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Abstract

To predict the profitabilit y of a customer, today’s firms have to practice Customer Lifetime
Value (CLV) computation. Different approaches are proposed in the last ten years to
analyze the complex customer phenomenon. One of them is Markov Decision Process
(MDP) model. The class of Markov Models is an effective and a flexibili ty decision model.
Whereas the use of MDP model is limited by its assumption, in this paper, we attempt to
introduce an extension model for MDP: Higher-order Markov Decision Model (HMDP).
HMDP can perform excellently in CLV calculation and overcome the limitation of MDP.
By using a real application, we will demonstrate how it can be used efficiently in a firm’s
daily operations.

1. Introduction

The prominent topic of today’s marketers is Customer Relationship Marketing (CRM).
Customers as assets become a theme of today’s firm. Firms are seeking ways to maintain
and develop long-term relationships with customers. More or less, CRM brings changes to
our li ves. For example, direct addressed advertisements are boomed into your mailbox or e-
mail account everyday. And instead of being abandoned in a narrow space, you would try
on clothes in a glamorous fitting room and be given advice from nice salesmen. In general,
we have been served the best in these years. But, does CRM simply mean something that
only involves the frontal staff of a firm? Actually, the revolution of CRM requires a
boundaryless corporation across the firm. CRM is an integrated business strategy to
manage and coordinate customer interactions, to understand and anticipate the existing and
future need of its current and potential customers. Facilit ating this strategy requires
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appropriate plan, management, process and technology [Zablah, 2004]. A better CRM can
enforce a harmony mutual long-standing relationship between an organization and its
customer. In a business terminology, CRM aims at building up business loyalty. Over years,
relationship-marketing promoters claim enthusiastically that a loyal customer will repeat a
business with the firm so that the business position of this firm will be strengthened and the
profitabili ty will be enhanced. As though, investors capitalize billi on of dollars in the
development of CRM. According to a study conducted by Aberdeen.com in 2003, it is
estimated that US firms would spend $17.7 billi on on CRM in 2006 compare to $10 billi on
in 2002. However, would it be that simple to claim loyal equals to profit? Certainly the
answer of CRM software vendors is yes, whereas this is a question for the business
executives should take a stop before investing expenditures on CRM. The gospel of loyalty
becomes a common concept for the last ten years. In fact, there is a raising concern of how
much or whether a loyal customer will generate a tremendous profit for a firm [Reinartz
and Kumar, 2002]. The truth is, to grasp the metric of customer revenue, we have to
exercise the Customer Lifetime Value (CLV) analysis.

The main aim of this paper is to give a tutorial implementation of higher-order Markov
decision process for customer li fetime value based on the paper [Ching et al. 2003]. The
rest of the paper is organized as follows. In Section 2, we introduce the concept of customer
li fetime value. In Section 3, we give the notations and our models. In Section 4, we present
some practical numerical examples. Finally a summary is given to conclude the paper in
Section 5.

2. Customer Lifetime Value

In marketing research, quantitatively predict revenue generated by a customer’s entire
trading li fe with a company is called “Customer Lifetime Value” (CLV). The study of CLV
is an art of forecast. Despite the importance of CLV, few companies have actually
calculated it. Even so, common practices use traditional numerical ill ustrations, li ke
graphical representation or tableau observation, to analyze the complex metric generated by
its customers. One of the reasons for the hesitation of using mathematical models is the
misunderstanding of the complexity of mathematical models [Gupta and Lehmann, 2003].
Besides, many marketers have an impression that mathematical models are hard to
implement in a day-to-day operation. Indeed, to compute CLV efficiently and accurately, it
is notable that company should move a step further to consider mathematical models
[Berger and Nasr, 1998]. Moreover, with today’s computer software, lots of mathematical
models can be easily embedded into a personal computer.

