 2 (3)

(1− γi) (pl + ηi(W (µ) + dl)) ≤ (1− γi) (ph + ηi(W (µ) + dh)) i = 1, 2 (4)

dh ≤ dl (5)

0 ≤ γi ≤ 1; dh, pj ≥ 0 i = 1, 2; j = l, h (6)

The retailer’s objective is the net cost (per unit time), i.e., the difference of service cost

and the total revenue obtained from charging prices ph and pl for the high- and low-type

services. Constraints in (1) imply that if γi > 0 (i = 1, 2), the net utility of Type i customers

should be non-negative. They are individual rationality (IR) constraints of Type i customers

for high-type service. If γi = 0, then no Type i customer selects high-type service and the

corresponding IR constraint does not apply. Similarly, constraints in (2) are IR constraints

of Type i customers for low-type service8. Constraints in (3) imply that if γi > 0, Type i

customers obtain a higher net utility from high-type service than from low-type service. We

refer to them as incentive compatibility (IC) constraints of Type i customers for high-type

service. Similarly, constraints in (4) are IC constraints of Type i customers for low-type

priority, as illustrated by Figure 2, in §’s 7 and 8 for easier analysis.
8The IR constraints in (1) and (2) are akin to service-level agreements/guarantees and ensure that the

retailer provides adequate service to the customers.
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service. Constraint (5) follows from how high- and low-type services are defined (see §3).

Constraints in (6) imply that the prices and strategic delay should be non-negative9 and that

the fraction of Type i customers choosing the high-type service should be between zero and

one. We model γi’s as retailer’s decision variables purely for simplifying the formulation and

making the exposition easier10. However, we note that the optimal prices and strategic delays

constitute an equilibrium among customers (with the corresponding optimal γi’s) because

they satisfy the requisite IR and IC conditions so that none of the customers would have an

incentive to change their service classes. We discuss about the implementation of scenarios

in which Type i customers split11, i.e., 0 < γi < 1, in §6 following Lemma 5. We assume

that the exogenous capacity µ is large enough with W (µ) ≤ mini=1,2 vi/ηi so that N has a

feasible solution. Next, we make some observations that simplify the optimization problem.

We note that dh = 0 under optimality because otherwise the retailer can decrease dh

and dl while increasing ph and pl thereby reducing the net cost. Also, if dl = 0 under

optimality, there is no service differentiation and the retailer provides just a single service

class. Similarly, if γ1 = γ2 = 0 or γ1 = γ2 = 1, all the customers select a single service class.

The minimum net cost from these scenarios in which there is no service differentiation is equal

to that when the retailer offers just a single service class and there are no IC constraints,

and it is given by maxi=1,2 λr − λvi + ληiW (µ). Next, we consider what happens if there is

service differentiation. Then dl > 0 = dh under optimality. Further, Lemma 1 shows that

the net cost is optimized only if γ1 = 1 and γ2 = 0.

Lemma 1 If there is service differentiation under optimality, the retailer incurs the optimal

net cost only if γ1 = 1 and γ2 = 0.

All proofs are in Appendix A. Lemma 1 shows that the best way for the retailer to differen-

tiate the customers is to have all the impatient (patient) customers purchase the high-type

(low-type) service. She does not split customers who are of the same type. This result does

not depend on the valuations v1 and v2. However, they do affect whether the retailer should

differentiate the customers or just offer a single service class. Lemma 2 characterizes the

optimal solution of N .

9Prices are assumed to be non-negative because (i) charging negative prices might be impractical, and (ii)
customers can perceive that the retailer is disingenuous and charges more for the primary product/service,
which may result in a backlash from them.

10The retailer’s pricing and strategic delay decisions indirectly affect γi’s through customers’ self-selection.
11As we show later in §’s 4-6, such a split can be optimal only under prioritization.
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Lemma 2 The optimal solution of N is given as follows:

(i) if ∆ ≥ ν and W (µ) ≥ (v1 − v2)/(η1 − η2) then ph = pl = v1 − η1W (µ), dh = dl = 0, and

the net cost is λr − λv1 + λη1W (µ) with no service differentiation;

(ii) if ∆ ≥ ν, W (µ) < (v1 − v2)/(η1 − η2), and ∆ ≤ 1/q then ph = pl = v2 − η2W (µ),

dh = dl = 0, and the net cost is λr − λv2 + λη2W (µ) with no service differentiation;

(iii) if ∆ ≥ ν, W (µ) < (v1 − v2)/(η1 − η2), and ∆ > 1/q then ph = v1 − η1W (µ), pl =

(η1v2 − η2v1)/(η1 − η2), dh = 0, dl = (v1 − v2)/(η1 − η2) − W (µ), and the net cost is

λr − λ
(

(η1q−η2)v1+(1−q)η1v2
η1−η2

)

+ λη1qW (µ) with service differentiation;

(iv) if ∆ < ν and ∆ ≤ 1/q, ph = pl = v2 − η2W (µ), dh = dl = 0, and the net cost is

λr − λv2 + λη2W (µ) with no service differentiation; and

(v) if ∆ < ν and ∆ > 1/q, ph = η1 (v2/η2 −W (µ)), pl = 0, dh = 0, dl = v2/η2 −W (µ), and

the net cost is λr − λ (η1q/η2) v2 + λη1qW (µ) with service differentiation.

Lemma 2 establishes the conditions under which the retailer differentiates her customers just

through strategic delay. First, ∆ > 1/q, so that the patient and impatient customers have

to be sufficiently different in their delay sensitivities. Further, if the fraction of impatient

customers, q, is lower then a higher delay heterogeneity is necessary for service differentiation.

Second, in addition to the value of ∆, whether the retailer differentiates also depends on how

it compares with value heterogeneity ν. If ∆ < ν, then the retailer differentiates for any

feasible capacity. Also, she provides the low-type service free of charge. However, if ∆ ≥ ν,

she also needs to have a sufficiently high capacity so that W (µ) < (v1 − v2)/(η1 − η2) for

service differentiation to be optimal.

5. High-type Service is Prioritized

As we mentioned earlier in §3, without loss of generality, we refer to the service class which

is given high (low) priority by the retailer as high-type (low-type) service. The notation

for the problem parameters and decision variables remains the same as in §’s 3 and 4.

As in §4, we assume that W (µ) ≤ mini=1,2 vi/ηi, i.e., the retailer has enough capacity to

provide adequate service without prioritization and strategic delay. Also, we define γ̃1 such

that Wl(µ, γ̃1q) = mini=1,2 vi/ηi to characterize retailer’s optimal solution later. It is the

maximum fraction of impatient customers that choose the high-type service, so that the

retailer can provide adequate low-type service to at least one customer type. There is a key

aspect that makes the cost minimization problem here different from that in §4: the waiting
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times of high- and low-type services without delay, Wh(µ, δ) and Wl(µ, δ), not only depend

on the capacity µ but also on the (total) fraction of customers who choose the high-type

service δ which equals γ1q + γ2(1− q). This problem is formulated as

(P) : min
ph,pl,dh,dl,γ1,γ2

λr − λ (γ1q + γ2(1− q)) ph − λ ((1− γ1)q + (1− γ2)(1− q)) pl

s.t. γi (ph + ηi(Wh(µ, γ1q + γ2(1− q)) + dh)) ≤ γivi i = 1, 2 (7)

(1− γi) (pl + ηi(Wl(µ, γ1q + γ2(1− q)) + dl)) ≤ (1− γi)vi i = 1, 2 (8)

γi (ph + ηi(Wh(µ, γ1q + γ2(1− q)) + dh))

≤ γi (pl + ηi(Wl(µ, γ1q + γ2(1− q)) + dl)) i = 1, 2 (9)

(1− γi) (pl + ηi(Wl(µ, γ1q + γ2(1− q)) + dl))

≤ (1− γi) (ph + ηi(Wh(µ, γ1q + γ2(1− q)) + dh)) i = 1, 2 (10)

0 ≤ γi ≤ 1; dj, pj ≥ 0 i = 1, 2; j = l, h (11)

Constraints (7) and (8) are the IR constraints of Type i customers for high- and low-type

services respectively while constraints (9) and (10) represent the IC constraints of Type i

customers for these two service classes. The logical constraints are represented by (11).

Note that non-negativity of prices is a non-trivial constraint that has to be added in P .

This aspect is different from research works that consider revenue/profit maximization by

service provider, which automatically results in non-negative prices (e.g., see Afeche (2013)

and Katta and Sethuraman (2005)). We identify different cases in which the optimal price

is zero and thereby intend to explain why free service provision for ancillary services (e.g.,

free-shipping) is prevalent.

The high-type service in P , unlike in N , can be delayed more or less than the low-type

service because high- and low-type services are defined as high- and low-priority service

classes respectively (see §3). Note that either dh = 0 or dl = 0 under optimality. Otherwise,

the delay for both high- and low-type services can be decreased by the same amount ǫ > 0

while increasing ph and pl by η2ǫ, ensuring that the constraints in P are still satisfied and

thereby reducing the net cost. Further, two conditions are necessary for service differentiation

to occur: (i) Wh + dh 6= Wl + dl, i.e., the total expected delays are different, and (ii) neither

γ1 = γ2 = 0 nor γ1 = γ2 = 1, i.e., there are some customers who select each service class.

Next, we characterize how γi’s are related if there is service differentiation.
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Lemma 3 Under service differentiation, the following relationships hold: (i) If 0 < γ1 < 1,

either γ2 = 0 or γ2 = 1, and (ii) if 0 < γ2 < 1, either γ1 = 0 or γ1 = 1.

Lemma 3 shows that both patient and impatient customers cannot be split between high-

and low-type services. That is because they have different delay sensitivities and so the IC

constraints of both types of customers cannot be satisfied for both service classes. Further,

Lemma 3 implies that, under service differentiation, the problem P can be simplified into

the following six problems: (i) P1 with 0 < γ1 < 1 and γ2 = 0; (ii) P2 with 0 < γ1 < 1

and γ2 = 1; (iii) P3 with γ1 = 0 and 0 < γ2 < 1; (iv) P4 with γ1 = 1 and 0 < γ2 < 1; (v)

P5 with γ1 = 1 and γ2 = 0; and (vi) P6 with γ1 = 0 and γ2 = 1. Appendix B shows how

problem P simplifies in each case, provides lemmas which characterize the optimal solutions

for these problems, and describes the insights from these solutions.

