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Abstract The customer order scheduling problem (COSP)
is defined as to determine the sequence of tasks to satisfy
the demand of customers who order several types of
products produced on a single machine. A setup is required
whenever a product type is launched. The objective of the
scheduling problem is to minimize the average customer
order flow time. Since the customer order scheduling
problem is known to be strongly NP-hard, we solve it
using four major metaheuristics and compare the perfor-
mance of these heuristics, namely, simulated annealing,
genetic algorithms, tabu search, and ant colony optimiza-
tion. These are selected to represent various characteristics
of metaheuristics: nature-inspired vs. artificially created,
population-based vs. local search, etc. A set of problems is
generated to compare the solution quality and computa-
tional efforts of these heuristics. Results of the experimen-
tation show that tabu search and ant colony perform better
for large problems whereas simulated annealing performs
best in small-size problems. Some conclusions are also
drawn on the interactions between various problem param-
eters and the performance of the heuristics.
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1 Introduction

The customer order scheduling problem (COSP) is defined
as sequencing multi-family customer orders on a single
production facility with setups. A customer order involves
more than one product that is processed on the same
machine. The facility needs a setup whenever a product
type is switched. The aim of the problem is to minimize the
average customer order flow time, defined as the duration
between the release time of the customer order and the
completion time of all the jobs in that order.

The COSP is frequently encountered in make-to-order
and make-to-assembly production environments in which a
single facility produces different product types. In this
scenario, a customer can request one or more of these
products and his order is shipped only after all the products
in the order have been produced and packed together. A
setup is required when the facility switches among the
products; hence, the management wishes to group customer
orders within the same family to avoid non-value-adding
setup activities. However, this policy may lead to undesir-
ably long waiting times for the customers. This trade-off is
well discussed in comprehensive review papers by Potts
and Kovalyov [1] and Allahverdi et al. [2] on scheduling
models with batch service and setup times.

The concept of customer order scheduling was first
introduced by Julien and Magazine [3] who provided a
dynamic programming formulation of the problem with two
product families and a given order processing sequence.
They also discussed the necessary properties of the optimal
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solution for the general case. The COSP on single and
multiple machines has attracted several other researchers
over the last two decades such as Baker [4], Coffman et al.
[5] and Vickson et al. [6] worked on single-machine cases,
and Daganzo [7], and Yang and Posner [8], who studied the
multi-machine case. Yang [9] in a different article studied
the COSP with two machines and various objective
functions, and showed that all variations have non-
polynomial complexity.

Gerodimos et al. [10] addressed an equivalent multi-
operation scheduling problem of which their job description
matches with our customer definition. In their problem,
each job has at most one operation from each family and a
job is considered completed only after all of its operations
have been processed. They provide properties of an optimal
schedule for this problem. In a recent study, Erel and Ghosh
[11] propose a dynamic programming algorithm to solve
the general COSP, which is built on the dominance
properties of Julien and Magazine [3]. They also show that
the problem with the objective of minimum total customer
order flow time is NP-hard in the strong sense.

Given the NP-hard nature of the problem, there has been
no successful attempt to solve large-size COSPs. In this
paper, we propose four major metaheuristics to solve the
COSP with a large number of customers and product
families that may be encountered in real life. Since late
1970’s, heuristic algorithms have been widely used to solve
difficult combinatorial problems, e.g., the traveling sales-
man problem, the knapsack problem, the vehicle routing
problem, as well as many scheduling problems. When it is
known that the optimal solution of a problem is impractical
to obtain, heuristic algorithms are the only salvage. The
area of constructing heuristics has attracted the attention of
numerous researchers, which has led to a vast number of
articles being published; a recent survey by Blum and Roli
[12] lists over 172 references. More recently a new
paradigm in heuristic construction has emerged, leading to
a class of heuristics called “modern” (Reeves [13]) or
“metaheuristics” (Glover [14]). Blum and Roli [12] list the
fundamental properties of these procedures as follows:

i. They are high-level strategies for efficiently exploring
search spaces to find near-optimal solutions

ii. They are approximate, usually non-deterministic, and
not problem-specific

iii. They all try to avoid getting trapped in local optima
iv. They range from simple local search procedures to

complex learning processes that may utilize domain-
specific knowledge

Having the above commonalities, metaheuristics also differ
from each other with respect to their search mechanisms. We
keep this in mind when choosing the four metaheuristics of

our study: simulated annealing, genetic algorithms, tabu
search, and ant colony optimization. The objectives of our
study are to solve the COSP of realistic sizes with these
metaheuristics, and also to review the most well-known
metaheuristics. As a result of this review, the performance of
these metaheuristics under various conditions is assessed, and
conclusions on the relationships between various problem
parameters and the performance of heuristics are drawn.