The metric of CLV can be divided into two mainstreams: individual-approach or average-
approach [Kumar et al, 2004]. Both approaches can estimate the customer value in either a
discrete or continuous time planning horizon. The average-approach estimates the total
value gained from all customers. These models incorporate a stochastic distribution
function for the prediction of customer acquisition rate at different time horizon. Gupta and
Lehmann [Gupta and Lehmann, 2004] present an average-approach that is easy to be
modeled in an infinite horizon and to be computed by public available financial data. The
root of their model is from a popular class of f inancial discount cash flow work where the
time horizon discount value as well as customer retention rates are incorporated within.
Their study successfully addressed the link between the customer value and the firm market
value.
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The use of individual-approach, on the other hand, address to the action level. The
individual CLV approach aims at predicting the customer migration. The most well known
method would be RFM [Recency, Frequency, and Monetary]. The cornerstone of RFM is
that a customer’s probability of consumption in the following horizon is governed by
customers’ recency of purchase, the frequency of purchase and the amount spend on
purchase. Markov Decision Process (MDP) is one of the RFM models (Pfeifer and
Carraway, 2000). MDP is so well-developed in the field of decision science that
methodology for implementing are widely published. In CLV calculation, MDP can be
used to model both customer retention and customer migration situations. However, the
MDP assumption of static at the entire process is hard to achieve in a real setting [Jain and
Singh, 2002]. The flexibility and simplicity of MDP build on an assumption: every
probability incident solely relies on those in the previous state. That is, what happens today
is the consequence of yesterday, only. And, the probability of incident is the same for
everyday. However, in reality, most of the incidents are intertwined from more than one
previous horizon. In addition, as supported by Reinartz and Kumar (2002), the general
class of RFM approach, including MDP, will leave out non-frequent buyers. Reinartz and
Kumar (2003) proposed a new approach that the profitable lifetime duration captures the
dynamic nature of the customer-firm relationship through the time varying nature of the
independent variable. That is no matter a customer is a frequent-loyaler or non-frequent-
loyaler, the value of him/her would be studied. It is remarkable that their study deals with a
single firm. Competitive information is out of the study scope.

To fill the delinquency of these models, we intend to present a model that establishes base
on MDP: Higher-order Markov Decision Process (HMDP). First we show how one can use
HMDP to efficiently incorporate the estimation non-frequency customers’ values. Also,
although different individual CLV models are proposed, very few researchers have studied
models which incorporate promotion budget allocation under competitive and stochastic
situation. We will demonstrate how to model MDP or HMDP to achieve such situations. In
addition, the solutions of our proposed MDP and HMDP models are computed by an
optimization tool that solution formula can be embedded into an EXCEL worksheet to
demonstrate the simplicity of incorporating these so called sophisticated models into daily
operations. A real businesses application will be presented to show the efficiency of HMDP
and MDP as well as the use of them in budgeting. Finally, we will pinpoint remarks for
researchers and managers.

3. Definition and Modeling

To set an idea, we illustrate our work based on a real business problem encountered by Tel
(we use a nickname here). A telecommunication company Tel is a long distance phone
calling service provider. The call receiving quality of Tel is known to be the best in the
market. Pros and cons, to pledge its service quality, Tel invests numerous for operation and
maintenance. In recent year, the competition in the long distance phone calling service
market has been set to intensify. Companies, specifically for middle-size and small
enterprises, are shifting to use other long-distance call providers which provide cheap but
only acceptable receiving quality. The cheap phone rates provided by competitors continue
to impose pressure on this once dominant carrier.

Tel strives strategy to struggle out of this challenge. Improving and strengthen its
relationship with customers is one of the thoughts. Tel will promote a special discount rate
for existing customers as well as potential customers. Tel believes that a promotion is
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beneficial to a longer period as it stands. This is because customers establish a sense of
business loyalty to Tel. Whereas money is the key ingredient of running business, this
sense of business loyalty will flame out in a certain time. To launch promotion, additional
operational costs are required for media advertisement, maili ng category and hiring
temporary staff for warm telephone call . Under this circumstance, Tel has to estimate four
figures. The first one is the value of the campaign to each individual customer.  Is it worth
to give a discount rate to each customer? What is the return? The second is the duration of
promotion under the budget control. The third is the promotion periodic pattern. The last
one is the amount for capitalizing this campaign. None of these factors are necessarily
mutually exclusive. Indeed, they are cross-related to each other.

We see that the class of Markov models is the most suitable for practicing CLV in this
circumstance. The approach will be ill ustrated in this section. To simpli fy the discussion,
reference for class of Markov models, i.e. both MDP and HMDP, will be called Markov.
All Markov formulation is applicable to both MDP and HMDP. We will also identify the
different setting or operation between MDP and HMDP.