Optimal Solution when High-Type Service is Prioritized

We use the results from Appendix B to find the optimal solution when the retailer prioritizes

and thereby differentiates some of her customers. Lemma 4 characterizes this solution, and

it enables us to compare prioritization vs. no-prioritization and find the overall solution in

§6. We find that the optimal values depend on whether P5, in which all impatient (patient)

customers select high-type (low-type) service, is feasible.

Lemma 4 The optimal solution for problem P is as follows:

(i) If Wl ≤ v2/η2 and (η1 − η2)Wh + η2Wl ≤ v1 then P5 is feasible, γ1 = 1, γ2 = 0, and the

optimal prices, delay, and net cost are as given in Lemma B5;

(ii) otherwise, P5 is infeasible, γ1 = γ̃1, γ2 = pl = dh = dl = 0, and the other optimal values

are given by: (a) if ∆ ≥ ν then ph = v1 − η1Wh(µ, γ̃1q) and the net cost is λr−λv1 +λη1W ,

(b) if ∆ < ν then ph = η1 (v2/η2 −Wh(µ, γ̃1q)) and the net cost is λr − λη1(v2/η2) + λη1W .

Lemma 4 shows that providing high-type service to any patient customer would be sub-

optimal to the retailer, regardless of how much he values the service. Further, if the retailer

has sufficient capacity to provide adequate service to the customers even when all the im-

patient ones get prioritized, then γ1 = 1 and γ2 = 0, similar to when there was service

differentiation without prioritization (see §4). If the capacity is insufficient then splitting

impatient customers, in which some of them select high-type service while others select low-
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type service, is optimal under prioritization12. However, will it still be optimal even when

the retailer can decide whether or not to prioritize? And does prioritization always perform

strictly better? Next, we answer these questions by finding the retailer’s overall optimal

solution.

6. Prioritize or Not? Overall Optimal Solution

We consider the problem in which the retailer, in addition to the prices, delay and γi’s, also

decides whether or not to prioritize some of her customers. We assume that if their net costs

are equal the retailer has the following preference relationship for different types of service

delivery: single service class ≻ no-priority with strategic delay ≻ prioritization without

strategic delay ≻ prioritization with strategic delay. The net cost has to strictly decrease

for the retailer to implement a more complicated service delivery. Next, we characterize

the retailer’s optimal solution and provide conditions under which the following key features

are optimal: (i) free service, (ii) single service, (iii) split of impatient customers, and (iv)

strategic delay.

Theorem 1 If ∆ ≥ ν, the retailer offers just a single service class with price v1 − η1W (µ)

and incurs a net cost of λr − λv1 + λη1W when (i) Wh(µ, q) > (v1 − v2)/(η1 − η2) and

(η1−η2)Wh(µ, q)+η2Wl(µ, q) > v1 or (ii) Wh(µ, q) ≤ (v1−v2)/(η1−η2) and Wl(µ, q) > v2/η2.

Otherwise, or if ∆ < ν, the retailer prioritizes the customers with the prices, delay, and net

cost as in Lemma 4. Furthermore, strategic delay without prioritization is sub-optimal.

Corollary 1 The main features13 in the optimal service delivery, when service is prioritized

(differentiated), are characterized under different cases as follows:

(i) If ∆ ≥ ν and Wl(µ, q) = v2/η2 then the low-priority service is free.

(ii) If ∆ > ν, 1/q and Wl(µ, q) < (v1 − v2)/(η1 − η2) then the low-priority service has a

strategic delay.

(iii) If ∆ = ν, ∆ > 1/q, and Wl(µ, q) < (v1 − v2)/(η1 − η2) then the low-priority service

is free and it has a strategic delay.

12Note that the split is at an aggregate (customer type) level. Because the prices satisfy the IC constraints
in (9) and (10), this split is an equilibrium among customers as none of them would have an incentive to
select a different service class.

13For conciseness, the corollary mentions only about (a) features that are present and (b) cases in which
at least one of them is present. E.g., it does not say “no strategic delay” when strategic delay is absent.
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(iv) If ∆ < ν and Wl(µ, q) > v2/η2 then the low-priority service is free and impatient

customers split between high- and low-priority services with γ̃1q customers choosing high-

priority service, where Wl(µ, γ̃1q) = v2/η2.

(v) If ∆ < ν and Wl(µ, q) = v2/η2 then the low-priority service is free.

(vi) If 1/q < ∆ < ν and Wl(µ, q) < v2/η2 then the low-priority service is free and it has

a strategic delay.

We first note that all the types of optimal service delivery in Theorem 1, including split of

impatient customers, result in equilibriums among customers because the IC and IR condi-

tions are satisfied and none of them have any incentive to change their service class. Next,

we discuss about the different service delivery features from the results in Theorem 1 and

its corollary.

A strategic delay without prioritization is sub-optimal because while a strategic delay

makes low-type service worse, it cannot improve high-type service as it has to be non-

negative, but prioritization not only makes the low-type service worse but it also makes

the high-type service better, thereby enhancing the retailer’s ability to differentiate her cus-

tomers. Theorem 1 also shows that if strategic delay is optimal it is applied only to low-type

(low-priority) service. So it is used in addition to prioritization in order to further differenti-

ate patient and impatient customers. From Corollary 1, we find that delay heterogeneity ∆

and value heterogeneity ν are key metrics that determine how service is delivered. If ∆ > ν,

i.e., the retailer sells staple products (as we discuss in §1) splitting customers is never optimal

but offering a single service class is optimal under low capacity. Hence, in addition to the

heterogeneity in delay sensitivities, sufficient capacity is required for the retailer to differ-

entiate her customers. However, if ∆ < ν, i.e., she sells fashion goods, then prioritization is

always strictly better than single service and splitting impatient customers becomes optimal

under low capacity. Furthermore, when there is a split, γ1 = γ̃1 which is reasoned as follows.

The retailer prefers that the maximum fraction of impatient customers, which still ensures

that adequate low-type service is provided (to patient customers), select high-type service.

In summary, there are two ways in which the retailer can respond to low capacity: (i) single

service with no prioritization and (ii) splitting impatient customers to reduce the need for

high-priority service. The better way is determined based on whether staple products or

fashion goods are sold. We note that neither single service nor split of customers is explicitly

considered in some of the papers (Afeche 2013, Katta and Sethuraman 2005) that are closely
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related to this research.

Theorem 1 and its corollary also provide the conditions under which the retailer offers

free service. Ignoring some borderline parametric values (e.g., µ s.t. Wl(µ, q) = v2/η2

or vi’s, ηi’s s.t. ∆ = ν), we find that it happens when fashion goods are sold and (i)

Wl(µ, q) ≥ v2/η2 or (ii) Wl(µ, q) < v2/η2 and ∆ > 1/q. Strategic delay is zero in the first

case, while it is positive in the second case. Also, there is another key distinction between the

two cases: low capacity is responsible for free service in the first case (note that impatient

customers are split and service is prioritized); however, free service in the second case is

driven by customer characteristics, i.e., their valuations, delay sensitivities, and the fraction

of impatient customers.

Finally, we note that there is some overlap in the results in Theorem 1 and Corollary 1

and those from Table 1 in §1. The single service case in Theorem 1 here corresponds to

case 2 there, case (ii) corresponds to case 5, case (iv) corresponds to case 1, and case (vi)

corresponds to case 4 in Table 1. Next, we prove a key result involving what happens when

the optimal service delivery involves splitting of impatient customers.

Lemma 5 If the optimal service delivery is to split impatient customers, then the corre-

sponding prices and strategic delays (from Theorem 1) can only result in the following equi-

librium values of γ1 and γ2: γ1 = γ̃1 and γ2 = 0, or γ1 = γ2 = 0.

Lemma 5 shows that γ1 = γ̃1 is not the unique equilibrium outcome when impatient cus-

tomers are split. However, the retailer can still effect this outcome when at least some

customers select high-type service. One way to do that is by exploiting customers’ risk

perception: the retailer provides information about the range of waiting times they would

encounter when they select high- and low-type services14. Many online retailers already

adopt this strategy (e.g., see Amazon.com (2014)). Although we do not model risk among

customers and we assume that they make their decisions based on expected waiting time, risk

perception can still play a marginal role and ensure the optimal equilibrium for the retailer.

For this purpose, when impatient customers are split, we only consider γ1 = γ̃1.

14We assume that the retailer is truthful, customers anyway obtain the information in the long-run. The
range has a lower bound and an upper bound on the waiting time (e.g., 1st and 99th percentiles respectively).
Due to prioritization, low-type service would have a larger range than high-type service.
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7. Optimal Service Delivery: Endogenous Capacity

For analytical simplicity, we assume that (i) the cost of capacity is linear with K per unit,

and (ii) an M/M/1 queuing system with preemptive priority is used by the retailer under

prioritization. She now minimizes her total cost given by the sum of net cost in §6 (see

Theorem 1) and capacity cost of µK. As in §6, we only consider µ’s such that W (µ) ≤

mini=1,2 vi/ηi. We can use this sequential approach to find the retailer’s optimal decisions

(pricing and strategic delivery decisions followed by capacity decision) because the best net

cost, price(s), and strategic delay(s) are all deterministic functions of the capacity. Also, we

can use the results from §6 by following this approach.

We first discuss how the optimal service delivery (for a given µ) evolves as µ increases.

From Theorem 1, we find that it is straightforward when ∆ < ν. For low µ’sWl(µ, q) > v2/η2,

the retailer splits impatient customers and offers two service classes, the low-type service is

free and has no strategic delay. For higher values of µ, she still offers two service classes; if

∆ ≤ 1/q then there is no free service (unless Wl(µ, q) = v2/η2) and no strategic delay, and if

∆ > 1/q then the low-type service is free but has a strategic delay (unless Wl(µ, q) = v2/η2).

However, the change of service delivery becomes complicated when ∆ ≥ ν, mainly because

of the complex range of (µ, q) values over which offering a single service class is optimal. We

provide the details in Appendix C. Next, we characterize the retailer’s optimal solution and

her optimal service delivery when she has a large pool of customers.

Theorem 2 The total cost is minimized by a unique optimal capacity µ∗. As λ → ∞, single

service, strategic delay, and split of impatient customers all become sub-optimal. Further-

more, if 1/q < ∆ < ν (∆ > ν), then the low-priority service is free (charged).