In the sequel, the problem considered in this study is
explained in detail in the next section. A brief description of
the metaheuristics is given in Section 3 and experimental
design and parameter settings of the metaheuristics are
given in Section 4. The results of the experiments are
presented and discussed in Section 5. Finally, the last
section is reserved for concluding remarks.

2 The model formulation

Suppose a single facility producing P different products
satisfies the demands of C customers. The demand of
customer j from product type i requires pij time units of
processing. A setup of si time units is required prior to
processing any product of type i if the previous product is
of type l where l ≠ i. Neither the processing nor the setup
times are sequence-dependent. Since all orders are released
at time zero, the flow time for a customer is the point in
time at which the last product requested by that customer is
completed. The objective of the problem is to minimize the
sum of customer flow times. A binary integer programming
model of the problem is presented below:

Min:
X
i

X
j

X
k

X
m

pij Uijkmþ
X
i

X
k

X
m

si Vikm

s.t.
X
i

X
j

Xijk¼ 1 k ¼ 1;::;N ð1Þ

X
k

Xijk¼ 1 i ¼ 1;::; P; j ¼ 1;::;C ð2Þ

k*Xijk � aj i ¼ 1;::; P; j ¼ 1;::;C; k ¼ 1;::;N ð3Þ

X
k

Zkm¼ am m ¼ 1;::;C ð4Þ

Zkþ1;m � Zk;m m ¼ 1;::;C; k ¼ 1;::;N� 1 ð5Þ
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X
j

Xij1 � Yi1 i ¼ 1;::; P ð6Þ

X
j

Xijk�
X
j

Xijk�1 � Yik i ¼ 1;::; P; k ¼ 2;::;N ð7Þ

XijkþZkm�1 � Uijkm

i ¼ 1;::; P; j ¼ 1;::;C; k ¼ 1;::;N;m ¼ 1;::;C
ð8Þ

Yik þ Zkm � 1 � Vikm

i ¼ 1;::; P; k ¼ 1;::;N;m ¼ 1;::;C
ð9Þ

The decision variables are defined as:

– Xijk=1 if product i of customer j is in position k; 0
otherwise

– Yik=1 if there exists a setup for product i prior to
position k; 0 otherwise

– aj = position at which all products of customer j are
completed

– Zkm=1 if customer m is in the system at position k; 0
otherwise

– Uijkm=1 if both Xijk=1 and Zkm=1; 0 otherwise
– Vikm=1 if both Yik=1 and Zkm=1; 0 otherwise

Uijkm and Vikm are indicator variables used to calculate
the flow time of customer m.Uijkm is the number of customers
whose flow times include pij. Similarly, Vikm is the number of
customers whose flow times include si. Note that N represents
the number of positions in the sequence; i.e., N=P.C.

Constraints (1) and (2) ensure that each task is scheduled
at a certain position and each position is filled by exactly
one task, respectively. Constraints (3), (4), and (5) are used
to mark the position at which each customer order is fully
completed. Constraints (6) and (7) check if there exists a
product type change that leads to a setup prior to position k.
Constraints (8) and (9) define the indicator variables to
properly determine the flow times.

The number of binary integer variables and the number of
constraints in the above model are both in the order of P2C3.
The fast growth in the number of binary variables leads to
excessive memory and computational requirements for the
available optimization software for problems of realistic sizes.