Step 1: Specification of states and planning horizon
There are two core bases for Markov: planning horizon and state. The entire studying
period is decomposed into an equal length of duration which is termed as the planning
horizon. We fix “week” as the planning horizon for the Tel study and use whole planning
horizon to describe the entire planning period. The planning horizon is indexed by t, where
t = 1, 2, …, T.  If Tel aims at estimating twenty weeks of its CLV, T would be equal to 20.
Also, in Markov, the whole planning horizon would be either finite or infinite. A prefixed
time line of the whole planning horizon is defined as a finite study (for example T=20).
Infinite horizon refers to a plan that last forever.

The second Markov specification is state which is the mode of existence for the system.
For example, states for daily weather forecast are sunny, cloudy and rainy. States defined

as tS  where t= 1,2, …, T indicates the planning horizon under study. At each planning
horizon, we classify all existing customers into three categories according to their long-
distance call usage rate, starting from highest to lowest: 1-Gold, 2-Silver, and 3-Bronze. We
add the fourth state, 4-Audit which represents an individual who is a customer of Tel ‘s
competitors. In our following discussion, we use the word “outsider” to describe them. All
four categories are states of the Markov, as ill ustrated by Figure 1. For example, if a
customer migrates from Gold at week 1 to Bronze at week 2, the state for this customer is

3,1 21 == SS .

Step 2: Calculation of transition probabiliti es
A customer will undergo a change of state at the end of every horizon. The change is in
associate with a set of probabiliti es. A probabili ty for a customer, who, at time t, in state

•q (falls into one of those categories) given that, at time t he or she was in states •q , is
( )ltkikt qSqSqSqSP ==== −121 ,,,| � .

For example, the probabili ty for a customer who has the state pattern: Silver, Silver, Gold,
Silver and Bronze from week 1 to week 5 is

( )2,1,2,2|3 43215 ===== SSSSSP
.

The formulation is indeed only a general representation of any stochastic process (a process
characterized by probabiliti es).



69

Markov Decision Process

A key feature of MDP is built on the absence of all predecessor states, i.e. the future
prospects of customers spend are a function only of the current state and not of the
particular path for the customers took to reach this state. The process of MDP is assumed to
specify only a recency, i.e. a state before. The transaction is a consequence of the previous
state. The probability representation is thus truncated to

( ) )|(,,,| 1121 ltktltkikt qSqSPqSqSqSqSP ======= −−� .
Furthermore, in MDP, the transition is assumed to be independent of time (See Figure 2 for
illustration), thereby leading to the form

)|( 1 ltktlk qSqSPp === −  for all t.
These are termed as transition probabilities, which are the probabilities that a state moving
from one to another after a period of transition. Apart from states, there is one more factor

in associate with lkp , promotion or no-promotion. The transition patterns are
correspondence to whether promotion has been launched or not. In 2003, Tel launched the
same campaign for 8 weeks. Together with 12-week data for the no-promotion period, it is
possible to compare the customer behavior between the period of promotion and no-

promotion. Thus, one could compile two sets of transition probabilities where
)1(

lkp stands for
the probability at state k which transits from state l in which there is no promotion;

similarly,
)2(

lkp  stands for the probability at state k which transits from state l in which there
is promotion launched. It is assumed that all customers in the market are under study, thus
the relationship of these transition probabilities are

Np
N

k
lk ,,2,1lfor   

1

)1(
�=∑

=            
Np

N

k
lk ,,2,1lfor  

1

)2(
�=∑

=

Empirical examples for the transition probabilities are listed in Table 1. The data is a
promotion week’s record. In this promotion week, the total number of customers in state 1
for the whole planning horizon is 5010  and the actual count of the number of customers
from state 1 transit to 3 is 1013. Thus, the transition probability from state 1 to state 2
under promotion would be 1013/5010=0.2022.

