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1. Introduction

The inclusion of spatial aspects into batch Markovian arrival processes (BMAPs)
over time was set in 1997 by a proposal of Latouche and Ramaswami [1]. This
approach, however, was restricted to a special construction, creating spatial
point patterns with respect to arrival times. A different and more general ap-
proach was suggested in 1998 by Baum and Kalashnikov [2], [3]. Here the rate
matrices of a BMAP have reference to Borel subsets S of some region R in a
complete separable metric space. The method also applies to other stochastic
processes, e.g. to Markov additive processes of arrivals (MAPAs)1, and has been
successfully employed in [4], [5] to analyze queueing models with moving cus-
tomers. To the author’s knowledge, with this exception the concept of motion
in models of communication systems has, so far, not been included in analy-
ses, rather has been considered independently of temporal and spatial model
characteristics. In the work of Baccelli, Klein, Lebourges and Zuyev [6], [7]
the selection of initial customer locations was performed by ”static” samplings
of point patterns from point processes, whereas the temporal characteristics
have been included afterwards via the marking of random fields with velocity
distribution parameters. Compared with these results our approach directly
combines service activity and spatial arrival pattern with customer motion in
space, offering higher versatility for the modelling of systems with temporal and
spatial dynamics.

In this paper we concretize the construction of mappings which reflect cus-
tomer motion by introducing velocity tangent vector fields and interpreting the
field curves as those along which customers move.

The paper is organized as follows. In Section 2 we summarize some defi-
nitions and terminology in connection with spatial arrival processes and cor-
responding queueing models. In Section 3 we construct group operations with
means of tangent vector fields, and demonstrate how the diversity of possible
customer motions can be reflected by a superposition of these fields. Section
4 contains the analysis of no-waiting models with spatial arrival process, gen-
eral service time distribution, and moving customers. Subsections 4.1 and 4.2
are devoted to the SBMAP/G/∞ queue and its finite capacity variant, re-
spectively. The treatment of customer motion along field curves of overlapping
vector fields is presented in Subsection 4.3. In Section 5 we give a short résumé.

1The acronyms MAP and BMAP have been introduced for ”Markovian arrival processes”,
and ”batch Markovian arrival processes”, respectively, which form subclasses of the class of
Markov additive processes of arrivals. Therefore, we use MaP as a label for ”Markov additive
processes”, and MAPA for ”Markov additive processes of arrivals”.
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2. Terminology and Background

2.1. Terminology

Let J be a Markov process over [0,∞) with discrete state space E = {1, . . . ,m},
and let the pair (X, J) = {(Xt, Jt) : t ∈ T} describes a time-homogeneous
Markov-additive process (MaP) on the state space N0

d × E. X is called the
additive component and J the Markov component of the MaP (X, J) [8], [9],
[10]. If X takes values only in the set of nonnegative d-dimensional integer
vectors we speak of a multivariate Markov additive process of arrivals or a
MAPA for short. A univariate MAPA (d = 1) is a BMAP as introduced by
Neuts [11] and Lucantoni [12]. For d > 1 we speak of a multivariate MAPA.

Random vectors are denoted by bold face u.c. Roman letters
(X,Y etc.), elements of R

d are denoted by bold face l.c. Roman letters: x =
(x1, x2, . . . , xd) ∈ R

d and matrices by u.c. Roman letters (A,B etc.). Relations
≤,≥, <, >, . . . on R

d are to be understood to hold for each component, i.e.
a ≤ b with a 6= b means, that any component of a is smaller or equal to the
corresponding component of b, whereas at least one component of b is greater
than its counterpart in a. δx denotes the Kronecker function, which equals 1,
if x ≥ 0, and 0 otherwise.

For sequences A = {A0, A1, . . .}, B = {B0, B1, . . .} of (m × m)-matrices a
discrete convolution A∗B is defined by (A∗B)v =

∑v
ℓ=0 Aℓ ·Bv−ℓ. The unit ele-

ment in the semi-group of such sequences of (m×m)-matrices with respect to the
operator ”∗” is the sequence
1 = {I,O,O, . . .}, where I and O are the unit matrix and the null matrix,
respectively. The convolutional exponential for A · t = {A0 · t, A1 · t, . . .} is
represented by e∗A·t :=

∑∞
ν=0(t

ν/ν!) · A∗ν (t a scalar).