3 Description of the metaheuristics

Four well-known metaheuristics, simulated annealing (SA),
genetic algorithm (GA), ant colony optimization (ACO),

and tabu search (TS) were chosen for comparison. Our
selection criterion was to include metaheuristics with
different characteristics, such as nature-inspired (GA and
ACO) versus non-nature inspired (TS), population-based
(GA and ACO) versus single-point search (SA and TS),
memory usage (GA, TS, and ACO) versus memoryless
(SA) (Blum and Roli [12]). Hence, we can assess and
compare their performances with respect to these different
characteristics. Similar comparative studies have been
conducted by researchers for different problem domains,
e.g., Pradhan and Lam [15] on job shop scheduling
problem, and Baskar et al. [16] on machine tooling
optimization. Brief descriptions of each metaheuristic are
given below; the parameter fine tuning and implementation
details are given in Section 4.2.

3.1 Simulated annealing

Simulated annealing (SA) is one of the oldest and most
frequently used metaheuristics to find approximate solutions
to combinatorial optimization problems. SA is a local search,
improvement heuristic with a clever mechanism to prevent
getting trapped at local optima. Starting from a randomly
generated initial solution, the heuristic generates neighbor
solutions by simple moves (i.e., simple perturbations in the
current solution). Although improving moves are desired, a
special mechanism occasionally allows moves to worse
solutions to enrich the search domain and prevent getting
trapped at local optima. SAwas first proposed by Kirkpatrick
et al. [17]. Subsequently, Johnson et al. [18, 19] reported a
comprehensive study on the adaptation of simulated
annealing to graph partitioning and the graph coloring
problems and examined the effects of various parameters on
the solution quality and computational requirements.
Detailed description and discussion of the algorithm can
be found in Johnson et al. [18, 19] and Reeves [13].

3.2 Genetic algorithm

The genetic algorithm (GA) is a population-based improvement
heuristic based on natural selection and evolutional theory. A
solution is represented by knowledge structures (also called
chromosomes) that are composed of genes. A set of solutions
comprises a population that evolves over time through
competition and controlled variation. Each member of the
population (individual) is evaluated and assigned a fitness value
and then the next population is formed in two steps. First,
individuals with high fitness values are selected for reproduc-
tion and a crossover operator generates two offspring from two
parents. The role of the crossover operator is to form new fit
individuals from fit parents (natural selection). Second, a
mutation operator alters one or more components of a selected
individual to provide new information into the knowledge base.
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Themutation operator serves as a secondary search that ensures
that all points in the search domain are reachable. The
incumbent solution is expected to improve as populations are
generated until a stopping criterion is reached. GA was first
introduced by Holland [20] and then extensively used by
numerous researchers to solve problems from various fields.
Interested readers are referred to the several references written
on GA (e.g., Holland [20] and Reeves [13]).

3.3 Ant colony optimization

The ant colony optimization (ACO) algorithm is another
population-based metaheuristic inspired by the collective
behavior of real ants for the survival of their colonies. Ants
deposit pheromone on their path to the food sources and the
ability of other ants to smell this chemical enables them to
find the shortest path between their nest and the food.
When more ants collectively follow a trail, the trail
becomes more attractive for being followed in the future.
The capability of a single ant to locate food is limited, but
the collected/shared knowledge helps the colony to find
efficient paths to a food source; the information about the
good paths is passed on to the members of the colony via
the amount of pheromone deposited on the paths. Dorigo
and Gambardella [21] utilize this feature in solving
combinatorial optimization problems.

Each ant constructs a solution by moving from one state
to another adjacent state by applying a stochastic local
search policy; a tour ends when all the ants of the colony
generate solutions of different quality. The information
gathered at the end of each tour is updated through a global
pheromone updating rule. The ants are expected to generate
better solutions by using this information in the next tour.
The algorithm terminates when a stopping criterion is
satisfied. Readers who are interested in ACO applications
are referred to a recently published survey article by Fox et
al. [22].

3.4 Tabu search

Tabu search (TS) is a local-search, improvement heuristic
similar to SA with a punishment mechanism to avoid
getting trapped at local optima by forbidding or penalizing
moves that cause cycling among solution points previously
visited. These forbidden moves are called “tabu”. TS
algorithm keeps a list of such moves for a specific number
of iterations, called tabu tenure. There are two commonly
used strategies to obtain good solutions: diversification is
used to direct the search into less visited regions of the
search space, whereas intensification is used to fully
explore a certain region. However, tabu status of a move
can be overridden if it leads to a solution better than the
incumbent solution (aspiration criterion).