Higher-order Markov Decision Process

The general first-order MDP is famous for its flexibility which can be implemented into
many applications, and its objective optimality which best decision can be determined.
However, in the real world, it is easy to violate MDP’s “solely single recency” association.
Although we seek for mathematical representations to simplify the real application
problems, a dramatic truncation will bring delinquency to the results. On the other hand, a
sophisticated mathematical model would narrow the scope of application. It is hard to find
a two-way balanced solution.

Thanks to the fast-growing computational technology, there is a direct and simple
improvement that can generate a better optimal strategy for MDP. This is the introduction
of a higher number of recency, Higher-order Markov Decision Process (HMDP). To
facilitate the discussion, in this paper we will consider a second-order Markov Decision
Process (2-MDP) as a demonstration of this approach. The main difference between MDP
and HMDP is the transition probability. The operation of a 2-MDP requires a specification
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of events happened in the previous two horizons. The probability of transition becomes
( )

ilk

ltitktltitkikt

p

qSqSqSPqSqSqSqSqSP

=
========= −−−− ),|(,,,,| 121221 �

This is an extension of MDP. Given the above probabilities, the number of transition
probabilities for the 2-MDP expand to N2×N compare with N×N of MDP, where N is the
number of states. In Tel study, the number of transition probabilities is sixteen for MDP and
sixty-four for HMDP. The convergence of infinite horizon to a stationary policy is nicely
preserved by the 2-MDP. We termed this as a 2-transition probability. Similar to transition
probability, sum of all 2-transition probabilities at every state are

Nlip
N

k
ilk ,,2,1,for  

1

)1(
�=∑

= , 
Nlip

N

k
ilk ,,2,1,for  

1

)2(
�=∑

= ,

where 
)1(

ilkp and 
)2(

ilkp  account for the 2-transition probability for no-promotion and
promotion respectively. For example, the 2-transition probability from state 4 to state 4 to
state 3 under promotion would be 0.1815 (See Table 1).

Step 3: Define promotion cost, operation cost and profitability
As named, customer lifetime value, what are the values here? Values associated with states
are the profit gained from a customer and the resources required for carrying out

promotion. Tel estimates that the promotion budget at state i for a customer would be id

for i = 1, 2, 3, 4. Also, the revenue obtained from a customer in State i with no-promotion

would be 
)1(

ic  and with promotion would be 
)2(

ic , for i = 1, 2, 3, 4. As those for transition
probabilities, these values are computed by 20 weeks data.

Step 4: The mathematical model
We can now start building the mathematical model. At each state, Tel has to decide whether
launching promotion or not.

Markov Decision Process

At the beginning of every week, Tel aims at maximizing its expected net present value
Vil(t):







 −+−−+= ∑∑

==

)1(),1()(
4

1

)2(
2

)2(
4

1

)1()1( tVpdctVpcMaxtV k
k

ikik
k

ikii αα
 (1)

The first choice in the parenthesis is the expected return of the ith type of customer when

there is t planning horizon left if no-promotion is launched at this time horizon. Here 
)1(

ic is
the net gained plus the transition probabilities multiply the gained at the t-1 following
planning horizon, i.e. Vi(t-1) times the discount factorα . We have similar representation of
the second choice for the expected return for launching promotion.

One of the advantages of MDP is that it can be proved mathematically that a stationary
policy, vi for i =1,2,3,4, exists for an infinite planning horizon. A stationary policy is a
policy that the choice of alternative depends only on the state of the system is in and is
independent of time. This paper attempts not to get deep into this proof. But this nice
property is extremely useful in practice. Interested readers may consult the book by Altman
(Altman ,1999). The existence of a stationary policy implies at any time frame the decision
depends only on the state of the customer is in and is independent of t. The stationary
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policy has the advantage of being computationally simpler. For the infinite horizon case, a
MDP can be represented by the following linear programming problem see [Altman, 1999]:

∑
=

=
4

1
0min

i
ivx

Subject to 
∑

=

+≥
4

1

)1()1(

k
kikii vpcv α

, for i =1,2,3,4,5

∑
=

+−≥
4

1

)2()2(

k
kikiii vpdcv α

, for i =1,2,3,4,5

0≥iv , for i =1,2,3,4,5

Linear Programming model (LP) is a general decision tool (for more details please refer to

Winston, 1994). In short, it aims to achieve the best value of the objective function

(
∑

=

=
4

1
0min

i
ivx
in this case) with a set of governed constraints. The set of constraints can be

divided into two, one for the no-promotion period and the other for the promotion period. If

it is a stationary policy, its expected reward is greater than all the right-hand-side value in

(1). Also, the term Vi(t-1) in (1) is replaced by vi as this stationary policy achieves the best

across the whole planning horizon. The above linear programming problem can be solved

easily by using spreadsheet EXCEL.