The MaP state transition probability measure reads

PA;ij(t) = P{Xt ∈ A, Jt = j | X0 = 0, J0 = i}

for A ∈ Bd, where Bd is the σ-algebra of Borel subsets of R
d, and Pn;ij(t) =

P{Xt = n, Jt = j | X0 = 0, J0 = i} in case of a MAPA. For i, j ∈ E
and k,n ∈ N0

d the value Dn;ij describes the transition rate from (k, i) to
(k + n, j). Corresponding matrices are denoted accordingly, e.g. Pn(t) =
((Pn;ij(t)))i,j∈{1,...,m} and Dn = ((Dn;ij))i,j∈{1,...,m}. In order to serialize sets of

elements (matrices) with vectorial index we use a bijection g : N0
d → N0 (for

a detailed description see [2], [13]), and write ∆ = {Dg−1(0),Dg−1(1), . . .}, and
Π(t) = {Pg−1(0)(t), Pg−1(1)(t), . . .}, respectively.
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A MAPA is called stable [10], if

λi =
∑

(j,n)6=(i,0)

Dn;ij < ∞ for all i ∈ E.

We assume throughout that this stability condition holds. The Chapman-
Kolmogorov (C-K) equations as well as the C-K differential equations for a
stable MAPA may be written as Π(s+t) = Π(s)∗Π(t), d

dtΠ(t) = ∆∗Π(t), respec-
tively. The solution of the C-K-differential equation is obtained as Π(t) = e∗∆t

(cf. [3]). For a univariate MAPA, i.e. a BMAP, we clearly have the corre-
sponding expressions with scalars instead of vectors. Its rate matrices are Dn

(n ∈ N0), with the generator of the phase process given by D =
∑∞

n=0 Dn. The
equilibrium customer state vector of any BMAP/G/∗ - station, if it exists in-
dependently of the start phase i, is denoted by ~y = (y0,y1, . . .), where each yr

is an m-vector yr = (yr,1, yr,2, . . . , yr,m) with yr,j = limt→∞ P{Nt = r, Jt = j |
N0 = 0, J0 = i}, Nt the r.v. of the number of customers in the system at time
t (r ∈ N0). Accordingly, for a multivariate MAPA, we use bold face subscripts
in ~y = (y0,y1, . . .) and yr = (yr,1, yr,2, . . . , yr,m), where now

yr,j = lim
t→∞

P{Nt = r, Jt = j | N0 = 0, J0 = i},

Nt ∈ N0
d the random vector of class specific customer numbers in the system

at time t.

2.2. Spatial Arrival Processes

In its most general form the spatial version of a BMAP has been given by
Breuer [14], who admitted the phase space to be uncountable (continuous);
this version is beyond our scope. For finite phase space E the general definition
has been formulated by Baum and Kalashnikov [3]. A rough characterization
of an SMAPA may be seen in the concept of a common MAPA, whose rate
matrices are equipped with probability measures over Borel subsets of some
Polish space (usually the R

2). More precisely, set pi(0, i) = −1 for all i ∈ E,
and let pi(n, j) for (n, j) 6= (0, i) be the probability for a phase transition from
i to j together with an n-arrival. Let R be a finite subset of R

2 or, more
general, a two-dimensional manifold in R

3, B(R) the σ-algebra of Borel subsets
of R. Further, given a MAPA with rate matrices Dn = ((Dn;ij))i,j∈{1,...,m},

Dn;ij = λi ·pi(n, j), let Φ = {φij;n : i, j ∈ E,n ∈ N0
d} be a family of probability

measures over B(R). Then the spatial MAPA (SMAPA) is defined by its S-
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specific rate matrices for any S ∈ B(R):

Dn;ij(S) = λi · pi(n, j) · φij;n(S) for n 6= 0,

D0;ij(S) = λi · pi(0, j) +
∑

n6=0

pi(n, j) · φij;n(R \ S). (2.1)

The transition probabilities of the SMAPA read Pn;ij(S, t) = P{Xt(S) = n, Jt =
j | X0(S) = 0, J0 = i}. The additive component X(S) ”counts” multivariate
batch arrivals in subset S ∈ B(R). Due to the Markov property the sequence

Π(S, t) = {P (S, t)g−1(0), P (S, t)g−1(1), P (S, t)g−1(2), . . .}

is given by Π(S, t) = e∗∆(S)t with

∆(S) = {D(S)g−1(0),D(S)g−1(1),D(S)g−1(2), . . .},

S ∈ B(R), g : N0
d → N0 is a bijection. The joint distribution for any family S =

{S1, S2, . . . , Sκ} of subsets Si ∈ B(R) can be easily represented in convolutional
exponential form, as has been shown in [3].

Another variant of the arrival processes is that of level dependent MAPAs.
The class specific numbers kc of customers in a system at time epoch t deter-
mine what is called the level vector k = (k1, k2, . . . , kd), or the level for short, of
the system. The investigation of level dependent BMAPs has been performed
by Hofmann [15], [16]; he showed, that there were similar expressions for the
transition matrices as in the case of level independent rate matrices. The defi-
nition of a level dependent version of a MAPA is straight forward. On condition

that any level is associated with the same phase process Jt, we write D
(k)
n for

the rate matrix of vectorial batch arrivals of type n = (n1, n2, . . . , nd) at a time
epoch when the level is k.