Glover’s studies on TS have attracted numerous research-
ers to use the metaheuristics to solve problems from various
fields due to its potential to solve difficult combinatorial
optimization problems, TS is still a contemporary solution
procedure vastly utilized. Interested readers are suggested to
consult to books by Revees [13] and Glover and Laguna [23].

4 Experimental design and parameter setting

In order to compare the quality of solutions of each
metaheuristic, SA, GA, ACO, and TS, experimentation is
designed and 192 randomly generated problems are solved.
In this section, the important problem characteristics as well
as the critical parameter settings of each heuristic are
presented.

4.1 Problem characteristics

The characteristic parameters of family scheduling problems
are the number of customers, C, number of product types, P,
variability and mean of setup times, and the density of the
customer-product request matrix; if all customers request
from each product type, this is a full customer-product matrix
with density 1, and total number of tasks to be produced is
N=P.C. Note that the system performance measure does not
depend on processing times, but rather it depends on setup
times. Note that the problem is trivial to solve as the setup
times approach zero. Julien and Magazine [3] use individ-
ual order scheduling definition to explain this phenomenon.
As the setup times get relatively larger, the problem gets
more challenging to solve. Table 1 summarizes the levels of
each problem characteristic.

The product processing times are drawn from the
uniform distribution U(1, 15). Four different levels of setup
times are considered: low mean-low variance (U(10, 20)),
low mean-high variance (U(1, 30)), high mean-low vari-
ance (U(25, 35)), and high mean-high variance (U(15, 45)).
For each problem set, setup time parameters are randomly
generated from the above uniform distributions. Note that
the setup means are relatively larger than the processing
times. The customer-product mix specifies the percentage
of products requested by a typical customer, namely the
density of the problem, D. For example, if D is 0.5, then a
customer’s order contains half of the product types on

Table 1 Experimental design parameters

Problem parameters Levels

Customer classes, C 5, 10, 15, 20
Product types, P 5, 10, 15, 20
Customer-product matrix density, D 1, 0.75, 0.5
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average (i.e., N=0.5 P.C). Note that when D=1, each
customer orders all product types of varying quantities.
These problems are solved on an Ultra Enterprise 4000
248 MHz Sun Workstation. Each problem set is solved five
times with different starting seeds by all metaheuristics and
comparisons are done with respect to both the best of five
and the average of five statistics. The problems of size, N,
up to 15, can be optimally solved using CPLEX 7.5 solver
in GAMS software. Hence, the performance of the
metaheuristics is evaluated using optimal solutions for N≤
15, whereas for larger problems, the heuristic solutions are
compared with the best found solution. A discussion of the
results will be given in the next section.

4.2 Parameter settings of each algorithm

All the metaheuristics have some parameters that signifi-
cantly affect computation time requirements and solution
quality. These parameters have to be carefully set and fine-
tuned for each problem domain; therefore, in order to find
the best parameters for each metaheuristic, 30 test problems
of varying problem sizes (20 ≤N≤50) are solved for a wide
range of system parameters. Table 2 summarizes the tested
system parameter ranges and the best values obtained for
each metaheuristic. Detailed discussion of the parameter
fine-tuning of the metaheuristics is presented in the section
below. All metaheuristics employ a stopping (termination)
criterion of 3-h CPU time limit. Besides this termination
rule, the SA algorithm may also stop due to the temperature
cooling process. Note that in most cases, the heuristics
converge to their best values much faster (within minutes);
we have taken these long runs to observe the convergence
rates of these heuristics.

4.2.1 Simulated annealing

The algorithm starts with a randomly generated initial
schedule and uses a two-opt neighborhood where a

neighbor is obtained by reversing the processing sequence
between any two items (themselves included) in the
existing schedule. The initial temperature was set by using
an acceptance probability of 0.4, representing the accep-
tance of probability of moving to a worse solution at the
beginning of the procedure. Test runs indicate that the most
significant parameters affecting the quality of the solution
and the computation time are the minimum percentage
factor and the cooling rate factor. Since wider solution space
can be searched with a low minimum percentage factor or
with a high cooling rate factor, the quality of the solution
increases by decreasing minimum percentage factor and
increasing the cooling rate factor. The change in cost per
change in time (Δcost/Δtime) value is used to determine the
best parameter levels that compensate the trade-off between
computation time and solution quality. The parameters other
than the minimum percentage and the cooling rate factor
were set as recommended in Johnson et al. [18, 19].

