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Customer Waiting Times in an (R,S) Inventory System 
with Compound Poisson Demand 

M . C .  van  der  He i j den  1 and  A . G .  De K o k  2 

Abstract: Besides service level and mean physical stock, customer waiting time is an important per- 
formance characteristic for an inventory system. In this paper we discuss the calculation of this 
waiting time in case a periodic review control policy with order-up-to-level S is used and customers 
arrive according to a Poisson process. For the case of Gamma distributed demand per customer, we 
obtain (approximate) expressions for the waiting time characteristics. The approach clearly differs 
from the traditional approaches. It can also be used to obtain other performance characteristics such 
as the mean physical stock and the service level. 

1 Introduction 

The  (R, S)  po l icy  is one o f  the  bas ic  s ing le - s tockpoin t  inven to ry  con t ro l  policies.  
U n d e r  this  po l i cy  the  inven to ry  pos i t ion ,  def ined  as phys ica l  s tock  plus lots  on  
o rde r  minus  backo rde r s ,  is reviewed each R th t ime  uni t .  A t  a m o m e n t  o f  review, 
a r ep len i shment  o rde r  is issued such tha t  the  inven to ry  pos i t i on  immed ia t e ly  af te r  
the  o rde r  is in i t ia ted  equals  S. 

Basic analysis  o f  the  (R, S)  inven to ry  sys tem can  be f o u n d  in m a n y  s t a n d a r d  
t ex tbooks  (see e.g.  H a d l e y  and  Whi t i n  (1963) and  Silver and  Pe te r son  (1985)). 
These  analyses  ma in ly  focus on  the ca lcu la t ion  o f  cer ta in  p e r f o r m a n c e  measures  
and  the choice o f  op t ima l  values  for  R and  S (given a cer ta in  cost  s t ructure)  in 
case backo rde r s  occur  very  inf requent ly .  P e r f o r m a n c e  measures  cons idered  are  
e.g. the  mean  phys ica l  s tock  and  the service level (def ined  as the  f r ac t ion  o f  de-  
m a n d  sat isf ied d i rec t ly  f rom s tock  on  hand) .  A p p r o x i m a t i o n s  for  these pe r fo r -  
mance  character is t ics  which  are  b r o a d e r  app l i cab le  ( for  high as well as low ser- 
vice levels), can  be  f o u n d  in De K o k  (1990). 

Less a t t en t ion  is pa id  to  cus tomer  wai t ing  t imes ,  a l though  wai t ing t ime char-  
acter is t ics  are  in teres t ing as p e r f o r m a n c e  measure  in single s tockpo in t  mode l s  
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and as key variable in the analysis of locally controlled multi-echelon inventory 
systems. Literature on customer waiting times mainly focuses on multi-echelon 
inventory systems with continuous review. For example, Van Beek (1981) gives 
a heuristic analysis of the continuous review, fixed order size (b, Q)-model (i.e., 
a fixed amount Q is ordered each time the inventory position drops below the 
level b). His analysis is based on the replenishment cycle approach, e.g. the 
analysis of the inventory behaviour between the arrival of two consecutive 
replenishment orders. Svoronos and Zipkin (1988) present a more detailed 
analysis of a similar model. 

Results on customer waiting times in periodic review systems are not available 
as far as we know. For these type of systems, a traditional approach like the 
replenishment cycle approach cannot be applied straightforwardly. A reason for 
this is the fact that the analysis of customer waiting times in continuous review 
systems is based on Little's formula for the relation between the mean backlog 
and the mean waiting time (see e.g. Svoronos and Zipkin (1988)). In contrast 
with continuous review systems, for periodic review systems a tractable expres- 
sion for the mean backlog is not easily obtained using the replenishment cycle 
approach. 

Besides this, Little's formula is only applicable in case of fixed demand per 
customer. If the demand per customer is stochastic, Little's formula gives a rela- 
tion between the mean customer waiting time and the mean number of 
backorders (and not the mean backlog). Simply multiplying the mean number of 
backorders with the mean customer demand may introduce significant errors. As 
a typical example, in the first of our numerical experiments (see Section 6) we 
found that the mean number of backorders equals 0.47. Multiplying this with the 
mean customer demand (E[D] = 10) yields that the mean backlog is approx- 
imately 4.7. However, the true mean backlog equals 5.2. This error of about 10% 
is transferred to the mean waiting time as well. 

Because of these problems we developed an alternative approach for the 
(R, S) system with compound Poisson customer demand. We start with a specific 
initial system state at time 0 and derive expressions for the waiting time charac- 
teristics of a customer arriving at time t. By letting t ~  oo we obtain the stationary 
waiting time characteristics. 