We explain the sub-optimality of (i) offering a single service class (or split) and (ii) having

a strategic delay for a large system as follows. A single service class is sub-optimal because

when λ → ∞, due to economies of scale, service differentiation becomes relatively easier

to implement since the retailer is not so constrained by her capacity. Also, when λ is high,

raising the capacity beyond the threshold needed for the optimality of strategic delay, so that

Wl < min
(

v2
η2
, v1−v2
η1−η2

)

, increases the capacity cost more than the increase in revenue from

charging a higher price for high-type service (note that pl = 0 or pl = (η1v2− η2v1)/(η1− η2)

with strategic delay and it is independent of the capacity µ). So the retailer incurs less
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Figure 3: Variation of optimal service delivery with η1 and η2

Region  Single service  Free service  Prioritized 
service 

Strategic 
delay 

Split of impatient 
customers 

 
1       

 
 

 
2       

 

 
3       

 
 

 
4       

 
 

 
5     

 

 
6     

 
 

 
Table 1: Features of optimal service delivery in different regions

total cost by having a lower capacity and no strategic delay instead of a high capacity with

strategic delay.

Theorem 2 also shows that despite having a large system with λ → ∞, free service is

still provided when delay heterogeneity takes intermediate values (in between 1/q and value

heterogeneity ν). Next, we analyze some numerical examples to better understand how

retailer’s service delivery changes with different parameters under exogenous and endogenous

capacities.

8. Numerical Analysis

This section comprises of two parts, in both of which we use M/M/1 preemptive priority

under prioritization. In the first part (§8.1), we discuss how retailer’s optimal service delivery
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changes with delay sensitivities η1 and η2, when the capacity is exogenous. We focus on

η1 and η2 to better understand how the magnitude and heterogeneity of delay sensitivity

affect retailer’s decisions. In the second part (§8.2), we discuss how retailer’s optimal service

delivery changes with arrival rate λ and fraction of impatient customers q, when the capacity

is endogenous. In the third part (§8.3), the capacity is still endogenous but we consider how

optimal service delivery changes with unit capacity cost K and fraction q. When capacity is

endogenous, we focus on the variation of λ, q, or K because these are the main parameters

that typically affect capacity decisions (and optimal service delivery).

8.1 Exogenous Capacity: Impact of η1 and η2

Figure 3 and Table 1 show how the retailer’s optimal service delivery changes when η1 and

η2 vary. For this numerical example, we set the values of fixed parameters at r = 2, λ = 100,

µ = 125, v1 = 5, v2 = 1, and q = 0.5. Figure 3 shows that the (η1, η2) space, in which

η1 > η2, gets divided into six regions. When η2 is high so that Wl(µ, q) > v2/η2, there are two

possibilities. In region 1, when the delay heterogeneity ∆ < ν, the value heterogeneity, and

the retailer sells fashion goods15, prioritization is preferred but some impatient customers

need to be split so that adequate service gets provided for customers that select the low-

priority service. In region 5, when ∆ > ν and the retailer sells staple products, she obtains

optimal profits by just providing a single service class. A high value of delay heterogeneity

∆ should favor prioritization but a high value of η2 precludes the retailer from realizing

this benefit. When η2 is low and Wl(µ, q) < v2/η2, there are four regions in Figure 3. The

retailer uses prioritization in all these regions. However, other features of service delivery

differ across these regions. In regions 2 and 6, there is no strategic delay or free service; in

region 3, both of them are present, while region 4 has strategic delay but no free service.

These differences are explained as follows. In region 2, since η1 is low, the delay heterogeneity

∆ is low so there is no strategic delay/free service. However, in region 6, η1 is high so that

Wl(µ, q) > (v1 − v2)/(η1 − η2) and the retailer does not have ample capacity that is needed

for strategic delay/free service. In both regions 3 and 4, there is strategic delay since the

values of η1 and η2 ensure that (i) there is enough delay heterogeneity and (ii) the retailer

has ample capacity. Free service is determined by how ∆ and ν compare. In region 3 (region

4), fashion goods (staple products) are sold, and free service (no free service) is offered.

15In §1, we briefly discuss how ∆ < ν and ∆ > ν can pertain to the retailer selling fashion goods and
staple products respectively.
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(a) ∆ > ν (v1 = 5)
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(b) ∆ < ν (v1 = 20)

Figure 4: Variation of optimal service delivery with λ and q

Region  Single service  Free service  Prioritized 
service 

Strategic 
delay 

Split of impatient 
customers 

 
1         

 
 

 
2         

 

 
3, 4, 9       

 
 

 
5, 8       

 
 

 
6       

 

 
7     

 
 

 
10       

 

 

Table 2: Features of optimal service delivery in different regions of (λ, q)

8.2 Endogenous Capacity: Impact of λ and q

We consider the variation of arrival rate λ and fraction of impatient customers q. These

parameters, which fundamentally alter the composition of the customers, are likely to affect

the retailer’s capacity. So we consider the case of endogenous capacity (see §7). Based on

different numerical examples, we find that the manner in which λ and q affect the retailer’s

optimal service delivery decision depends crucially on how ∆ and ν compare with each other.

We provide two demonstrative examples, one with ∆ > ν (for staple products) and the other

with ∆ < ν (for fashion goods).

Figures 4a and 4b illustrate how the optimal service delivery changes with λ and q. The

valuations of impatient customers are given by v1 = 5 and v1 = 20 in Figures 4a and 4b

respectively. The values of other parameters are fixed at v2 = 1, η1 = 100, η2 = 10, r = 2, and

K = 5. Note that ∆ = η1/η2 = 10 > ν = v1/v2 = 5 in Figure 4a, while ∆ = 10 < ν = 20 in

Figure 4b. Next, we analyze the optimal service delivery in different regions of these figures.

21



 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 4 8 12 16 20 24 28 32 36

F
r
a
c
t
io
n

 o
f 
im

p
a
t
ie
n
t
 c
u
s
t
o
m
e
r
s
 q

Unit Capacity Cost K

K
=
1
.
6

2
1 

3 
5 

4 

2 

2 
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(b) ∆ < ν (v1 = 20)

Figure 5: Variation of optimal service delivery with K and q

Region  Single service  Free service  Prioritized 
service 

Strategic 
delay 

Split of impatient 
customers 

 
1         

 
 

 
2, 8         

 

 
3, 7       

 
 

 
4         

 
 

 
5, 10       

 

 
6       

 
 

 
9       

 
 

 

Table 3: Features of optimal service delivery in different regions of (K, q)

Figure 4a is characterized by five regions. In regions 1, 2, and 3, λ is very low and q is

high. Due to the low (optimal) capacity, the retailer offers only single service in regions 1 and

2; furthermore, it is free in region 1. In region 3, the retailer is able to prioritize her customers

but she has to offer free service. The remaining two regions, 4 and 5, together comprise most

of the (λ, q) combinations. In region 4, with intermediate to high values of q and low to

intermediate values of λ (limited capacity retailer), free service is offered. However, in region

5, no free service is offered. The difference is explained as follows. In region 4, the retailer is

constrained by her insufficient capacity, due to relatively higher values of q and lower values

of λ, and has to therefore offer free service. In region 5. she does not face this constraint.

Figure 4b is also characterized by five regions. In regions 6 and 7, λ is very low which

implies low capacity. The retailer offers single, free service in region 6. In region 7, she

prioritizes the customers but the impatient ones get split due to low capacity. In region

9, which comprises most (λ, q) combinations, free service is offered. Again, the reason for

22



free service is that the retailer’s capacity is insufficient, i.e., Wl(µ
∗, q) = v2/η2. Free service

is also offered, along with strategic delay, in region 10 in which the fraction of impatient

customers q is very high. However, the reason for free service here is different, it is due to

strategic delay. Due to a very high q, the retailer does have sufficient capacity µ∗ so that

Wl(µ
∗, q) < v2/η2. However, instead of charging the patient customers, she would rather

provide them free service, strategically delay them, and then charge the impatient customers

more to get a higher revenue. In region 8, there is no free service since q is low, the retailer

has sufficient capacity, and there is no strategic delay. A key difference between Figures 4a

and 4b is that free service is offered for most (λ, q) combinations in Figure 4b, unlike in

Figure 4a. The main reason is due to how delay and value heterogeneity compare with each

other, which depends on the nature of the product. In Figure 4b, ∆ < ν and the retailer

sells fashion goods, while, in Figure 4a, ∆ > ν and the retailer sells staple products.

8.3 Endogenous Capacity: Impact of K and q

We consider the variation of unit capacity cost K and fraction of impatient customers q,

which, respectively, affect the total cost of building capacity and customer composition,

and are, therefore, also likely to affect the retailer’s capacity. As in §8.2, we illustrate this

variation by providing two demonstrative examples, one with ∆ > ν (for staple products)

and the other with ∆ < ν (for fashion goods). We also use the same parametric values as

those in §8.2; however, note that K now varies while we fix λ = 100.

Figure 5a shows how the optimal service delivery changes with K and q for staple prod-

ucts, and it is characterized by five regions. In region 1, because K is low and q > 1/∆,

we have prioritization with strategic delay. However, in region 2, either q is too low or K is

higher, so that strategic delay is no longer possible. Interestingly, we find that even when K

becomes high, as long as q is not high (q < 0.6), the retailer differentiates her customers by

offering prioritized service. The reasoning is as follows: because optimal capacity µ∗ is such

that W (µ∗) ≤ mini=1,2 vi/ηi = v1/η1 (= 0.05) which is significantly less than v2/η2 (= 0.1),

the retailer is able to prioritize, regardless of the value of K, as long as q is not high. We

make another key observation by looking at regions 1 and 2. We find that, for a small range

of low values of K, as exemplified by the dashed line K = 1.6 in Figure 5a, the optimal

service delivery exhibits the following complicated pattern as q increases from 0 to 1: no

strategic delay → strategic delay → no strategic delay → strategic delay. Initially, strategic

delay is futile because there are too many patient customers (1 − q is high), and delaying
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all of them is counterproductive. Then it becomes optimal because the value of K ensures

enough capacity for strategic delay. However, if q increases further, then the value of K

in addition to the relatively high proportion of patient customers preclude strategic delay.

Finally, if q is very high then there are too few patient customers and strategic delay again

becomes optimal. Regions 3, 4, and 5 show that, when q is high, K has more impact on

the optimal service delivery. As K increases, the retailer first has to offer free service (even

though she prioritizes her customers); she then offers just a single service but charges for it,

and finally, for high values of K, she has to offer a single free service.