4.2.2 Genetic algorithm

In our study, the pair (i,j) refers to the jth job of customer i, i=
1,...,C, and j=1,...,P. We use permutation of N such pairs to
construct the chromosomes and compute their fitness values
using the setup and processing times of the schedule. Our
code starts with a randomly generated 20 chromosomes
(initial population), and stops after one of the termination
criteria is reached. At each iteration, new offspring are
created as a result of two operations: crossover and mutation.
First, two fit individuals from the population are chosen with
a probability, pcross and their chromosomes are crossovered.
Note that, pcross is defined as the probability of a crossover
in a chromosome, not in a gene. Then, the new individuals
(offspring) are mutated with probability, pmutat. During the
test runs, we tested various combinations of these parame-
ters. For pcross, tested values are: 0.3, 0.4, 0.6, 0.8, and 0.9
and for pmutat, tested values are: 0.2, 0.3, 0.4, 0.5, and 0.6.

Table 2 Best parameter settings for each metaheuristic

Parameters Test values Best value

SA Minimum percentage 0.005, 0.01, 0.02, 0.03, 0.04, 0.05 0.02
Cooling rate 0.99, 0.97, 0.95, 0.92, 0.90, 0.85 0.97

GA Crossover probability 0.3, 0.4, 0.6, 0.8, 0.9 0.6
Mutation probability 0.2, 0.3, 0.4, 0.5, 0.6 0.3
Crossover operator Position-based (Webster et al. [24]), Order crossover (Davids [25]) Position-based

ACO q0 0.7, 0.8, 0.9 0.8
α 0.1, 0.2, 0.3 0.1
β 1, 2 1
p 0.1, 0.2, 0.3 0.2

TS Initial solution Random solution, Batched solution Batched solution
Tabu list size 5, 7,10 7
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Furthermore, two different crossover methods are used:
Position-based crossover (Webster et al. [24]), and order
crossover (Davids [25]). Test runs explore the best param-
eters for the GA on our problem to be the position-based
crossover operand with operation probabilities, pcross = 0.6,
and pmutat = 0.3.

4.2.3 Ant colony optimization

The ACO implementation starts with W ants. An ant
w constructs the schedule, assigns job v to position k, by
applying the state transition rule given below (Dorigo and
Gambardella [21]):

v ¼
argmax
u2Sw kð Þ

t k;uð Þ½ � η k;uð Þ½ �b
n o

if q�q0

J otherwise

8<
:

where t(k,u) indicates the desirability of assigning job u to
position k of the schedule. Sw(k) is the set of jobs that can
be assigned by ant w for position k. b is the parameter that
determines the relative importance of pheromone level and
heuristic information. The problem-dependent heuristic
value, η(k,u), is determined as follows:

h k; uð Þ ¼ 1

puþyk�1;u:su

where pu represents processing time of job u, su represents
setup time of job u; yk-1,u is a binary variable that is equal to
1 in cases where scheduled element at position k-1 belongs
to the family of job u. Every feasible schedule starts with a
setup, i.e., y1,u=1 ∀u. Variable q is a uniformly distributed
random number over [0, 1] and 0≤q0≤1 determines the
relative importance of exploitation versus exploration. J is a
random variable that gives the probability with which ant
w chooses job v to position k and it is selected according to

the probability distribution, called a “random-proportional
rule”, and is given below:

pw k; vð Þ ¼
t k; vð Þ½ � η k; vð Þ½ � b

P
u2Sw kð Þ

t k; uð Þ½ � η k; uð Þ½ � b
if v 2 Sw kð Þ

0 otherwise

8>>>><
>>>>:

Every time an ant constructs a schedule, the local
updating rule decreases pheromone on visited edges.
Therefore, the jobs at a specific position in one ant’s tour
will be chosen with a lower probability at the same position
in other ants’ tours. Consequently, ants explore the edges
not yet visited and prevent converging to a common path.
Local updating rule is applied as shown below (Dorigo and
Gambardella [12]) where τ0 is the initial pheromone level
and p is the pheromone evaporating parameter:

τ k; vð Þ¼ 1� pð Þτ k; vð Þþpτ0

Test runs indicate the best values of the parameters of q0,
α, β, and p are 0.8, 0.1, 1, and 0.2, respectively.