2.3. Matrix Differential Equations Associated with

SBMAP/G/∞ - and SMAPA/G/c/c - Stations

For no-waiting models of type SMAPA/G/∞ and SMAPA/G/c/c the tran-
sient as well as steady state probability distributions have been obtained in
[2] and [4] as solutions of matrix differential equations. We first consider an
SBMAP as arrival process to an infinite server system. Let Nu,t(S) be the
number of customers who arrived in S ∈ B(R) until time u and are still in
service at time t ≥ u, and set Qr;ij(S; u, t) = P(Nu,t(S) = r, Ju = j | J0 = i),
Qr(S; u, t) = (Qr;ij(S; u, t))i,j∈E , and Q(S; u, t) = {Q0(S; u, t), Q1(S; u, t), . . .}.



6 D. Baum, J. Sztrik

Further, write bk(n,F (ξ)) for the Bernoulli probability
(

n
k

)

(1−F (ξ))kFn−k(ξ),
where F (ξ) is the cdf of service time, and set Rk(S; ξ) =

∑∞
n=k Dn(S)bk(n,F (ξ)),

and R(S; ξ) = {R0k(S; ξ), R1(S; ξ), . . .}. Then the following matrix differential
equation holds, which can be solved by iteration [2]

∂

∂u
Qr(S; u, t) =

r
∑

ℓ=0

Qℓ(S; u, t)Rr−ℓ(S; t − u)

=: (Q(S; u, t) ∗ R(S; t − u))r . (2.2)

In case of an SMAPA/G/c/c system (a loss system), the arrival intensity
depends upon the numbers of customers being in service. Let l = (l1, . . . , ld) de-

note a vector of resident customers, we call it the actual level. Then Q
(l)
r (S; u, t)

is the matrix of phase depending probabilities for the fact, that at time u the
level is l, and a vector r ≤ l of customers is observed in S, who stay in S until
time t. Using a similar approach as for the SBMAP/G/∞ system, the corre-
sponding matrix differential equation for the loss system has been formulated
in [5] in the following way: Let

U
(k)
l−k,r−m

(S ;u, t) := D
(k)
l−k

(S) ×
d

∏

c=1

brc−mc(lc − kc;Fc(t − u)) ,

V
(k)
l−k

(S; u, t) := D
(k)
l−k

(S) ×
d

∏

c=1

b0(lc − kc;Fc(t − u)) + D
(k)
l−k

(R \ S) ,

W
(l,ec)
c; r (S ;u, t) := Q

(l+ec)
r (S; u, t) · (lc + 1 − rc) · δc−l−ec

− Q
(l)
r (S; u, t) · (lc − rc) ;

(2.3)

then

∂Q
(l)
r (S; u, t)

∂u
=

∑

0≤m≤r

m 6=r

l−(r−m)
∑

k=m

Q
(k)
m (S; u, t) · U

(k)
l−k, r−m

(S ;u, t) +

+ Q
(l)
r (S; u, t) · D

(l)
0

(S) +
∑

r≤k≤l

k6=l

Q
(k)
r (S; u, t) · V

(k)
l−k

(S; u, t) +

+
d

∑

c=1

hc(u) · W
(l,ec)
c; r (S ;u, t) . (2.4)
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This equation again can be solved by an iteration scheme [13], [5].

3. Motion in Space

Consider the region R as some finite part of the earth’s surface in a landscape.
Assume that R is smooth in the sense that R represents a two-dimensional and
(at least twofold) differentiable manifold, which, in fact, is embedded here in the
R

3. This means that R is a class-k surface in R
3 in the sense, that for each point

p of R there exists a proper patch2 in R whose image contains a neighbourhood
of p in R (k ≥ 2). A well-known condition for class-k surfaces in R

3 says that
if x : G → R

3 and y : H → R
3 are patches whose images overlap, then the

composite functions x−1 ◦y and y−1 ◦ x are k−fold differentiable mappings on
open sets of R

2.

Since with our applications in mind, it will be sufficient for all practical
cases to consider the surface R as such a one which is covered already by the
image of one patch x : G → R

3 alone. We may assume w.l.o.g. that the
local Cartesian coordinates u1, u2 in G determine valid coordinates u1, u2 for
all points of R.

Each point p of R then has a representation as a single-valued real vector
function x = x(u1, u2), and the Jacobian determinant
det(( ∂xi

∂uj ))i∈{1,2,3},j∈{1,2} for x = (x1, x2, x3) has rank 2.

3.1. Tangent Vector Fields

Let O denote a simply connected subregion of R, and assume that there is a
family of curves κc : Γ → O which covers O, defined as the family of field curves
of a tangent vector field V over O (here Γ is an open interval in R

1, and each c
is a parameter)3. V, in our application, can be interpreted as a field of velocity
tangent vectors, the curves are being seen as the traces along which customers
move, the length of each vector giving the velocity.