The remaining part of this paper is structured as follows. In the next section 
we describe the model in more detail and we give the basic notation. Key expres- 
sions for the waiting time characteristics are derived in Section 3. These approx- 
imate expressions are further elaborated for the special case of Gamma distribut- 
ed demand per customer in Section 4. To illustrate the power of our approach, 
we derive expressions for two other performance measures, the mean physical 
stock and the fraction of demand delivered directly from stock (Section 5). We 
note that for these performance measures other (approximate) methods are avail- 
able. In Section 6 we compare our approximations to Monte Carlo simulation 
results. Finally, conclusions are given in Section 7. 
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2 Model and Basic Notation 

As mentioned in the introduction, we consider the (R, S) inventory system in 
which the inventory position is reviewed every R time units. At a moment of  
review an order is released to raise the inventory position to the level S. The lead 
time of  an order has a probability distribution function GO'). Customers arrive 
at the system according to a Poisson process. The demand per customer is dis- 
tributed according to the probability distribution function F(x) .  When a 
customer arrives and sufficient stock is available to satisfy his demand, the 
customer is served immediately. Otherwise the available stock is supplied, the re- 
maining demand is backlogged and the customer waits until his demand is ful ly  
satisfied. There is an infinite waiting room for the waiting customers. The 
customers are served according to the First Come, First Served (FCFS) discipline. 

Note that a customer's order may be delivered in two parts if the available 
stock is not sufficient. This approach is used quite often in practise (for example 
in the authors '  company), especially since customer's orders are often replenish- 
ment orders issued by retailers outside the organization. In this way the customer 
service level is improved. However, if the objective would be to minimize the av- 
erage customer waiting time, a different approach seems to be appropriate. Such 
an approach should be based on an other priority rule than FCFS, taking into 
account the demand pattern. 

For  the system as described above we will derive expressions for the following 
waiting time characteristics:' 

(i) The probability that an arbitrary customer has to wait, 
(ii) the mean waiting time, 

(iii) the coefficient of  variation of  the waiting time, 
(iv) waiting time probabilities. 

We will focus on the system behaviour in the stationary situation. That is, the 
system has been running for such a long time period that it has reached statistical 
equilibrium. To derive expressions for the waiting time characteristics in the sta- 
t ionary situation, we use the following basic notation: 

R = Length of  the period between two consecutive moments of  review (R > 0). 
S = Order-Up-To-Level (S>O). 
L i = Lead time of  the ith order. The order lead times are identically distribut- 

ed and have probability distribution function GO') with mean PL and 
standard deviation aL. 

W t = Waiting time of  a customer arriving at time t. 
W = Waiting time of  a customer arriving at an arbitrary point in time. 
nt = Probability that a customer arriving at time t has to wait. 
n = Probability that a customer arriving at an arbitrary point in time has to 

wait. 
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D = Demand of  an arbitrary customer. All demands are independent and 
identically distributed and have a general probability distribution func- 
tion F(x) with mean PD and standard deviation aD. The probability den- 
sity of  F(x) is denoted by f (x) .  

Q[t] = The number of  orders delivered in the time interval [0, t]. 
N[t] = The number of  customers arriving in an arbitrary time interval of  length 

t. This number is Poisson distributed with mean 2 t. 
V[t] = The cumulative demand in a time interval of  length t. 

Other, more specific, notation will be defined when used for the first time. Note 
that both N[t] and V[t] do not depend on the system state at the start of  the time 
interval because of  the Poisson arrivals. Further we assume that customer ar- 
rival, customer demand and order lead time are independent processes. Finally, 
we make the following assumption with respect to the lead times: 

Assumption: The orders are delivered in the same order as they are released. 

So, an order released at time iR is not delivered before any order released at 
time j R  (j = 1 . . . . .  i -1 ) .  This is a common assumption (see e.g. the discussion 
in Hadley and Whitin (1963)) and in fact it is not very restrictive. If  the dispatch 
of  a particular replenishment order is delayed considerably, in practise it is never 
crossed, at most it is combined with the next replenishment order. We observe 
the resulting lead times which we describe by the probability distribution G(t). 
An implication is that the lead times are not necessarily independent. 

3 Derivation of Basic Expressions 

As mentioned in the introduction, the key idea of  our approach is to start with 
a specific initial state of  the system at time 0 and to derive expressions for the 
waiting time characteristics of  a customer arriving at time t >  0. Letting t ~  oo we 
obtain the stationary waiting time characteristics. 

Now assume that at the initial time t = 0 the system is in the following state: 
The inventory position equals S. No open orders exist and there are no back- 
orders, therefore the physical stock equals S as well. Future orders will be re- 
leased at time t = R, t = 2R, etc. We assume that an order with size 0 is released 
in case no demand occurred between two consecutive moments of  review. 

Remark: The probability that no demand occurs between two consecutive review 
periods is strictly positive because of  compound Poisson demand. Therefore it 
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can be shown that the system still re-enter the initial state within finite time. 
Hence the initial epoch is a regeneration epoch and therefore our results are in- 
dependent of  the initial system state. 