4.2.4 Tabu search

The tabu search (TS) algorithm starts with an initial
heuristic solution and keeps searching for efficient direc-
tions until the stopping criterion is satisfied. During
parameter testing experiments, we consider the following
alternatives for system initialization: random and batched
solution in which all customer orders from the same family
are sequenced contiguously. Within a batch, the final
operations, which are the last operations of particular
customer orders, are sequenced first; they follow the
shortest processing time (SPT) order among themselves
and non-final operations follow the final operations
(Gerodimos et al. [10]).

Table 3 Results of the ANOVA test

Source DF SS Adj SS Adj MS F p

P 3 15.92161 1592161 5.30720 6840.38 0.000
C 3 5.46032 5.46032 1.82011 2345.91 0.000
E[setup] 1 0.77766 0.77766 0.77766 1002.31 0.000
VAR(setup) 1 0.00101 0.00101 0.00101 1.31 0.253
D 2 4.03332 4.03332 2.01666 2599.25 0.000
Method 3 0.01830 0.01830 0.00610 7.86 0.000
P.Method 9 0.01359 0.01359 0.00151 1.95 0.043
C.Method 9 0.01985 0.01985 0.00221 2.84 0.003
VAR(setup).Method 3 0.00005 0.00005 0.00002 0.02 0.996
D.Method 6 0.01512 0.01512 0.00252 3.25 0.004
E[setup].Method 3 0.00162 0.00162 0.00054 0.69 0.556
Error 724 0.56173 0.56173 0.00078
Total 767 26.82417
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The stopping criterion is set to 1,000 iterations. In order
to fully explore the neighborhood of generated solutions,
the entire neighborhood is examined with both swap and
inserts. In the test runs, a tabu list of size 5, 7, and 10 are
tried. The best solutions for our model can be achieved
under the following conditions:

i. Start with a batched solution.
ii. Keep a tabu list of size 7

5 Computational results

In the computational study, each problem instance is solved five
times by four different metaheuristics and two different
statistics from these experimentations are collected: (i) the best
of five, and (ii) average of the five replications. Since both
statistics show similar results, we only report the average of five

results in this section. Note that this is a more conservative
performance measure than the best of five experiments.

ANOVA test is applied to the results in order to see the
variance effect of the experimental design factors. These
factors and their corresponding factor levels are: number of
product families (P=5, 10, 15, 20), number of customer
classes (C=5, 10, 15, 20), mean of setup times (low, high),
variance of setup times, (low, high), density (D=1, 0.75,
0.5), and the method (SA, GA, ACO, TS). Before the test is
performed, the necessary assumptions for ANOVA are
checked and Box-Cox transformation is utilized to satisfy
constant variance assumption. The output of the test is
depicted in Table 3.

The ANOVA test reveals that the method used has a
significant effect on the variance of results and more
importantly the method has a significant interaction with
the problem size parameters (P, C, and D). In order to show
the effect of the method distinctly for each problem
instance, the relative performance of each method with

Table 4 The mean and variance of error terms (with respect to the best found solution) for each method

D=0.5 D=0.75 D=1.0 All 192 Instances

Method Mean(Err)
(%)

VAR(Err)
(%)

Mean(Err)
(%)

VAR(Err)
(%)

Mean(Err)
(%)

VAR(Err)
(%)

Mean(Err)
(%)

VAR(Err)
(%)

ACO 2.70 0.04 2.18 0.02 3.47 0.22 2.78 0.27
GA 6.04 0.09 6.80 0.14 11.58 4.02 8.14 4.24
SA 1.64 0.01 5.60 0.79 12.05 8.02 6.43 8.82
TS 3.55 0.08 2.50 0.03 1.31 0.02 2.45 0.12
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respect to the best result obtained is calculated. The results
are summarized in Table 4. In the table, the mean and
variance of error terms for each method are grouped with
respect to the density parameter.