In general, if a curve κ : Γ → O lies in the image x(G) of a patch x, then
there exist unique differentiable functions u1, u2 on Γ, such that x(u1(γ), u2(γ)) =

2A patch (also coordinate patch or chart) x : G → R
3 is a one-to-one regular mapping of

an open set G of R
2 into R

3. A mapping R
2 → R

3 is called regular, if its Jacobian matrix has
rank 2.

3The set of curves {κc : c ∈ I = (a, b) ⊂ R
1} depends continuously on the parameter c.
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κ(γ) for all γ ∈ Γ. Thus, with I = [a, b) ⊂ R
1, the family {κc : c ∈ I} is a set

of curves {x(γ, c) : c ∈ I}, each of which is associated with a parameter subin-
terval Γc of Γ, where Γc = {γ : αc ≤ γ < βc} ⊂ Γ depends on O. The tangent
vector field V is given by the set { ∂

∂γ x(γ, c) = xu1 · u̇1(γ, c) + xu2 · u̇2(γ, c) :

γ ∈ Γc, c ∈ I ⊂ R
1}4, which corresponds to the solutions of a set of differential

equations
d

dt
x(γ) = f(x(γ)) = (f1(x(γ)), f2(x(γ)), f3(x(γ))) (3.1)

together with a family of initial conditions

x(γ)|γ=γ0(c) = x0(c). (3.2)

In order to guarantee that for any point z ∈ O one and only one curve κc passes
through z it is necessary and sufficient, that there are c ∈ I, γ0(c) ∈ Γc, and
a solution x(γ) = x(u1(γ), u2(γ)) with x(γ0(c)) = x(u1(γ0, c), u

2(γ0, c)) = z,
and the functions fi(x1, x2, x3) that are continuous with continuous partial
derivatives with respect to xj within a vicinity of γ = γ0(c), xj = x0j (i, j ∈
{1, 2, 3}, (x01, x02, x03) = x0(c)). These conditions are satisfied per definition
for a vector field.

The tangent vector field V over O allows to define a family of endomor-
phisms on O. Let τ ∈ R+ be fixed, Γc = {γ : αc ≤ γ < βc}. For each field
curve κc = {x(γ, c) : γ ∈ Γc} in O define a mapping Ψτ (c) : κc → κc by
Ψτ (c)(x(γ, c)) = x(γ + τ, c), if γ + τ ∈ Γc, and Ψτ (c)(x(γ, c)) = x(αc + γ + τ −
βc, c), if γ + τ ≥ βc (cyclic shift). Since {κc : c ∈ I} covers O with one and only
one curve passing through a point of O, the family of mappings {Ψτ (c) : c ∈ I}
defines an endomorphism Υτ on O by Υτ (z) = Ψτ (c)(z) for z = x(γ, c). We
introduce the following notation

Υ−τ [S] = {x(u1, u2) ∈ O : Υτ (x(u1, u2)) ∈ S} = S̃τ

for each measurable subset S of O and τ ∈ R+ (see Figure 1 below).
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In applications there may be several streams of moving customers, and move-
ments occur in different directions (Figure 2). In order to include these aspects,
it is necessary to consider a family V = {V1,V2, . . . ,VW } of tangent vector
fields together with the corresponding family of open sets {O1,O2, . . . ,OW } of
R. Let

S̃(h)
τ = Υ

(h)
−τ [S] = {x(u1, u2) ∈ Oh : Υ(h)

τ (x(u1, u2)) ∈ S},

where Υ
(h)
τ is the endomorphism on Oh defined through the tangent vector field

Vh. Then

S̃τ =
W
⋃

h=1

S̃(h)
τ =

W
⋃

h=1

Υ
(h)
−τ [S]

for each τ ≤ t. We include in this setting the possibility that, for some h, Υ
(h)
τ

is the identity mapping on Oh. The combination of all Υ
(h)
τ : Oh → Oh does

not, in general, define a mapping Υ over
⋃W

h=1 Oh. It is this fact that causes us
to write S̃τ instead of Υ−τ [S] in the general case.

4. No-Waiting Models

In this section we show, that the matrix differential equations (2.2), (2.4) for
SBMAP/G/∞ and SMAPA/G/c/c models hold without major changes for
the case, that customers move in space. This has been previously demonstrated
for non-specified group mappings of type Υs in [5].

4.1. SBMAP/G/∞ with Customer Motion

Consider a measurable subset of
⋃W

h=1 Oh ⊂ R, each Oh being covered by the

family {κ
(h)
c : c ∈ I(h)} of field curves of a velocity tangent field as described in
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the previous section. Using otherwise a similar notation as in Section 2.3, we
replace the probability matrices Qr(S;u, t) as follows: Let τ := t− u for u ≤ t,
and let Q̃r;ij(S;u, t) denote the probability that at time u the phase is j, and
the number of those customers in S̃τ , who will be resident in S at time t is r,
given that at time zero the system was empty, and the phase was i. Let Nt be
the total number of customers in the system at time t. Then, with the notation
explained in Section 2.3,

Q̃r;ij(S;u, t) = P{Nu,t(S̃τ ) = r, Ju = j | Nt = 0, J0 = i}.