Figure 5b shows how the optimal service delivery changes with K and q for fashion goods,

and it is also characterized by five regions. Region 6, characterized by very low K and high q

values, is the only region with strategic delay. Likewise, Region 8, characterized by very low

K and low q values, is the only region in which the retailer does not offer free service. When

K takes low (or intermediate) values, the optimal service delivery depends on whether q is

below a certain threshold value which is decreasing in K: if that’s the case, there is no split

(Region 7); otherwise, impatient customers get split (Region 9). In either case, the retailer

prioritizes and offers free service. Finally, if K is high then, regardless of the value of q, the

retailer just offers a single, free service, as shown by Region 10.

9. Conclusion

We consider a retailer providing an ancillary service, a type of service that is characterized

by its secondary nature in comparison to other products/services that the retailer sells and

its management as a cost center, to two types of customers, patient and impatient, who may

be heterogeneous both in their delay sensitivity, the rate at which their net utility decreases,

and their service valuations. Our main example for such ancillary service is the shipping of

products by online retailers to their customers. In this context, how should a retailer price

her shipping service? Should she offer single service or two service classes? If she offers two

service classes, should she prioritize some of her customers and/or strategically delay others?

Should she provide free service? What are the factors which influence these decisions? We

investigate these key questions in the paper, both when the retailer’s capacity is exogenous

and endogenous.

We find that (i) offering a single service class can be optimal even though customers

are heterogeneous; (ii) the retailer prioritizes whenever two service classes are offered; and
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(iii) splitting of impatient customers in which they select both high- and low-priority service

classes can be optimal. There are two key factors that determine the optimal service delivery

features: her capacity and how customers’ delay and value heterogeneity compare with each

other. If the delay heterogeneity is less than value heterogeneity then the retailer sells

fashion goods for obtaining which the impatient customers are willing to pay proportionately

more than patient ones. However, if the delay heterogeneity is higher then the retailer

sells staple products. Then the impatient customers, even though they want the product

more quickly, are not so brand-conscious and unwilling to pay proportionately more. Single

service and splitting of impatient customers both happen when capacity is limited. Single

service occurs when the retailer sells staple products, while splitting, in which the low-priority

service is free, happens with fashion goods. Strategic delay is always used in conjunction

with prioritization. It occurs when the retailer has sufficient capacity and the customers

have a high delay heterogeneity. Furthermore, strategic delay results in free service when the

retailer sells fashion goods.

Based on our numerical analysis in §8, we make some important observations about

different service delivery features. First, we find that single service is offered when the

capacity for satisfying customers is very low. That occurs when customers have high delay

sensitivities η1 and η2 (Region 5 in Figure 3), arrival rate λ is too low (Regions 1 and 2 in

Figure 4a and Region 6 in Figure 4b), or unit capacity cost K is high (Region 5 in Figure 5a

and Region 10 in Figure 5b). On the other hand, strategic delay is used when the capacity

is very high and the fraction of impatient customers q is sufficiently high (as seen in Regions

3 and 4 of Figure 3, Region 10 of Figure 4b, and Regions 1 and 6 in Figures 5a and 5b

respectively). Single service and strategic delay can be optimal with both fashion goods and

staple products. However, a split in impatient customers is only optimal when the retailer

sells fashion goods; furthermore, she has insufficient capacity and/or a high fraction q (as

seen in Region 1 of Figure 3, Region 7 of Figure 4b, and Region 9 of Figure 5b). If the

cases above are excluded and we focus on scenarios in which the parameters (η1, η2, λ,K, q)

take intermediate (neither too high nor too low) values, the main question involves whether

free service is offered. We find that the answer crucially depends on whether the retailer

sells fashion goods or staple products. If she sells fashion goods, then she mostly offers free

service (exemplified by Region 9 of Figure 4b and Region 7 of Figure 5b). However, if she

sells staple products, she usually does not offer free service (shown by Region 5 of Figure 4a

and Region 2 of Figure 5a). The only exception is Region 4 of Figure 4a in which λ and

25



q take intermediate-high values. The retailer then provides free service, in spite of selling

staple products, because the optimal capacity is not enough to charge the patient customers

(who select low-priority service).

Finally, we note that, although we examine the effect of primary product price on the pric-

ing and delivery of ancillary service by using a simple extension of the model (see Appendix

D), our analysis considers free service mainly from an operational perspective and ignores

marketing elements pertaining to customer behavior. A future avenue of research might

involve integration of operational and marketing aspects as well as the effect of competition

to analyze the impact of free service provision.
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Appendix A: Proofs

Proof of Lemma 1: We show that if service differentiation is optimal then γ = 1, γ2 = 0
has to be the best solution. First, note that dl > 0 = dh due to service differentiation, and
γ1 = 0, γ2 = 1 is infeasible ∀dl > 0. Either γ1 or γ2 is strictly in between zero and one
because there is no service differentiation otherwise.

Suppose 0 < γ1 < 1, then the IC constraints (3) and (4) imply that ph−pl = η1dl > η2dl.
Therefore, γ2 = 0 because otherwise constraint (3) with i = 2 would be violated. Then the
net cost becomes λr − λγ1qph − λ(1 − γ1q)pl, which is decreasing in γ1. Further, because
W (µ) is independent of γ1, the feasible region is independent of γ1. So the optimal net cost
is decreasing in γ1. It further decreases when γ1 = 1 because the constraint (4) no longer
applies to Type 1 customers. Hence, the optimal net cost when γ1 = 1 and γ2 = 0 is less
than that under any γ1 s.t. 0 < γ1 < 1 and γ2 = 0.

Similarly, suppose 0 < γ2 < 1 then ph − pl = η2dl < η1dl and therefore, γ1 = 1
(otherwise constraint (4) with i = 1 would be violated). And the net cost becomes λr −
λ (1− (1− γ2)(1− q)) ph − λ(1− γ2)(1− q)pl = λr− λqph − λ(1− q)pl − λγ2(1− q)(ph − pl)
which is decreasing in γ2. So the optimal net cost is decreasing in γ2. Hence, the optimal
net cost when γ1 = 1 and γ2 = 1 is less than that under γ1 = 1 and any γ2 s.t. 0 < γ2 < 1.
However, there is no service differentiation when γ1 = γ2 = 1.
Proof of Lemma 2: Suppose there is service differentiation. Because of Lemma 1, N gets
simplified to minph,pl,dl λr−λqph−λ(1− q)pl s.t. ph+η1W (µ) ≤ v1, pl+η2(W (µ)+dl) ≤ v2,
ph−pl ≤ η1dl, ph−pl ≥ η2dl, dl ≥ 0, and pl ≥ 0. Letting ui denote the non-negative multiplier
for the ith constraint, KKT conditions (Bazaraa et al. 2013) imply that u1 + u3 − u4 = λq,
u2 − u3 + u4 = λ(1 − q) + u6, and η2(u2 + u4) = η1u3 + u5. There is service differentiation
only if dl > 0 and hence u5 = 0; otherwise the retailer’s cost is maxi=1,2 λr− λvi + ληiW (µ).
Further, the second condition implies that u2 + u4 > 0 and hence u3 > 0 from the third
condition. So ph − pl = η1dl > η2dl under optimality when there is service differentia-
tion and hence u4 = 0. Then solving for u1, u2, and u3 from the three conditions, we get
u1 = λ(η1q−η2)−η2u6

(η1−η2)
, u2 = (λ(1−q)+u6)η1

(η1−η2)
, and u3 = (λ(1−q)+u6)η2

(η1−η2)
. We find that u1 ≥ 0 for some

u6 ≥ 0 implies that ∆ ≥ 1/q. There are then two possibilities for the optimal solution.
First, pl > 0 and hence u6 = 0; then the first three constraints bind and ph = v1 − η1W (µ),
pl = (η1v2−η2v1)/(η1−η2), and dl = (v1−v2)/(η1−η2)−W (µ). Further for it to be feasible,
∆ > ν (since pl > 0) and W (µ) < (v1 − v2)/(η1 − η2) (since dl > 0). The corresponding

cost is given by λr− λ
(

(η1q−η2)v1+(1−q)η1v2
η1−η2

)

+ λη1qW (µ). This case corresponds to case (iii)

in the lemma. Second, pl = 0; then the second and third constraints are binding because
u2, u3 > 0, and ph = η1 (v2/η2 −W (µ)) and dl = v2/η2 −W (µ). Further, for it to be feasible
∆ ≤ ν (since ph + η1W (µ) ≤ v1) and W (µ) ≤ v2/η2 (∵ dl ≥ 0). The corresponding cost is
given by λr − λ (η1q/η2) v2 + λη1qW (µ). This case corresponds to case (v) in the lemma.

If conditions above for both cases (iii) and (v) are not satisfied, then there is no service dif-
ferentiation. Then the retailer charges a single price ph = pl = min(v1−η1W (µ), v2−η2W (µ))
to minimize the net cost while providing adequate service to everyone. If ∆ < µ then this
price is v2 − η2W (µ) since W (µ) ≤ v2/η2 < (v1 − v2)/(η1 − η2), which corresponds to case
(iv) in the lemma. If ∆ ≥ µ then the price depends on how W (µ) and (v1 − v2)/(η1 − η2)
compare with each other, which leads to cases (i) and (ii) in the lemma.
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Proof of Lemma 3: If 0 < γ1 < 1 then ph−pl = η1 (Wl + dl −Wh − dh). Due to service dif-
ferentiation, either (i) Wh+dh < Wl+dl which implies that ph−pl > η2 (Wl + dl −Wh − dh)
and therefore γ2 = 0 because otherwise the IC constraint of Type 2 customers for high-
type service would be violated, or (ii) Wh + dh > Wl + dl which implies that ph − pl <
η2 (Wl + dl −Wh − dh) and therefore γ2 = 1 because otherwise the IC constraint of Type 2
customers for low-type service would be violated. Similarly, we can show that if 0 < γ2 < 1,
either γ1 = 0 or γ1 = 1.
Proof of Lemma 4: From the analysis of problem P5 (see Appendix B), we find that it is
feasible if and only if Wl ≤ v2/η2 and (η1−η2)Wh+η2Wl ≤ v1. We now show that (i) if P5 is
feasible then it dominates P6 and (ii) if it is infeasible, then P1 with γ1 = γ̃1 dominates P6.
This result and Lemmas B1-B4 imply that (a) γ2 = 0 and (b) if Wl(µ, q) > mini=1,2 vi/ηi
then γ1 = γ̃1 else γ1 = 1.