Higher-order Markov Decision Process

Similar to MDP, an optimal strategy exists for HMDP [Ching et al, 2003]. At every time
step, the model aims at maximizing







 −+−−+= ∑∑

==

)1(),1()(
4

1

)2()2(
4

1

)1()1( tVpdctVpcMaxtV lk
k

ilklllk
k

ilklil αα
 (2)

This is the total expected reward with state l and previous state i. The model seeks for the

best move at the next time step. The probability of being in state k is 
)2(

ilkp  if promotion is

launched at the lth planning horizon. In state (i,l), if Tel launches promotion at t, then the
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expected reward would be the customer revenue generated by an lth type of customer, 
)2(

lc ,

minus the promotion cost spends on this lth type customer, dl, plus the discounted expected

sum of the next planning horizon 
)1(

4

1

)2( −∑
=

tVp lk
k

ilkα
. Similar definition stands for the first

choice of (2)’s parentheses. The stationary policy, vil where i,l=1,2,3,4, for HMDP exists.

The LP that can find the optimal stationary policy for reference:

∑∑
= =

=
4

1

4

1
0min

i l
ilvx

Subject to 
∑

=

+≥
4

1

)1()1(

k
lkilklil vpcv α

, for i =1,2,3,4, l = 1,2,3,4,

∑
=

+−≥
4

1

)2()2(

k
lkilkllil vpdcv α

, for i =1,2,3,4, l=1,2,3,4

0≥ilv , for i =1,2,3,4, l=1,2,3,4.

4. Numerical Examples

We will present a set of numerical results that can demonstrate the effectiveness of MDP
and HMDP. The numerical data is a real data set provided by Tel.. Settings include the
number of state, the state definition and the planning horizon, are stated as before. We have
four states, 1,2,3,4, and we use week as our planning horizon. We seek for optimal
stationary policy, i.e. optimal solution for infinite horizon.

In each period, we record the number of customers switching from state i to state j. Then,
we divide it by the total number of customers in state i. Thus we get the estimations for the

transition probabilities, one for the promotion period,
)1(

lkp , and the other one for the no-

promotion period, 
)2(

lkp . Similarly one can estimate the 2-transition probabilities. The
calculated transition probabilities are shown in Table 2.

It leaves to compute the 2-transition probabilities for HMDP. Again for each period, we
record the number of customers switching to state k given that the current state is i and the
previous state is j.  We then divide it by the total number of customers whose current state
is i and previous state is j. Then we get the estimates for all 2-transition probabilities. The

2-transition probabilities under promotion 
)1(

ilkp  and no-promotion
)2(

ilkp  period are presented
in Table 3.

For simplicity, we fix same promotion cost for all types of customers and this standard
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promotion cost is termed as d. From the customer database, we can obtain the average

revenue of a customer in different states in both the promotion period (
)2(

ic  for i = 1,2,3,4)

and the no-promotion period (
)1(

ic for i = 1,2 ,3 4). We remark that in the promotion period,
a big discount was given to the customers and therefore the revenue was significantly less
than the revenue in the no-promotion period. The revenue is shown in Table 4.

There are three aims for this real application.  First is to estimate CLV for different types of
customers under promotion and no-promotion period. Second, decide an appropriate
promotion budget for launching promotion. Third, determine the best promotion period. To
do so, we simply modify d in the worksheet. Then, check the optimal solution period with
different d and see the periodic promotion desired by this optimum. Also, discount factor
can be modified to tailor the economic situation.