When D=0.5 the variance of error terms is the smallest
and SA is the best performer among the four metaheuris-
tics. As the density of customer orders increase (D=0.75
and 1.0) TS and ACO provide better solutions and their
error variances are still small. Solution quality of GA and
SA deteriorates, as the density of the problem data, D,
increases. At this point, one has to note that at the limiting
case, i.e., D=1/P, and thus N=C, when each customer asks
for only one type of the product variety, the problem
becomes trivial. Consequently, it is normal to accept D as
the problem complexity measure.

SA is a very practical and efficient heuristic. But since it
relies heavily on random moves, it is not surprising that its
performance reduces as the problem complexity increases.
Among the four metaheuristics, GA and ACO are popula-
tion-based algorithms and as a search process they differ in
one important aspect from SA and TS. At each iterative step,
a number of different solutions are generated and informa-
tion is carried over to the next step. Both GA and ACO are
slower due to these extra processes involved in generating
or updating a population rather than a single individual. In
return, these algorithms utilize the information pooling in
the population. Problem-specific information is incorpo-
rated into the solution improvement module of ACO and
this gives ACO an advantage over GA. Therefore, for
complex problem instances, ACO performs better than GA.
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Along with ACO, TS is another intelligent metaheuristic
that uses smart techniques to avoid local optimums. For the
COSP, TS is the only method which constantly improves its
performance as the problem complexity increases. Figures 1,
2, and 3 also verify this result, i.e., the performance of TS
improves as the problem size, N, increases.

Another performance criterion of any algorithm is how
fast it converges. We run each metaheuristic sufficiently
long (3 h) to compare their convergence performances.
Figures 4 and 5 depict the performance of each heuristic
against time, for a small and large test problem, respective-
ly. GA and SA start at a relatively poor solution, and then

converge to the best result at a slow or fast rate depending
on the problem complexity, whereas ACO and TS start at a
better solution and improve faster irrespective of the
problem size. Therefore in case of time shortage, it is more
worthwhile to use TS if the problem is complex, and SA if
the problem is simple.

6 Concluding remarks

In this study, the performances of four well-known
metaheuristics are compared on the COSP, which is a
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practically relevant but difficult combinatorial optimization
problem. SA, GA, TS, and ACO were chosen for this study
because these metaheuristics are not only the most
frequently used ones, but they also present a good variety
over several criteria, such as from simple to complex, from
local search to nature-inspired methods, etc. From the
numerical experimentation, the following observations can
be drawn.

1. The output quality of a metaheuristics depends on the
problem size (P, C, or D).

2. As the complexity of the problem (or the product
density, D) reduces, all four methods perform better,
but among them, the best algorithm is SA, even though
it is the least intelligent one.

3. However, for dense problem instances, e.g., the D=1
case, TS and ACO outperform SA and GA. TS has
slightly better results than ACO.

4. TS and ACO converge to their best results faster than
SA and GA. Therefore in case of time limitations, they
are more preferable.

5. Although the coding complexity of these methods is
beyond the scope of this study with respect to the
number of parameters that have to be fine tuned (see
Table 2), one can say that implementation of TS or SA
is easier than the others.

In light of these observations and experimentation, TS
and ACO were chosen as the best alternatives for the COSP
with the mean flow time as the objective function.
Although the overall performance of TS in our experimen-
tation is slightly better than ACO, we deliberately do not
want to put ACO in second place, since this small
difference can easily be reversed by improving the
intelligent search module of ACO. SA is also proposed as
a viable option for small and/or less complex problem
instances (i.e., when D is small).

Although the authors try to extend the problem space
used in this study, the results may not reflect the best
performance of each algorithm, neither the best metaheu-
ristics can be announced depending on the outcome of this
study. Therefore the results must be used with caution.
However, this study is valuable, especially to the practi-
tioners, in that it shows that the choice of metaheuristics
depends on both the problem structure and its parameters.
Consequently, for every difficult problem, such a compar-
ative study among several metaheuristics is useful, instead
of choosing a well-known heuristic due to its performance
on other problems. Extending this work by including
hybrid metaheuristic algorithms and recent metaheuristics,
e.g., variable neighbourhood search, particle swarm and
electromagnetism, as well as considering different NP-hard
problems, are subjects of future work.
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