Suppose P5 is feasible. Then if ∆ ≥ ν, because Wl(µ, 1 − q) ≤ (v1 − v2)/(η1 − η2)
and ∆ > 1/q for service differentiation to be optimal in P6 (from Lemma B6), Wh(µ, q) <
Wl(µ, 1− q) implies that only cases (ii) and (iv) of Lemma B5 apply. Comparing net costs
in case (ii) and P6, we have λr − λqv1 − λ(1− q)v2 + λη1qWh(µ, q) + λη2(1− q)Wl(µ, q) <

λr−λqv1−λ(1−q)(η1v2−η2v1)/(η1−η2)+λη1qWl(µ, 1−q),⇐ λη2(1−q)
(

Wl(µ, q)−
v1−v2
η1−η2

)

<

λη1q (Wl(µ, 1− q)−Wh(µ, q)),⇐ η2(1−q)
(

Wl(µ, q)−
v1−v2
η1−η2

)

< η2 (Wl(µ, 1− q)−Wh(µ, q))

(∵ η2 < η1q,Wl ≥ Wh), ⇐ W (µ) + (1 − q)
(

Wl(µ, q)−
v1−v2
η1−η2

)

< Wl(µ, 1 − q), which is

true. Also, because Wh(µ, q) < Wl(µ, 1 − q), the optimal net cost in case (iv) is strictly
less than that in P6. If ∆ < ν then only case (vi) of Lemma B5 applies and λr +
λη1q (Wh(µ, q)− v2/η2) < λr + λη1q (Wl(µ, q)− v2/η2). Hence, if P5 is feasible, it domi-
nates P6.

Suppose P5 is infeasible. From Lemma B1, P1 is feasible and γ̃1 is the best γ1 value. If
∆ ≥ ν, then Wh(µ, 1−q) < Wl(µ, 1−q) ≤ v1−v2

η1−η2
(from Lemma B6). Also, Wl(µ, γ̃1q) = v1/η1

so that the optimal values in P1 are given by pl = dl = dh = 0 (from case (i) of Lemma B1).
Optimal net cost of P1 is less than that of P6 because λr−λv1+λη1W < λr−λqv1−λ(1−
q)(η1v2−η2v1)/(η1−η2)+λη1qWl(µ, 1−q) as η1W−η1qWl(µ, 1−q) = η1(1−q)Wh(µ, 1−q) <

(1− q) (v1 − (η1v2 − η2v1)/(η1 − η2)) = η1(1− q)
(

v1−v2
η1−η2

)

.

Finally, if ∆ < ν note that Wh(µ, 1− q) < Wl(µ, 1− q) ≤ v2/η2 (from Lemma B6). Also,
Wl(µ, γ̃1q) = v2/η2 so that the optimal values in P1 are given by pl = dl = dh = 0 (from cases
(iv) and (v) of Lemma B1, both of which become equivalent). The optimal net cost of P1
(from case (iv) of Lemma B1) is λr−λη1(v2/η2)+λη1W (µ) < λr+λη1q (Wl(µ, 1− q)− v2/η2)
because η1W (µ) − η1qWl(µ, 1− q) = η1(1− q)Wh(µ, 1− q) < η1(1− q)v2/η2. Thus if P5 is
infeasible, P1 (with γ1 = γ̃1) dominates P6.
Proof of Theorem 1 and Corollary 1: Comparing the net costs in Lemmas 2 and 4
gives the result. No prioritization does as well as prioritization if and only if ∆ ≥ ν and P5
is infeasible. The results in the corollary are obtained from using Lemma 4. Furthermore,
when prioritized service is optimal, we find that P5 is infeasible if and only if ∆ < ν and
Wl(µ, q) > v2/η2. Then there is a split of impatient customers with γ̃1q customers selecting
high-priority service (as in Lemma 4). Otherwise, P5 is feasible and results from Lemma B5
apply.
Proof of Lemma 5: We first note from Theorem 1 that when the split is optimal, ∆ < ν
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and the optimal values are given by ph = η1 (v2/η2 −Wh(µ, γ̃1q)) and pl = dh = dl = 0,
with Wl(µ, γ̃1q) = v2/η2. First, we find that γ1 6> γ̃1 because otherwise pl + η2Wl(.) >
η2Wl(γ̃1q) = v2 which violates the IR constraint for patient customers. Also, for such
γ1 we have γ2 = 0 since ph + η2Wh(µ, γ1q) > pl + η2Wl(µ, γ1q). The proof then follows
from the property that Wl(µ, γ1q) − Wh(µ, γ1q) is increasing in γ1 (since ∂Wh(µ, δ)/∂δ <
∂Wl(µ, δ)/∂δ). Hence, we cannot have an equilibrium with 0 < γ1 < γ̃1 because then
ph+η1Wh(µ, γ1q) > pl+η1Wl(µ, γ1q) and the IC constraint for impatient customers choosing
high-type service is violated. However, we find that when γ1 = 0, the optimal values above
satisfy all the necessary IC and IR conditions, and so it is also an equilibrium.
Proof of Lemma C1: Solving Wh(µ, q) = (v1 − v2)/(η1 − η2) and Wl(µ, q) = v2/η2, we get

a unique solution with µ̃ =
λ
(

v2/η2
(v1−v2)/(η1−η2)

)

v2/η2
(v1−v2)/(η1−η2)

−1
and q̃ = 1

1−
(v1−v2)/(η1−η2)

v2/η2

(

1− 1
λ

(

η1−η2
v1−v2

− η2
v2

))

.

Note thatWh(µ, q) = (v1−v2)/(η1−η2) implies µ = λq+(η1−η2)/(v1−v2) so that the slope of

Wh curve is 1/λ. Further, the slope of Wl curve is given by −∂Wl/∂µ
∂Wl/∂q

=
1

(µ−λq)2
+

λ(µ−λ+µ−λq)

(µ−λq)2(µ−λ)2

µλ

(µ−λ)(µ−λq)2

>

1
(µ−λq)2

+
λ(µ−λ)

(µ−λq)2(µ−λ)2

µλ

(µ−λ)(µ−λq)2

= 1
λ
. Then there are three possibilities: (i) µ̃ < W−1(v1/η1) = λ+ η1/v1

in which the Wh curve is always below the Wl curve, (ii) λ+ η1/v1 ≤ µ̃ and q̃ ≤ 1 in which
there is a unique intersection, and (iii) q̃ > 1 in which the Wl curve is always below the Wh

curve.
Proof of Theorem 2: Suppose ∆ ≥ ν. From the results in Theorem 1 (and Lemmas 4
and B5) we find that there are two general ways in which optimal service delivery can
evolve as capacity µ increases: (i) Single service → Differentiated service in which patient
customers get surplus → Differentiated service in which no one gets surplus → Differentiated
service with strategic delay (in which no one gets surplus) (ii) Single service → Differentiated
service in which patient customers get surplus → Differentiated service in which no one gets
surplus → Differentiated service (without strategic delay) in which impatient customers
get surplus. Although there can be other patterns in which the optimal service delivery
evolves, they are subsequences of at least one of the above patterns. We show that the
optimal total cost is strictly convex with both patterns (so that it would be strictly convex
with any subsequence pattern too). In the first pattern (for which ∆ > 1/q is necessary),
the four total profit functions (as capacity increases) are given by µK + λr − λv1 + λη1W ,
µK+λr−λv1+λη2W+λ(η1−η2)Wh, µK+λr−λqv1−λ(1−q)v2+λη1qWh+λη2(1−q)Wl, and
µK+λr−λqv1−λ(1−q)η1v2−η2v1

η1−η2
+λη1qWh. The corresponding derivatives (with respect to µ)

are related as follows: K− λη1
(µ−λ)2

< K− λη2
(µ−λ)2

− λ(η1−η2)
(µ−λq)2

< K− λη2
(µ−λ)2

− λ(η1−η2)q
(µ−λq)2

< K− λη1q
(µ−λq)2

.
So the total cost is strictly convex in µ, and the optimal capacity is unique. In the second
pattern (for which ∆ ≤ 1/q is necessary), the first three total cost functions are the same
while the fourth one is given by µK + λr − λv2 + λη1W − λ(η1 − η2)Wl. The derivative of
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this function is greater than the derivative of the third total cost function if

K −
λη1

(µ− λ)2
+

λ(η1 − η2)

(1− q)(µ− λ)2
−

λq(η1 − η2)

(1− q)(µ− λq)2
> K −

λη2
(µ− λ)2

−
λ(η1 − η2)q

(µ− λq)2

⇔
1

(1− q)(µ− λ)2
−

q

(1− q)(µ− λq)2
>

1

(µ− λ)2
−

q

(µ− λq)2

⇔
1

(µ− λ)2
>

q

(µ− λq)2
,

which is true. So the total cost is strictly convex and optimal capacity is unique, with the
second pattern too.

Suppose ∆ < ν. Then we find (from Theorem 1 and Lemmas 4 and B5) that the general
pattens of optimal service delivery are (i) Differentiated service with split → Differentiated
service with strategic delay and (ii) Differentiated service with split → Differentiated service
without strategic delay. In the first pattern (for which ∆ > 1/q is necessary), the total costs
are µK + λr − λη1 · v2/η2 + λη1W and µK + λr + λη1q (Wh − v2/η2). Their derivatives are
such that K − λη1

(µ−λ)2
< K − λη1q

(µ−λq)2
. So the total cost is strictly convex and has a unique

optimal capacity. In the second pattern (for which ∆ ≤ 1/q is necessary), the second total
cost is µK+λr−λv2+λη1W −λ(η1− η2)Wl. The derivative of this function is greater than
the derivative of the first total cost function if − ∂

∂µ
(λ(η1 − η2)Wl) > 0 which is true since

∂Wl

∂µ
< 0. So the total cost is strictly convex and the optimal capacity is unique, with the

second pattern too.
We next consider what happens when λ → ∞. We first show that single service, strategic

delay, and split are all sub-optimal. When λ is high enough, case (iii) of Lemma C1 applies.
So the Wl curve is always below the Wh curve (see Figure C1c for an illustration) and
Wl(µ, q) = µ

(µ−λq)(µ−λ)
> v2/η2 for single service to be optimal. That means 1/(µ − λ) >

v2/η2(1−q) so that the derivative of total cost under single service given by K− λη1
(µ−λ)2

< K−
λη1v22(1−q)2

η22
< 0 as λ → ∞. So Wl ≤ v2/η2. Strategic delay is sub-optimal since the derivative

(both when ∆ ≥ ν and ∆ < ν) is given by K − λη1q/(µ − λq)2 > K − λη1q/(λ − λq)2 =
K − η1q/ (λ(1− q)2) > 0 as λ → ∞. Since Wl > v2/η2 for split of impatient customers and
the derivative of total cost is the same as that under single service, it is also sub-optimal.