As usual, Q̃r(S;u, t) denotes the matrix formed by the entries
Q̃r;ij(S;u, t) (i, j ∈ E). Since the mappings Υs are continuous, we have

lim
dτ→0

{S̃τ \ S̃τ−dτ} = ∅ , ∀τ > 0 .

Denote dS̃ = S̃τ \ S̃τ−dτ , and let us assume, that each probability measure φij;n

over B(R) from the family Φ = {φij;n : i, j ∈ E,n ∈ N0} satisfies

Φij;n(dS̃) = O(dτ) ∀i, j ∈ E n ≥ 0. (4.1)

To describe the dynamics of the process, we observe the number X(S̃s, dτ)
of arrivals in the varying set S̃s during an infinitesimal interval of length dτ ,
i.e. for τ − dτ ≤ s ≤ τ . Let X(S̃s, dτ) = n with probability P̃n;ij(S̃s, dτ, t) (i
the starting phase, j the destination phase), and set

P̃n(S̃s, dτ, t) = (P̃n;ij(S̃s, dτ, t))i,j∈E .

Lemma 1. For small dτ , P̃n(S̃s, dτ, t) equals Pn(S̃τ−dτ ; dτ) up to quan-
tities of order o(dτ), where Pn(S̃τ−dτ ; dτ) = P{Xdτ (S̃τ−dτ ) = n, Jdτ = j |
X0(S̃τ−dτ ) = 0, J0 = i}.

Proof. Obviously,

δn0I + Dn(S̃τ ∩ S̃τ−dτ ) dτ + o(dτ) ≤ P̃n(S̃s, dτ, t)

≤ δn0I + Dn(S̃τ ∪ S̃τ−dτ ) dτ + o(dτ) .

By definition of Dn and according to (4.1), we have Dn;ij(S̃τ ∩ S̃τ−dτ ) =
λipi(n, j)Φij;n(S̃τ )+O(dτ), and Dn;ij(S̃τ∪S̃τ−dτ ) = λipi(n, j)Φij;n(S̃τ )+O(dτ).
Therefore, P̃n(S̃s, dτ, t) = δn0I+Dn(S̃τ ) dτ + o(dτ), which completes the proof.
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Theorem 1. The matrices Q̃r(S; t − τ, t) satisfy the following differential
equation:

∂

∂u
Q̃r(S;u, t) = (Q̃(S;u, t) ∗ R̃(S; t − u))r , (4.2)

where u = t − τ , and

R̃ℓ(S; t − u) =

∞
∑

n=ℓ

Dn(S̃τ ) · bℓ(n;F (τ)) ,

Q̃(S;u, t) = {Q̃0(S;u, t), Q̃1(S;u, t), Q̃2(S;u, t), . . .} ,

R̃(S; t − u) = {R̃0(S; t − u), R̃1(S; t − u), R̃2(S; t − u), . . .} .

Proof. Q̃r(S; t − τ + dτ, t) can be expressed for τ − dτ ≤ s ≤ τ as

Q̃r(S; t − τ + dτ, t) =
r

∑

k=0

∞
∑

n=r−k

Q̃r(S; t − τ, t) · P̃n(S̃s; dτ, t) · br−k(n,F (τ)).

Exploiting the relationship P̃n(S̃s, dτ, t) = δn0I + Dn(S̃τ ) dτ + o(dτ), we obtain

Q̃r(S; t − τ + dτ, t) =

r
∑

k=0

∞
∑

n=r−k

Q̃r(S; t − τ, t) · Dn(S̃τ ; dτ)

· br−k(n,F (τ)) + Q̃r(S; t − τ, t) + M · o(dτ) ,

with some finite constant matrix M , such that

∂

∂τ
Q̃r(S; t − τ, t) =

r
∑

k=0

∞
∑

n=r−k

Q̃r(S; t − τ, t) · Dn(S̃τ ) · br−k(n,F (τ)) .

(r = 0, 1, . . .). This equation is equivalent to (4.2).

Equation (4.2) completely corresponds to equation (2.2) in Section 2.3 and,
therefore, its solution is the same as presented in [2], Theorem 1, and [5]. To
be more precise, we are again led to the following expression for the transient
state probabilities:

Q̃r(S; t) =

∫ t

u=0
dQ̃r(S;u, t). (4.3)

The sequence of matrices Q̃(S; t) = {Q̃0(S; t), Q̃1(S; t), Q̃2(S; t), . . .} can be
computed iteratively. Notice, that 1 = {I,O,O, . . .}; then

Q̃(0)(S;u) = 1 ,

Q̃(i+1)(S;u) = 1 +

∫ u

0
Q̃(i)(S; ξ) ∗ R̃(S; t − ξ)dξ for i ∈ N0 . (4.4)
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The iteration converges uniquely (see e.g. [17] for the matrix analogous case),
i.e.