To demonstrate the operation of optimizing MDP and 2-MDP, we present one set of the
GDWD�LQ�GHWDLOV��7DNH�G ��� . ������WKH�/3�VHWWLQJ�IRU�JHQHUDWLQJ�0'3�VWDWLRQDU\�SROLF\�LV

43210min vvvvx +++=
Subject to

 )2742.02069.02809.02380.0(95.02.139 43211 vvvvv ++++≥ ,
)3837.01744.01158.03261.0(95.072.51 43212 vvvvv ++++≥ ,
)4146.00623.00267.04964.0(95.003.14 43213 vvvvv ++++≥ ,

)1064.00121.00053.08762.0(95.0 43214 vvvvv +++≥ ,
)2147.02034.04447.01372.0(95.0375.43 43211 vvvvv ++++−≥ ,
)3458.02109.02148.02285.0(95.0309.18 43212 vvvvv ++++−≥ ,
)4230.00992.00615.04163.0(95.0397.6 43213 vvvvv ++++−≥ ,

)1489.00266.00191.08054.0(95.03 43214 vvvvv ++++−≥ ,
0,,, 4321 ≥vvvv ,

For 2-MDP, the LP settings is 

444342413433323124232221141312110min vvvvvvvvvvvvvvvvx +++++++++++++++=
Subject to

 )1251.01968.01923.04848.0(95.02.139 1413121111 vvvvv ++++≥ ,
)2040.03224.02434.02302.0(95.072.51 2423222112 vvvvv ++++≥ ,
)2678.04392.01493.01437.0(95.003.14 3433323113 vvvvv ++++≥ ,

)6493.02114.00575.00818.0(95.0 4443424114 vvvvv +++≥ ,
)1785.02928.02385.02901.0(95.02.139 1413121121 vvvvv ++++≥ ,
)2032.03992.02531.01445.0(95.072.51 2423222122 vvvvv ++++≥ ,

)3048.04783.01411.00757.0(95.003.14 3433323123 vvvvv ++++≥ ,
)6551.02253.00847.00349.0(95.0 4443424124 vvvvv +++≥ ,
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)1727.03750.02624.01900.0(95.02.139 1413121131 vvvvv ++++≥ ,
)2505.04763.01860.00872.0(95.072.51 2423222132 vvvvv ++++≥ ,
)3584.05117.01064.00234.0(95.003.14 3433323133 vvvvv ++++≥ ,

)7287.02400.00227.00086.0(95.0 4443424134 vvvvv +++≥ ,
)4771.02298.01343.01587.0(95.02.139 1413121141 vvvvv ++++≥ ,
)5199.03069.00980.00753.0(95.072.51 2423222142 vvvvv ++++≥ ,
)6484.03051.00329.00136.0(95.003.14 3433323143 vvvvv ++++≥ ,

)8957.00904.00098.00041.0(95.0 4443424144 vvvvv +++≥ ,
)0587.01399.01855.06159.0(95.0375.43 1413121111 vvvvv ++++−≥ ,
)1286.02562.02487.03671.0(95.0309.18 2423222112 vvvvv ++++−≥ ,

)2263.03343.02086.02308.0(95.0397.6 1413323113 vvvvv ++++−≥ ,
)4822.02189.01496.01494.0(95.03 4443424114 vvvvv ++++−≥ ,

)1030.02500.02630.03840.0(95.0375.43 1413121121 vvvvv ++++−≥ ,
)1235.03757.02704.02304.0(95.0309.18 2423222122 vvvvv ++++−≥ ,

)2451.04323.02043.01183.0(95.0397.6 1413323123 vvvvv ++++−≥ ,
)5752.02371.01043.00834.0(95.03 4443424124 vvvvv ++++−≥ ,

)1368.03158.02271.03203.0(95.0375.43 1413121131 vvvvv ++++−≥ ,
)1915.04353.02169.01563.0(95.0309.18 2423222132 vvvvv ++++−≥ ,

)3012.04952.01661.00375.0(95.0397.6 1413323133 vvvvv ++++−≥ ,
)6739.02662.00394.00205.0(95.03 4443424134 vvvvv ++++−≥ ,

)3295.02919.01482.02304.0(95.0375.43 1413121141 vvvvv ++++−≥ ,
)4471.03033.01324.01172.0(95.0309.18 2423222142 vvvvv ++++−≥ ,

)5873.03258.00549.00320.0(95.0397.6 1413323143 vvvvv ++++−≥ ,
)8521.01225.00166.00088.0(95.03 4443424144 vvvvv ++++−≥ ,