Free service is determined by whether Wl = v2/η2. We denote the corresponding capacity
by µ so 1/(µ−λ) > v2/η2(1− q). If ∆ > ν then the right side derivative, which corresponds
to the total cost function for differentiated service in which no one gets surplus, is given by

K − λη2
(µ−λ)2

− λ(η1−η2)q
(µ−λq)2

< K − λη2
(µ−λ)2

< K −
λv22(1−q)2

η2
< 0 as λ → ∞. Hence the optimal

capacity is higher than µ and so low-priority service is charged. If 1/q < ∆ < ν then the
right side derivative (at µ) corresponds to that under strategic delay and it is positive (as
shown above). So optimal capacity is µ and low-priority service is free.
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Appendix B: Optimal Solutions of Problems P1-P6

Problem P1: 0 < γ1 < 1 and γ2 = 0

The impatient customers split between high- and low-type services while all the patient
customers select low-type service. Because 0 < γ1 < 1 and γ2 = 0, the IC constraints imply
that ph − pl = η1 (Wl + dl −Wh − dh) ≥ η2 (Wl + dl −Wh − dh). So Wh + dh ≤ Wl + dl and
the high-type service is the costlier service class. Problem P1 for any γ1 can be written
as minpl,dh,dl λr − λpl − λγ1η1q (Wl + dl −Wh − dh) s.t. pl + ηi(Wl + dl) ≤ vi, i = 1, 2;
Wh + dh ≤ Wl + dl; dh, dl, pl ≥ 0. Lemma B1 characterizes the optimal solution of P1. It
shows that when γ2 = 0, the net cost decreases because more impatient customers select the
high-type service. Although the price of high-type service (low-type service) can decrease as
in case (ii) (case (iv)) of Lemma B1, the effect of this price reduction on the net cost is more
than compensated by the benefit from additional customers who choose the more expensive
high-type service.

Lemma B1 For problem P1, dh = 0 under optimality. Other optimal values are given by:
(i) if ∆ ≥ ν and (v1 − v2)/(η1 − η2) ≤ Wl ≤ v1/η1, then ph = v1 − η1Wh, pl = v1 − η1Wl,
dl = 0, and the net cost is λr − λv1 + λη1W ;
(ii) if ∆ ≥ ν, Wl < (v1− v2)/(η1−η2), and ∆ ≤ 1/(γ1q) then ph = v2−η2Wl+η1(Wl−Wh),
pl = v2 − η2Wl, dl = 0, and the net cost is λr − λv2 + λη1W − λ(η1 − η2)Wl;
(iii) if ∆ ≥ ν, Wl < (v1 − v2)/(η1 − η2), and ∆ > 1/(γ1q) then ph = v1 − η1Wh, pl =
(η1v2 − η2v1)/(η1 − η2), dl = (v1 − v2)/(η1 − η2)−Wl, and the net cost is λr−λv1 +λη1W +
λη1(1− γ1q) ((v1 − v2)/(η1 − η2)−Wl);
(iv) if ∆ < ν, Wl ≤ v2/η2 and ∆ ≤ 1/(γ1q), ph = v2 − η2Wl + η1(Wl −Wh), pl = v2 − η2Wl,
dl = 0, and the net cost is λr − λv2 + λη1W − λ(η1 − η2)Wl; and
(v) if ∆ < ν, Wl ≤ v2/η2 and ∆ > 1/(γ1q), ph = η1 (v2/η2 −Wh), pl = 0, dl = v2/η2 −Wl,
and the net cost is λr + λη1γ1q (Wh − v2/η2).
There is always service differentiation and the optimal net cost is decreasing in γ1. So either
(i) Wl(µ, q) > mini=1,2 vi/ηi and the best γ1 is γ̃1 (note that Wl(µ, γ̃1q) = mini=1,2 vi/ηi), or
(ii) P1 is dominated by P5.

Proof For P1, dh = 0 under optimality because otherwise just reducing it decreases the net
cost. Then P1 becomes minpl,dl λr − λpl − λγ1η1q (Wl + dl −Wh) s.t. pl + ηi(Wl + dl) ≤ vi;
pl, dl ≥ 0. P1 is similar to N (with γ1 = 1 and γ2 = 0): we have Wl instead of W
and the IC constraint for high-type service (low-type service) is binding (non-binding) under
optimality. Optimal values of pl and dl are found by usingWl instead ofW in Lemma 2. Using
ph = pl+η1 (Wl + dl −Wh − dh) and substituting the optimal values, we get the optimal net
cost in Lemma B1. After some algebra, we find that it decreases with γ1 in cases (i)-(iv). In
case (v), its derivative wrt γ1 is given by λη1q (Wh − v2/η2)+λη1γ1q

2∂Wh/∂δ. Next, we show
that it is negative. Work conservation implies that γ1qWh(µ, γ1q) + (1 − γ1q)Wl(µ, γ1q) =
W (µ). Differentiating wrt γ1, we get qWh + γ1q

2∂Wh/∂δ − qWl + q(1− γ1q)∂Wl/∂δ = 0; ⇒
q(Wh−Wl)+γ1q

2∂Wh/∂δ < 0 (∵ ∂Wl/∂δ > 0); ⇒ λη1q (Wh − v2/η2)+λη1γ1q
2∂Wh/∂δ < 0

(∵ Wl ≤ v2/η2 in case (v) and λη1 > 0). Because the optimal net cost is continuous, it is
always decreasing in γ1. Hence, the best γ1 equals (i) γ̃1 at which P1 is just feasible or (ii)

34



one. If P1 is feasible with γ1 = 1 then P5, in which the IC constraint for high-type service
does not have to bind, has a better net cost.

Problem P2: 0 < γ1 < 1 and γ2 = 1

The impatient customers split between high- and low-type services while the all the patient
customers select high-type service. Because 0 < γ1 < 1 and γ2 = 1, the IC constraints
become ph − pl = η1 (Wl + dl −Wh − dh) ≤ η2 (Wl + dl −Wh − dh). So Wh + dh ≥ Wl + dl
and the high-type service is the cheaper service class. Problem P2 for any γ1 can be written
as minph,dh,dl λr−λph−λη1(1−γ1)q (Wh + dh −Wl − dl) s.t. ph+ηi(Wh+dh) ≤ vi, i = 1, 2;
Wl + dl ≤ Wh + dh; dh, dl, ph ≥ 0. Lemma B2 shows that when γ2 = 1, an increase in the
fraction of impatient customers selecting the high-type service increases the net cost. This
result has an intuitive explanation. The prioritized high-type service is the cheaper service
class here. Hence, a higher γ1 means more customers that are paying less. Further, giving
priority to more customers increases the expected waiting time of low-type service, which
reduces pl. Both these factors increase the net cost.

Lemma B2 For problem P2, dl = 0 under optimality. Service is differentiated in the
following cases:
(i) if ∆ ≥ ν, Wl < (v1 − v2)/(η1 − η2), and ∆ ≥ 1

(1−γ1)q
then ph = (η1v2 − η2v1)/(η1 − η2),

dh = (v1 − v2)/(η1 − η2) −Wh, pl = v1 − η1Wl, and the net cost is λr − λv1 + λη1(1 − q +
γ1q) ((v1 − v2)/(η1 − η2) +Wl); and
(ii) if ∆ < ν, Wl < v2/η2 and ∆ ≥ 1

(1−γ1)q
then ph = 0, pl = η1 (v2/η2 −Wl), dh = v2/η2−Wh,

and the net cost is λr − λη1(1− γ1)q (v2/η2 −Wl).
Further, the net cost is increasing in γ1 and hence P2 is dominated by P6.

Proof For P2, dl = 0 under optimality; otherwise dh, dl > 0 which is sub-optimal. Then
P2 becomes minph,dh λr − λph − λη1(1 − γ1)q (Wh + dh −Wl) s.t. ph + η1(Wh + dh) ≤ v1,
ph+ η2(Wh+ dh) ≤ v2, Wl ≤ Wh+ dh, and ph ≥ 0. Also, u3 = 0 under service differentiation
and KKT conditions give u1 + u2 = λ + u4 and η1u1 + η2u2 = λη1(1 − γ1)q. Then u1 =
λ(η1(1−γ1)q−η2)−u4η2

η1−η2
and u2 =

(λγ1q+u4)η1
η1−η2

. Because u4 ≥ 0, η2 ≤ η1(1− γ1)q so that u1 ≥ 0. If
ph > 0, then u4 = 0 and the first and second constraints bind. The feasibility constraints
then give case (i) in which the optimal net cost is increasing in γ1 because both 1− q + γ1q
and Wl(µ, 1 − q + γ1q) are increasing in γ1. If ph = 0, the second constraint still binds and
we get case (ii). The optimal net cost is again increasing in γ1 because both (1 − γ1)q and
(v2/η2 −Wl(µ, 1− q + γ1q)) are non-negative and decreasing in γ1. Hence the best γ1 is zero
and P6, in which the IC constraint for low-type service does not have to bind, has a better
net cost.

Problem P3: γ1 = 0 and 0 < γ2 < 1

All the impatient customers select low-type service while the patient customers split between
high and low-type services. Because γ1 = 0 and 0 < γ2 < 1, the IC constraints become
ph − pl = η2 (Wl + dl −Wh − dh) ≥ η1 (Wl + dl −Wh − dh). So Wh + dh ≥ Wl + dl and
the high-type service is the cheaper service class. Problem P2 for any γ2 can be written as
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minpl,dh,dl λr − λpl + λη2γ2(1 − q) (Wh + dh −Wl − dl) s.t. pl + ηi(Wl + dl) ≤ vi, i = 1, 2;
Wl+dl ≤ Wh+dh; pl ≥ η2 (Wh + dh −Wl − dl) (∵ ph ≥ 0); dh, dl ≥ 0. Lemma B3 shows that
when all the impatient customers select the costlier low-type service, offering a cheaper high-
type service that splits the patient customers is sub-optimal. Two factors together explain
the reason for this sub-optimality: (i) ph < pl, i.e., the high-type service class is priced
lower and (ii) prioritizing some patient customers while the impatient customers purchase
the low-type service misaligns the service classes with the customer types.

Lemma B3 For problem P3, there is no service differentiation under optimality.

Proof Suppose Wh + dh > Wl + dl; decreasing dh by a small ǫ > 0 maintains the solution
feasibility and reduces the net cost. Hence Wh + dh = Wl + dl under optimality.