Q̃(S; t) = lim
i→∞

Q̃(i)(S;u)

∣

∣

∣

∣

u=t

. (4.5)

The equilibrium distribution exists for each stable BMAP and service time
distribution with finite mean, and is given as the sequence of m-vectors ~y(S) =
{y0(S),y1(S), . . .}, where

yr(S) = {yr;1(S), yr;2(S), . . . , yr;m(S)}

and
yr;j(S) = P{N(S) = r, J = j} = lim

t→∞
Q̃r;ij(S; t) ∀i ∈ E . (4.6)

4.2. SMAPA/G/c/c with Customer Motion

Let c = (c1, . . . , cd) denote a capacity vector. Following the same line of rea-
soning as in the previous section the analysis of an SMAPA/G/c/c system
with moving customers can be performed just by replacing the rate matrices

D
(k)
l−k

(S) in equation (2.4) by the rate matrices associated with subregion S̃τ ,

where S̃τ =
⋃W

h=1 S̃
(h)
τ , and

S̃(h)
τ := Υ

(h)
−τ [S] = {x(u1, u2) ∈ Oh : Υ(h)

τ (x(u1, u2)) ∈ S} .

We refer to the definition of the shortcuts U
(k)
l−k,r−m

(S; u, t) and

V
(k)
l−k

(S; u, t) given in Section 2.3, in which the set S has to be replaced by

the domain set S̃τ = S̃t−u:

U
(k)
l−k,r−m

(S̃t−u ;u, t) := D
(k)
l−k

(S̃t−u) ·
d

∏

c=1

brc−mc(lc − kc;Fc(t − u)) ,

V
(k)
l−k

(S̃t−u; u, t) := D
(k)
l−k

(S̃t−u) ·
d

∏

c=1

b0(lc − kc;Fc(t − u))

+ D
(k)
l−k

(R \ S̃t−u) .

Then the matrix differential equation for the case of moving customers takes
the following form

∂Q
(l)
r (S; u, t)

∂u
=

∑

0≤m≤r

m 6=r

l−(r−m)
∑

k=m

Q
(k)
m (S; u, t) · U

(k)
l−k, r−m

(S̃t−u ;u, t)
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+ Q
(l)
r (S; u, t) · D

(l)
0

(S̃t−u) +
∑

r≤k≤l

k6=l

Q
(k)
r (S; u, t) · V

(k)
l−k

(S̃t−u; u, t)

+

d
∑

c=1

hc(u) · W
(l,ec)
c; r (S ;u, t) (4.7)

(see [5]). To solve (4.7), we return to the results of [5]. We first state, that the
sum

Qr(S; u, t) =
∑

l≥r

Q
(l)
r (S; u, t)

completely describes the observed state at time u ≤ t with respect to the
number of t-resident customers in S. The transient state probability matrices
for epoch t can be obtained as Qr(S; t) = Qr(S; t, t). Since the model under
consideration is stable, these matrices tend to finite limits as t → ∞, thereby
providing the sequence of equilibrium state probability vectors with matrix
components

Qr(S) = (Qr;1(S), Qr;2(S), . . . , Qr;m(S)),

where Qr;j(S) = limt→∞ Qr;ij(S; t), i ∈ E = {1, . . . ,m}, 0 ≤ r ≤ c. The
remaining task, therefore, is to find a solution to (4.7). This has been performed
in [13] for the non-spatial case by transforming the equation into a homogeneous
matrix-vector differential equation: The doubly indexed (matrix) structures
are ordered into single-indexed (vector) structures (we speak of vectors and
matrices, although sequences and block matrices of (m×m)-matrices are meant;
this is justified by the fact, that the analysis of corresponding expressions is the
same as in case of ”normal” vectors and matrices with scalar entries). Let
β : N0

d × N0
d → N0 denote a bijection, that uniquely maps a pair (l, r) ∈

{(x,y) : 0 ≤ x,y ≤ c} of vector indices to an integer β(l, r). Then, by means
of β, we order the set of matrices in sequence (vector) form:

Q
(l)
r (S; u, t) =: Q[β(l,r)](S; u, t), 0 ≤ r ≤ l ≤ c ,

where Q
(n)
m (S; u, t) = O, if m 6≤ n or n 6≤ c. Let

K =
d

∏

i=1

(1 + ci),

denote the total number of possible system levels, and set ak = K2 − 1. We
thus define the sequence

Q
[β](S;u, t) = (Q[0](S; u, t), Q[1](S; u, t), . . . , Q[aK ](S; u, t)) .