0,,,,,,,,,,,,,,, 44434241343332312423222114131211 ≥vvvvvvvvvvvvvvvv

Interested readers can download the EXCEL files for trial: http://hkumaths/~wkc/mdp.zip
for MDP and http://hkumaths/~wkc/hmdp.zip for HMDP. All the transition probabilities,
revenue, promotion cost and discount value are available in the sheet. To activate the LP
solver, readers can click Tools->Solver->Solve. The generated expected reward and
optimal policy are presented in the given worksheet. For further information concerning
about using worksheet to build HMDP models, please refer to [Ching et al., 2004].

In order to compare the result generated by MDP and HMDP, we plotted the expected
reward generated by these two models with different discount factors and promotion costs
in Figure 3. In Figure 4, the top left chart corresponds to discount value 0.99. The expected
reward for MDP and HMDP are similar. Only the expected reward of HMDP is slightly
higher than that of MDP when promotion cost was increased to 6 units. However, for a
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higher discount value, the difference is significant. The top-right figure and bottom
correspond to discount value 0.95 and 0.90. For promotion costs 1 to 6, the expected
reward of HMDP is higher than those of MDP.

5. Summary

This paper illustrates how the class of Markov Processes is appropriate for CLV modeling.
A major advantage is the flexibility in the way of incorporating budgeting, customer
retention rates and expected revenue into a single model. Secondly, as shown, the
advantage for both HMDP and MDP is the existence of an optimal stationary policy. Also,
the generation of optimal solution is convenient and fast. Firms can easily incorporate it
into a day-to-day by using a PC. Moreover, numerous of extensions can be incorporated
into Markov models. For example, users can dedicate the promotion period into the
solution LP.

Readers would wonder: what are the differences for these two models? What are the
criteria for using them? The greatest assumption underlay MDP is the sole dependence of a
state before. For most of the situations, this would prohibit the accuracy of MDP. If an
application that forecasts to be an intertwined of several consequences, it is suggested to
use HMDP. On the other hand, the main draw back for HMDP is abundance of data is
required for the transition probabilities estimation. Thus, it is recommended that HMDP is
used in the case where sufficient data are available. In any case, Markov type models are
well-defined and convenient to use in real settings.
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FIGURES

Figure 1. A full customer mobilizing network of Tel .

Figure 2. Truncated Tel problem into a Markov Decision Process (under promotion)
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Figure 3: Graphical representation for transition probability transit from state i to l to k
(with no-promotion)
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TABLES

Transition Probabilities for MDP at one of the promotion week

States
Transition (1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4) (3,1) (3,2) (3,3) (3,4) (4,1) (4,2) (4,3) (4,4)

Actual Count 74 34 33 36 90 61 89 77 190 215 789 727 357 330 1257 4876

Transition
Probabilities

0.4181 0.1921 0.1864 0.2034 0.2839 0.1924 0.2808 0.2429 0.0989 0.1119 0.4107 0.3785 0.0523 0.0484 0.1843 0.715

Transition Probabilities for HMDP at one of the promotion week

States
Transition (1,1,1) (1,1,2) (1,1,3) (1,1,4) (1,2,1) (1,2,2) (1,2,3) (1,2,4) (1,3,1) (1,3,2) (1,3,3) (1,3,4) (1,4,1) (1,4,2) (1,4,3) (1,4,4)

Actual Count 15 6 4 4 8 6 3 3 7 6 6 7 1 3 5 9

Transition
Probabilities

0.5172 0.2069 0.1379 0.1379 0.4 0.3 0.15 0.15 0.2692 0.2308 0.2308 0.2692 0.0556 0.1667 0.2778 0.5

States
Transition (2,1,1) (2,1,2) (2,1,3) (2,1,4) (2,2,1) (2,2,2) (2,2,3) (2,2,4) (2,3,1) (2,3,2) (2,3,3) (2,3,4) (2,4,1) (2,4,2) (2,4,3) (2,4,4)

Actual Count 9 8 2 3 8 7 11 5 4 15 35 12 5 5 12 37

Transition
Probabilities

0.4091 0.3636 0.0909 0.1364 0.2581 0.2258 0.3548 0.1613 0.0606 0.2273 0.5303 0.1818 0.0847 0.0847 0.2034 0.6271