Problem P4: γ1 = 1 and 0 < γ2 < 1

All the impatient customers select high-type service while the patient customers split between
high and low-type services. Because γ1 = 1 and 0 < γ2 < 1, the IC constraints become
ph − pl = η2 (Wl + dl −Wh − dh) ≤ η1 (Wl + dl −Wh − dh). So Wh + dh ≤ Wl + dl and
the high-type service is the costlier service class. Problem P4 for any γ2 can be written as
minph,dh,dl λr−λph+λη2(1−γ2)(1−q) (Wl + dl −Wh − dh) s.t. ph+ηi(Wh+dh) ≤ vi, i = 1, 2;
Wh + dh ≤ Wl + dl; ph ≥ η2 (Wl + dl −Wh − dh) (∵ pl ≥ 0); dh, dl ≥ 0. Lemma B4 shows
that although increasing γ2 means more customers select the costlier high-type service, the
benefit from that is overshadowed by the negative effect from reduction in both ph and pl.

Lemma B4 For problem P4, dh = dl = 0 under optimality. Service is always differentiated
and other optimal values are given as follows:
(i) if ∆ ≥ ν, Wh ≥ (v1 − v2)/(η1 − η2) and (η1 − η2)Wh + η2Wl ≤ v1 then ph = v1 − η1Wh,
pl = v1 − (η1 − η2)Wh − η2Wl, and the net cost is λr − λv1 + λη2W + λ(η1 − η2)Wh; and
(ii) if ∆ ≥ ν, Wh < (v1 − v2)/(η1 − η2) and Wl ≤ v2/η2; or if ∆ < ν and Wl ≤ v2/η2 then
ph = v2 − η2Wh, pl = v2 − η2Wl, and the net cost is λr − λv2 + λη2W .
Further, the net cost is increasing in γ2 and hence P4 is dominated by P5.

Proof First, dl = 0 under optimality because otherwise it can be decreased to reduce the
net cost. Also, dh = 0 because otherwise reducing it by ǫ > 0 and increasing ph by η2ǫ
maintains the feasibility and reduces the net cost by λη2(1 − γ2)(1 − q)ǫ. So P4 becomes
minph λr−λph+λη2(1−γ2)(1−q) (Wl + dl −Wh − dh) s.t. ph+η1Wh ≤ v1, ph+η2Wh ≤ v2,
and ph ≥ η2 (Wl −Wh). Either the first or second constraint binds because otherwise ph
can be increased. If ∆ ≥ ν then the first condition binds if Wh ≥ (v1 − v2)/(η1 − η2) and
the second one binds otherwise; however, if ∆ < ν then the second constraint always binds.
Applying the feasibility of the third constraint then gives the two cases. In case (i), the net
cost is increasing in γ2 because Wh (µ, q + γ2(1− q)) is increasing in γ2, and in case (ii) it is
independent of γ2. Also, the optimal net cost is continuous in γ2, and both (η1−η2)Wh+η2Wl

and Wl are increasing in γ2. Hence the best γ2 is zero and so P4 is dominated by P5.
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Problem P5: γ1 = 1 and γ2 = 0

All the impatient customers select high-type service while all the patient customers select
low-type service. Note that there is no split. Because γ1 = 1 and γ2 = 0, the IC constraints
become η2 (Wl + dl −Wh − dh) ≤ ph − pl ≤ η1 (Wl + dl −Wh − dh). So Wh + dh ≤ Wl +
dl and the high-type service is the costlier service class. Problem P5 can be written as
minph,pl,dh,dl λr − λqph − λ(1 − q)pl s.t. ph + η1(Wh + dh) ≤ v1; pl + η2(Wl + dl) ≤ v2;
η2 (Wl + dl −Wh − dh) ≤ ph−pl ≤ η1 (Wl + dl −Wh − dh); Wh+dh ≤ Wl+dl; pl, dh, dl ≥ 0.

We first discuss when P5 is feasible. It is feasible if and only if Wl ≤ v2/η2 and (η1 −
η2)Wh+η2Wl ≤ v1. Clearly, if these inequalities hold then P5 is feasible since ph = pl = dh =
dl = 0 satisfies all the necessary constraints. Next, we show that if P5 is feasible then the
two conditions should hold. Clearly, Wl ≤ v2/η2 because otherwise pl + η2(Wl + dl) > v2 for
any pl, dl ≥ 0 which violates a constraint of P5. Also, since ph ≥ pl+η2 (Wl + dl −Wh − dh)
and ph+η1(Wh+dh) ≤ v1, we require that pl+(η1−η2) (Wh + dh)+η2 (Wl + dl) ≤ v1 which
implies (η1 − η2)Wh + η2Wl ≤ v1 since pl, dh, dl ≥ 0.

Lemma B5 characterizes the optimal solution. Some results here are similar to those in
Lemma 2 in which there is no prioritization. If the capacity µ is large enough s.t. Wl(µ, q) <

min
(

v1−v2
η1−η2

, v2
η2

)

(cases (iii)-(vi) of Lemma B5) then the expressions for optimal prices and

delay are similar to those in Lemma 2 (cases (ii)-(v)) with Wl (Wh) replacing W for those
of the low-type (high-type) service. Also, the condition for strategic delay to be optimal,
∆ > 1/q, is the same; regardless of whether the retailer prioritizes her customer or not, a
strategic delay affects the net cost in the same way. However, if µ is lower (cases (i) and (ii))
then the optimal prices and delay have different expressions from those in Lemma 2.

Lemma B5 For problem P5, dh = 0 under optimality. Service is always differentiated and
other optimal values are given as follows:
(i) if ∆ ≥ ν, Wh ≥ (v1 − v2)/(η1 − η2) and (η1 − η2)Wh + η2Wl ≤ v1 then ph = v1 − η1Wh,
pl = v1 − (η1 − η2)Wh − η2Wl, dl = 0, and the net cost is λr − λv1 + λη2W + λ(η1 − η2)Wh;
(ii) if ∆ ≥ ν, Wh < (v1 − v2)/(η1 − η2) ≤ Wl ≤ v2/η2 then ph = v1 − η1Wh, pl = v2 − η2Wl,
dl = 0, and the net cost is λr − λqv1 − λ(1− q)v2 + λη1qWh + λη2(1− q)Wl;
(iii) if ∆ ≥ ν, Wl < (v1 − v2)/(η1 − η2) and ∆ ≤ 1/q then ph = v2 − η1Wh + (η1 − η2)Wl,
pl = v2 − η2Wl, dl = 0, and the net cost is λr − λv2 + λη1W − λ(η1 − η2)Wl;
(iv) if ∆ ≥ ν, Wl < (v1 − v2)/(η1 − η2) and ∆ > 1/q then ph = v1 − η1Wh, pl = (η1v2 −
η2v1)/(η1− η2), dl = (v1− v2)/(η1− η2)−Wl, and the net cost is λr−λqv1−λ(1− q)(η1v2−
η2v1)/(η1 − η2) + λη1qWh;
(v) if ∆ < ν, Wl ≤ v2/η2 and ∆ ≤ 1/q then ph = v2 − η1Wh + (η1 − η2)Wl, pl = v2 − η2Wl,
dl = 0, and the net cost is λr − λv2 + λη1W − λ(η1 − η2)Wl; and
(vi) if ∆ < ν, Wl ≤ v2/η2 and ∆ > 1/q then ph = η1 (v2/η2 −Wh), pl = 0, dl = v2/η2 −Wl,
and the net cost is λr + λη1q (Wh − v2/η2).

Proof The delay dh = 0 under optimality; otherwise it can be reduced by ǫ > 0 while
increasing ph by η2ǫ to reduce the net cost. Then P5 becomes minph,pl,dl λr − λqph − λ(1−
q)pl s.t. ph + η1(Wh + dh) ≤ v1, pl + η2(Wl + dl) ≤ v2, ph − pl ≤ η1 (Wl + dl −Wh),
ph − pl ≥ η2 (Wl + dl −Wh), dl ≥ 0, and pl ≥ 0. KKT conditions give u1 + u3 − u4 = λq,
u2 − u3 + u4 = λ(1 − q) + u6, and (u2 + u4)η2 = u3η1 + u5. Because Wh(µ, q) < Wl(µ, q),
either u3 = 0 or u4 = 0. There are three possibilities. (1) Suppose u3 = 0 and u4 > 0 so
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that the fourth constraint binds; then u5 > 0 and hence dl = 0. Further u1 > 0 and so
the first constraint binds. So ph = v1 − η1Wh and pl = ph − η2 (Wl −Wh). The feasibility
conditions then give case (i). (2) Suppose u3 > 0 and u4 = 0 so that the third constraint
binds. Then u2 > 0 and so pl = v2 − η2(Wl + dl). Also, ph = pl + η1 (Wl + dl −Wh). (a) If
Wl < (v1 − v2)/(η1 − η2) and dl = 0 then ph + η1Wh < v1 and so u1 = 0. Hence u3 = λq,
u2 = λ + u6, and (λ + u6)η2 = λη1q + u5. Further, u6 = 0 when Wl < v2/η2 and hence
∆ ≤ 1/q for u5 to be non-negative. That gives the results in cases (iii) and (v). (b) If
Wl < (v1−v2)/(η1−η2) and dl > 0 then u5 = 0 and (λ(1− q) + u3 + u6) η2 = u3η1. Because
u6 ≥ 0 and u3 ≤ λq, we need λ(1− q)η2 ≤ λq(η1 − η2) or ∆ ≥ 1/q. We get case (iv) or (vi),
depending on whether the first constraint binds when pl = 0. If ∆ < ν then pl = 0 implies
that ph + η1Wh = v2η1/η2 < v1 so that u1 = 0 and u3 = λq which gives case (vi); otherwise
the first constraint binds and we get case (iv). (3) Finally, if u3 = u4 = 0 then u1, u2, u5 > 0.
So the first, second, and fifth constraints bind. The feasibility conditions then give case (ii).