The following theorem is then an immediate consequence from (4.7).
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Theorem 2. For r ≤ l ≤ c and u ≤ t, the equation (4.7) takes the form

∂Q[β](S; u, t)

∂u
= Q

[β](S; u, t)Hc(S; u, t) , (4.8)

where Hc(S;u, t) is a (aK × aK)-matrix of (m × m)-matrices defined as fol-
lows. Assume, that β−1(i) = (m,k) and β−1(j) = (r, l). Then the (i, j)-entry
in Hc(S; u, t) (denoted below for simplicity as (H)i,j) is represented by the
following expression:

(H)i,j = (4.9)


































































O, if m 6≤ k, or r 6≤ l, or m 6≤ r,

U
(k)
l−k,r−m

(S̃t−u; u, t), if m < r,m ≤ k ≤ l − (r − m),

V
(k)
l−k

(S̃t−u; u, t), if m = r, r ≤ k,k 6≥ l,

D
(l)
0

(S̃t−u) − I ·
∑d

c=1 hc(u)(lc − rc), if m = r and k = l,

I ·
∑d

c=1 hc(u)(lc − rc + 1), if m = r and k = l + ec,

and c − (l + ec) ≥ 0,

O, in all other cases.

By analogy from matrix analysis it can be shown, that the solution to (4.8) is
obtained by first solving the matrix-matrix differential equation

∂X (S; u, t)

∂u
= X (S; u, t) · Hc(S; u, t) , (4.10)

where X is an (aK × aK)-block matrix with X (S; 0, t) = I, and then setting

Q
[β](S; u, t) = Q

[β](S; 0, t)X (S; u, t)

(see [5], and compare the corresponding analysis in [17]). Equation (4.10) is
solved by iteration:

X0(S; u, t) = I,

Xi+1(S; u, t) = I +

∫ u

s=0
Xi(S; s, t)Hc(S; s; t) ds i ≥ 0 . (4.11)

The existence and uniqueness of this limit follow again from analogy to the
case of matrices with scalar entries [17]. When Q[β](S; u, t) has been computed
for u = t, one can find the transient state probability matrices with elements
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Qr;i,j(S; t) = P{Nt(S) = r, Jt = j | N0(S) = 0, J0 = i} using the equality

Qr(S; t) =
∑

l≥r
Q[β(r,l)](S; t, t) =

∑

l≥r
Q

(l)
r (S; t, t). The equilibrium state

probabilities are obtained as the limits Qr;j(S) = limt→∞ Qr;ij(S; t). They
exist, independently of i ∈ E, due to the stability of the model.

4.3. Stream Specific Characteristics

Considering the equilibrium distribution Qr;j(S; t) = P{N(S) = r, Jt = j}
one may also ask for the distribution of stream specific customer numbers in a
subset S. This problem can be solved by assigning non-negative weights ωh to
the vector fields Vh, h ∈ {1, . . . ,W}, and determining, for each τ ≤ t, the share
of customers belonging to a field Vh in the domain set S̃τ . Let us introduce
some notation: a family {Oiν : ν = 1, 2, . . . , k} ⊂ {O1,O2, . . . ,OW } with the
properties

S̃ ∩ Oiν 6= ∅ for 1 ≤ ν ≤ k, (4.12)

S̃ ∩ Oℓ = ∅, ℓ /∈ {i1, . . . , ik}, (4.13)

for S̃ ∈ B(R) is called an S̃ intersecting family. Obviously, such a family is
uniquely determined by S̃ and the set of support sets Oi, i = 1, . . . ,W . Recall,
that for each measurable set S ∈ B(R) we have

S̃(h)
τ := Υ

(h)
−τ [S] = {x(u1, u2) ∈ Oh : Υ(h)

τ (x(u1, u2)) ∈ S},

where Υ
(h)
τ is the endomorphism on Oh defined through the tangent vector field

Vh. Let us denote by Fτ the set of all those subsets {i1, . . . , ik} ⊂ {1, . . . ,W},

which determine an S̃
(h)
τ intersecting family for any h ∈ {1, . . . ,W}. For

fixed h let {Oi1 ,Oi2 , . . . ,Oik} denote the S̃
(h)
τ intersecting family, and set

{i1, i2, . . . , ik} \ {h} =: I(h). Define

Σ
(h)
h (τ) := S̃(h)

τ \
(

⋃

iν ∈I(h)

Oiν

)

,

and for each subset {j1, j2, . . . , jℓ} ⊂ I(h) consider the point sets

Σ
(h)
j1,j2,...,jℓ

(τ) := S̃(h)
τ ∩

(

ℓ
⋂

µ=1

Ojµ

)

\
(

⋃

iν /∈{j1,j2,...,jℓ}

Oiν

)

,

such that
Σ

(h)
h (τ) ∪

(

⋃

{j1,j2,...,jℓ}⊂I(h)

Σ
(h)
j1,j2,...,jℓ

(τ)
)

= S̃(h)
τ ,
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and
Σ

(h)
h (τ) ∩

(

⋃

{j1,j2,...,jℓ}⊂I(h)

Σ
(h)
j1,j2,...,jℓ

(τ)
)

= ∅.