States
Transition

(3,1,1) (3,1,2) (3,1,3) (3,1,4) (3,2,1) (3,2,2) (3,2,3) (3,2,4) (3,3,1) (3,3,2) (3,3,3) (3,3,4) (3,4,1) (3,4,2) (3,4,3) (3,4,4)

Actual Count 15 7 8 2 16 15 35 17 38 77 299 172 13 23 156 405

Transition
Probabilities

0.4688 0.2188 0.25 0.0625 0.1928 0.1807 0.4217 0.2048 0.0648 0.1314 0.5102 0.2935 0.0218 0.0385 0.2613 0.6784

States
Transition (4,1,1) (4,1,2) (4,1,3) (4,1,4) (4,2,1) (4,2,2) (4,2,3) (4,2,4) (4,3,1) (4,3,2) (4,3,3) (4,3,4) (4,4,1) (4,4,2) (4,4,3) (4,4,4)

Actual Count 35 13 19 27 58 33 40 52 141 139 449 543 340 304 1110 4363

Transition
Probabilities

0.3723 0.1383 0.2021 0.2872 0.3169 0.1803 0.2186 0.2842 0.1108 0.1093 0.353 0.4269 0.0556 0.0497 0.1815 0.7133

Table 1. Calculation of transition probabilities and 2-transition probabilities (with
promotion)
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�� Promotion �� No-Promotion
States 1 2 3 4 1 2 3 4

1 0.1372 0.4447 0.2034 0.2147 0.2380 0.2809 0.2069 0.2742

2 0.2285 0.2148 0.2109 0.3458 0.2380 0.2809 0.2069 0.2742

3 0.4163 0.0615 0.0992 0.4230 0.4964 0.0267 0.0623 0.4146

4 0.8054 0.0191 0.0266 0.1489 0.8762 0.0053 0.0121 0.1064

Table 2. Transition Probabilities for MDP

�� Promotion �� No-Promotion
States 1 2 3 4 1 2 3 4

(1,1) 0.6159 0.1855 0.1399 0.0587 0.4848 0.1933 0.1968 0.1251

(1,2) 0.3671 0.2481 0.2562 0.1286 0.2302 0.2434 0.3224 0.2040

(1,3) 0.2308 0.2086 0.3343 0.2263 0.1437 0.1493 0.4392 0.2678

(1,4) 0.1494 0.1496 0.2189 0.4822 0.0818 0.0575 0.2114 0.6493

(2,1) 0.3840 0.2630 0.2500 0.1030 0.2901 0.2385 0.2928 0.1785

(2,2) 0.2304 0.2704 0.3757 0.1235 0.1445 0.2531 0.3992 0.2032

(2,3) 0.1183 0.2043 0.4323 0.2451 0.0757 0.1411 0.4783 0.3048

(2,4) 0.0834 0.1043 0.2371 0.5752 0.0349 0.0847 0.2253 0.6551

(3,1) 0.3203 0.2271 0.3158 0.1368 0.1900 0.2624 0.3750 0.1727

(3,2) 0.1563 0.2167 0.4353 0.1915 0.0872 0.1860 0.4763 0.2505

(3,3) 0.0375 0.1661 0.4952 0.3012 0.0234 0.1064 0.5117 0.3584

(3,4) 0.0205 0.0394 0.2662 0.6739 0.0086 0.0227 0.2400 0.7287

(4,1) 0.2304 0.1482 0.2919 0.3295 0.1587 0.1343 0.2298 0.4771

(4,2) 0.1172 0.1324 0.3033 0.4471 0.0753 0.0980 0.3069 0.5199

(4,3) 0.0320 0.0549 0.3258 0.5873 0.0136 0.0329 0.3051 0.6484

(4,4) 0.0088 0.0166 0.1225 0.8521 0.0041 0.0098 0.0904 0.8957

Table 3. 2-Transition Probabilities for HMDP

State 1 2 3 4

Minutes >40 21 to 40 1 to 20 0

Promotion 43.75 18 6.97 0

No-promotion 139.2 51.72 14.03 0

Table 4. Revenues