Problem P6: γ1 = 0 and γ2 = 1

All the impatient (patient) customers select low-type (high-type) service. Note that there is
no split here. Because γ1 = 0 and γ2 = 1, the IC constraints become η1 (Wl + dl −Wh − dh) ≤
ph−pl ≤ η2 (Wl + dl −Wh − dh). So Wh+dh ≥ Wl+dl; the high-type service is the cheaper
service class and it has a strategic delay. Problem P6 can be written as minph,pl,dh,dl λr −
λqph−λ(1− q)pl s.t. pl+ η1(Wl+ dl) ≤ v1; ph+ η2(Wh+ dh) ≤ v2; η1 (Wl + dl −Wh − dh) ≤
ph − pl ≤ η2 (Wl + dl −Wh − dh); Wh + dh ≥ Wl + dl; ph, dh, dl ≥ 0. Lemma B6 shows that
there are two conditions required for service differentiation to be optimal when γ1 = 0 and
γ2 = 1, and high-type service is cheaper: (i) the capacity should be sufficiently high so that

Wl(µ, q) < min
(

v1−v2
η1−η2

, v2
η2

)

and (ii) ∆ > 1/q. The first condition results from the fact that

making the high-type service cheaper, through strategic delay, necessitates a higher capacity
so that the retailer can provide adequate service. The second condition is the same as the
condition for strategic delay to be optimal when γ1 = 1 and γ2 = 0 (see Lemma B5). It
does not change because, even though which service class is costlier/cheaper changes, all
the impatient customers select the costlier service class while the patient ones choose the
cheaper service class and experience a strategic delay in both cases.

Lemma B6 For problem P6, dl = 0 under optimality. There is service differentiation only
under the following two cases:
(i) If ∆ ≥ ν, Wl < (v1 − v2)/(η1 − η2) and ∆ > 1/q then ph = (η1v2 − η2v1)/(η1 − η2),
pl = v1 − η1Wl, dh = (v1 − v2)/(η1 − η2) and the net cost is λr − λqv1 − λ(1 − q)(η1v2 −
η2v1)/(η1 − η2) + λη1qWl; and
(ii) if ∆ < ν, Wl ≤ v2/η2 and ∆ > 1/q then ph = 0, pl = η1(v2/η2 −Wl), dh = v2/η2 −Wh

and the net cost is given by λr + λη1q(Wl − v2/η2).

Proof First, dl = 0 under optimality; otherwise dh, dl > 0 which is sub-optimal. Also, Wh+
dh > Wl+dl ⇒ dh > 0. Then P6 becomes minph,pl,dh λr−λqpl−λ(1−q)ph s.t. pl+η1Wl ≤ v1,
ph+η2(Wh+dh) ≤ v2, ph−pl ≥ η1 (Wl −Wh − dh), ph−pl ≤ η2 (Wl −Wh − dh), and ph ≥ 0.
KKT conditions give u1+u3−u4 = λq, u2−u3+u4 = λ(1− q)+u6 and (u2+u4)η2 = u3η1.
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(c) High λ
Figure C1: Variation of optimal service with capacity µ under different cases

So u3 > 0 and the third constraint binds; otherwise u2 = u3 = u4 = 0 which would violate
the second condition. So u4 = 0 and we get u1 = (λ(η1q−η2)−u6η2)

η1−η2
, u2 = (λ(1−q)+u6)η1

η1−η2
, and

u3 =
(λ(1−q)+u6)η2

η1−η2
. Hence ∆ ≥ 1/q so that u1 ≥ 0 for some u6 ≥ 0. Also, u2, u3 > 0 so ph =

v2− η2(Wh+dh) and pl = ph+ η1 (Wh + dh −Wl). Cases (i) and (ii) occur based on whether
the first constraint binds if ph = 0. If ∆ < ν then pl + η1Wl = η1 (Wh + dh) = η1v2/η2 < v1
when ph = 0. Then u1 = 0, u6 > 0, and the feasibility conditions give case (ii). If ∆ ≥ ν
then the first constraint binds and we get case (i).

Appendix C: Evolution of Optimal Service Delivery as

µ Increases (when ∆ ≥ ν)

In order to understand this evolution, we first characterize the relationship between the
curves in the (µ, q) plane given by Wh(µ, q) = (v1 − v2)/(η1 − η2) and Wl(µ, q) = v2/η2,
which is given by Lemma C1.

Lemma C1 The curves given by Wh(µ, q) = (v1 − v2)/(η1 − η2) and Wl(µ, q) = v2/η2
intersect at most once. Their relationship is given as follows:

(i) if λ < η1
v1

(

v2/η2
(v1−v2)/(η1−η2)

− 1
)

then the Wh curve is always below the Wl curve and they

do not intersect;

(ii) if η1
v1

(

v2/η2
(v1−v2)/(η1−η2)

− 1
)

≤ λ ≤ (η1−η2)
(v1−v2)

(

v2/η2
(v1−v2)/(η1−η2)

− 1
)

then there exists a unique

(µ, q) such that Wh(µ, q) = (v1 − v2)/(η1 − η2) and Wl(µ, q) = v2/η2; and

(iii) if λ > (η1−η2)
(v1−v2)

(

v2/η2
(v1−v2)/(η1−η2)

− 1
)

then the Wl curve is always below the Wh curve and

they do not intersect.

Based on Lemma C1, we can find the optimal service delivery for different µ’s. Figure C1
illustrates three cases corresponding to those in the lemma (note that the optimal service
delivery features are obtained by just applying Theorem 1). In all of them, if µ is large
enough so that Wl(µ, q) < (v1 − v2)/(η1 − η2), the optimal service delivery is the same;
however, for smaller µ’s, it varies between them. For instance, although offering two services
in which only patient customers get surplus is optimal when λ is lower (Figures C1a and C1b)
that type of service delivery is always sub-optimal if λ is high (Figure C1c). The intuition
behind this result is as follows. If µ = λ + x in which x > 0 is a positive constant then
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Wh = 1/ (λ(1− q) + x) is decreasing in λ while Wl = (λ+x)/ (x(λ(1− q) + x)) is increasing
in λ. For a given additional capacity x, Wh and Wl diverge more as λ increases. For lower
λ’s, because Wh and Wl are not so different, the retailer has to ensure that patient customers
do not select the high-type service by pricing the low-type service cheaper, which provides
them surplus. However, for high λ’s, Wh and Wl are quite different which automatically
precludes them from choosing the high-type service and thereby the retailer extracting all
their surplus.

Appendix D: Price of Primary Product

We consider what happens to the retailer’s optimization problem when the price of primary
product (or service)16 is also taken into account. We denote the Type 1 and Type 2 customers’
total valuation (of primary product and ancillary service) by ṽ1 and ṽ2 respectively. With
a slight abuse of notation, we also let pp to be the price of primary product. Then using
v1 = ṽ1−pp and v2 = ṽ2−pp, which are the residual utilities of Type 1 and Type 2 customers
for the ancillary service17, we can apply the analysis in §6 to find the optimal solution.

The figures and the accompanying table show the results from an example that demon-
strates how pp affects the optimal net cost (after including the price of primary product),
and the optimal prices and service delivery for provision of the ancillary service. We find
that the optimal net cost is constant initially in region 1. That is because in this region,
the retailer offers prioritized service without any free service or strategic delay, and we also
find that both ph and pl decrease at the same rate at which pp increases. However, in region
2, the price of primary product is quite high which makes pl zero. As pp increases, ph now
decreases much more rapidly resulting in an increase in the net cost. Finally, in region 3, pp
is so high that pl = 0 and impatient customers are split in order to provide adequate service
to everyone. That further results in an increasing net cost. However, interestingly, because
of the split, the rate of decrease of price ph in region 3 is less than that in region 2.

The discussion above considers an exogenous price pp. Next, we analyze what happens
if the retailer can decide how much pp should be. We assume that there is a minimum
price, p

p
, below which the retailer will not charge for the primary product. There can be

multiple reasons for the presence of such a minimum price. The retailer might not want
to signal a “price war” to its competitors by having the price too low, and there may be
financial/accounting reasons for having a minimum threshold on how much the primary
product should be charged. Also, customer perception is another key factor. The retailer
would not want the customers to presume, from a very low price, that the product is inferior
or she is overcharging for the ancillary service. Without any loss of generality, we normalize
the minimum price to zero18. Lemma D1 identifies the optimal price for the primary product.

Lemma D1 The retailer’s optimal net cost is increasing in the price of primary product,
and so the optimal price is zero.

16For conciseness, we use primary product in the rest of the discussion; our analysis also applies when the
retailer sells primary service.

17For simplicity, customers make decisions just based on the total valuation and total price(s).
18The valuations ṽ1 and ṽ2 would become ṽ1−p

p
and ṽ2−p

p
respectively, with other parameters unchanged.

The optimal price of the primary product then would be the increment above p
p
.
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(a) Variation of optimal net cost with the price
of primary product

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

4.0 4.5 5.0 5.5

P
ri

c
e

 o
f 

A
n

c
il

la
ry

 S
e

rv
ic

e
 

Price of Primary Product pp 

1 

2 3 

(b) Variation of prices ph and pl with the price
of primary product

Figure D1: Optimal net cost and prices vs. pp when ṽ1 = 11, ṽ2 = 6, η1 = 50, η2 = 10,
λ = 100, µ = 125, and r = 2.

Region  Single service  Free service  Prioritized 
service 

Strategic 
delay 

Split of impatient 
customers 

 
1     

 
 

 
2         

 

 
3       

 
 

 

Table D1: Features of optimal service delivery in different regions

Proof We prove the inverse of the statement in the lemma: if the price of the primary
product decreases then the optimal net cost also decreases, i.e., it cannot increase. It is
observed by noting that, for any feasible solution to N or P with pp as the price of the
primary product, a new solution with all the decision variables remaining the same except
for ph and pl which are both increased by ǫ is also feasible for the corresponding problem
when the price of the primary product is pp−ǫ (0 ≤ ǫ ≤ pp). And furthermore, both solutions
have the same net cost.

The reasoning behind the result in Lemma D1 is as follows. When pp is increased, an
option is to decrease both ph and pl by the same amount. That is the case when no free
service is offered in which the optimal net cost remains constant with increasing pp (region
1). However, when free service is offered and pp increases, only ph decreases but it does so
disproportionately. This decrease is necessary due to customer heterogeneity and the need
to satisfy appropriate incentive compatibility (IC) conditions. It also increases the retailer’s
net cost (see regions 2 and 3).

The effect of primary product price on the pricing and delivery of ancillary service can be
summarized as follows. If this price, pp, is exogenous, i.e., the retailer is a price taker, then
the valuations v1 = ṽ1 − pp and v2 = ṽ2 − pp can be used (in the analyses in §’s 6 and 7) to
find how best to price and deliver the ancillary service. However, if this price is endogenous,
the retailer sets the zero (minimum) price and the valuations ṽ1 and ṽ2 (after normalization)
are used instead.
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