In this way we form a partition of each set S̃
(h)
τ by the subsets Σ

(h)
h and

Σ
(h)
j1,...,jℓ

, {j1, . . . , jℓ} ⊂ I(h), h ∈ {1, . . . ,W}.

�
?

�
?

�
?

�
?

�
?

�
?

S̃
(1)
τ

A
A

��
V1 �-�-�-�-�-�-�-

��V3�
6

%�
6

%�
6

%�6 !�6 �`̀V2

��
��

Figure 3

As an example, in Figure 3 we have, for h = 1, Σ
(1)
1 (τ) = S̃

(1)
τ \

(

O2 ∪ O3

)

,

Σ
(1)
2 (τ) = S̃

(1)
τ ∩O2 \O3, Σ

(1)
3 (τ) = S̃

(1)
τ ∩O3 \O2, Σ

(1)
2,3(τ) = S̃

(1)
τ ∩

(

O2 ∩O3

)

.

Notice, that for any h ∈ {1, . . . ,W}, {j1, . . . , jℓ} ⊂ I(h), and jn ∈ {j1, . . . , jℓ}
we have

Σ
(h)
j1,...,jℓ

(τ) = Σ
(jn)
j1,...,jn,h,jn+1,...,jℓ

(τ) .

Accordingly, we may define

Σν1,...,νn(τ) =

{

∅ , if {ν1, . . . , νℓ} 6∈ Fτ

Σ(ν1)
ν2,...,νn

(τ) , if {ν1, . . . , νℓ} ∈ Fτ

,

such that
{

Σν1,...,νn(τ) : {ν1, . . . , νn} ⊂ {1, . . . ,W}
}

represents the family of all

partition sets related to the collection of all S̃
(h)
τ , h ∈ {1, . . . ,W}. This means,

that for any τ ≤ t we have constructed a set of disjoint subsets Σν1,...,νn(τ) with
the property, that

⋃

h∈{1,...,W}

⋃

{ν1,...,νn}∈Fτ

Σν1,...,νn(τ) =
⋃

h∈{1,...,W}

S̃(h)
τ .

Then the measure φij;n(S̃τ ) can be written in the form

φij;n(S̃τ ) =
∑

h∈{1,...,W}

∑

{ν1,...,νn}∈Fτ

φij;n(Σν1,...,νn(τ)) .
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The solution to our problem now consists in redefining the measures φij;n(S̃τ )
for each h ∈ {1, . . . ,W} by assigning to each φij;n(Σν1,...,νn(τ)) the weight

Ωh =

{

ωh/
∑n

j=1 ωνj
, if h ∈ {ν1, . . . , νn}

0 , if h /∈ {ν1, . . . , νn}
,

i.e. setting

φ
(h)
ij;n(S̃τ ) =

∑

h∈{1,...,W}

∑

{ν1,...,νn}∈Fτ

φij;n(Σν1,...,νn(τ)) · Ωh . (4.14)

The solution of the differential equation corresponding to (4.7), where the spa-
tial rate matrices are redefined with means of (4.14), yields the stream specific
information which was required.

5. Summary and Comments

Based on the construction of velocity tangent vector fields, we have shown in
this paper, how spatial models with moving customers can be analyzed, pro-
viding transient as well as steady state distributions of number of customers in
any subset of the spatial area of interest. SMAPA/G/∞ and SMAPA/G/c/c
models with moving customers play an important role for the analysis of mobile
communication networks, in particular of CDMA based cell networks. Consid-
ering one cell in such a network (corresponding to the area R above), it may
be of importance to know the distribution of customers in certain subareas
as, for instance, blocks of buildings or streets or highways. In such an envi-
ronment the above mentioned fields of velocity tangent vectors will be defined
according to the movement of mobiles along the streets. The velocities have
to be estimated as averages, and the different streams (vector fields) have to
mirror main streams of automobile motion. The analysis of a corresponding
SMAPA/G/c/c model can help then: to check the validity of the cell covering
structure, and to determine possible bottlenecks. During a radio network def-
inition phase, the performance analysis can be used to determine the location
of demand nodes, characterizing clusters of average call request locations.

In view of the complexity of all deductions in this paper it is clear, that for
practical use these theoretical results have to be supplemented by the develop-
ment of software packages. This is not only necessary for solving the matrix
differential equations, but also for preparing numerical results in a form that
an engineer can understand and use.
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