We focus on a specific customer arriving at time t, say mR<__t<(m+ 1)R for 
some nonnegative integer m. We will write for convenience t = m R +  T with 
T ~ [0, R).  We can find an expression for the probability that this customer has 
to wait by conditioning on the number of orders delivered until time t. Suppose 
that i orders are delivered until t, i.e. Q[t] = i. Then the customer has to wait 
if the i orders are not sufficient to cover all demand up to time t including the 
customer arrived at t. Because the i-th order increased the inventory position at 
time iR  to the level S, this is true if the total demand in the period ( iR,  t) plus 
the demand of  the customer arriving at t exceeds S. Noting that at time 
t = m R  + t exactly m orders are released, we have Q [t] _< m. Therefore we can 
write 

m 

7tr+mR = E P r { Q [ T + m R ]  = i } * P r { V [ T + ( m - i ) R ] + D > S } ,  O < T < R  . 
i = 0  (1)  

Here D denotes the demand of  the customer that arrived at time t. Similarly we 
obtain an expression for the probability that the customer has to wait longer than 
some w>_0 by conditioning on the number of  orders delivered until time t+  w. 
Suppose that i orders are delivered until t + w, i.e. Q [t + w] = i. Then the waiting 
time of  the customer exceeds w if the i orders are not sufficient to cover all de- 
mand up to time t including the customer arrived at t. Because the (m +  1) th 
order will cover all demand up to time (m+ 1)R and t < ( m +  1)R, we have 

m 

Pr{WT+mR> W}= 
i = 0  

P r { Q [ T +  m R  + w] = i } . P r { V [ T +  ( m - i ) R ]  + D > S } ,  

0_<T<R and w_>0 . (2) 

To elaborate the expressions (1) and (2) we need the probability distribution of  
Q [t]. Under the assumption that orders do not cross (see Section 2), we have 

Pr{Q[t]>_i}= P r { i R + L i < _ t } = G ( t - i R )  , i>_l . (3) 

Of course, for i =  0 we have Pr  {Q [t] _> 0] = 1. Now it is clear that 
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Pr {Q [t] = i} = Pr {Q [tl -> i}-  Pr {Q [tl > i + 11 

= G ( t - i R ) - G ( t - ( i +  l)R)  , i>_l (4a) 

Pr {Q [t ] = 0} = 1 - G (t - R) (4b) 

with the convention that G(x) = 0 for x < 0 .  Substitution of (4a) and (4b) in (1) 
and (2) while changing the order of summation (i: = m - i )  yields 

7~T+mR = 

m - 1  

E 
i = 0  

[G(T+ i R ) -  G(T+ ( i -  1)R)],  Pr {V[T+ iR] + D >  S} 

+ [ 1 - G ( T + ( m -  1 ) R ) ] , P r { V [ T + m R ] + D > S }  , 0_.<T<R (5) 

and 

m - 1  

Pr{WT+mR>W}= 
i=O 

[G(T+ iR + w ) -  G(T+ ( i -  1)R + w)] 

�9 Pr {V[T+ iR] + D > S } +  [1 - G(T+ (m - 1)R + w)] 

�9 P r { V [ T + m R ] + D > S } ,  O<_T<R and w > 0 .  (6) 

We can derive an expression for the stationary waiting time distribution from (5) 
and (6). It is easy to show that for compound Poisson demand the arrival epoch 
T of an arbitrary customer arriving between time mR and time (m + 1)R is 
uniformly distributed over the interval [mR, (m + 1)R). Defining 7~ m and Wm as 
the waiting probability respectively the waiting time of an arbitrary customer ar- 
riving between the mth and the (m + 1) th moment of review, we have 

R 

1"( m = R -1 ,  l nT+mR dT (7) 
0 

and 

R 

Pr { W  m > w} = R - 1 ,  I Pr { W T + m R  ~" w}dT . (8) 
0 

Now we derive an expression for the waiting probability n. Combining (5) and 
(7) and letting m ~  oo we obtain after elementary algebra 
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= R -1 ~ [ G ( t ) -  G ( t - R ) ]  *Pr {V[t] + D > S } d t  . 
0 

(9) 

Substituting Pr {V[t] + D > S] = 1 - Pr { V[t] + D <_ S} and taking into account that 
G(t) = 0 for t<0 ,  we have 

re = 1 - R - ~ ,  [1-G(t)l,Pr{V[t+Rl+D<_S}dt+~Pr{V[t]+D<_S}dt 
0 

- ~o [1 - G(t)l *Pr {Vtt] +D<__S}dt 1 . (lo) 

Similar algebra using (6) and (8) gives an expression for Pr [W> w}: 

I w 
Pr{W>w}=R -1. M2(w)+ I 

M 1 (w) 
[1 - G(t)]  dt  

- ~ [1-G(t) l*Pr[V[t+R-w]+D<S}dt  
Mr(w) 

M2(w) 

- I PrtV[tl+D<--Sldt 
0 

+ ~ w [1 - G(t)] *Pr {Vtt- wl +D<-S}dt 1 (ll) 

where Ml(w) = Max{w-R,0} and M2(w) = Max{R-w,0}.  
To obtain the mean and coefficient of variation of the waiting time distribu- 

tion, we note that 

E[W k] = ~ kwk-l  *Pr{W> w}dw . 
0 

After some algebra we obtain the following expressions for the first two 
moments of the customer waiting time: 

R 

E[WI = R/2 +pL-R -1, l (R-  t ) , P r  {V[t] + D<_Sldt 
o 

w + R  

- R - l *  [ 1 - G ( w ) l *  I Pr{V[t]+D<_S}dtdw (12) 
0 w 
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and 

R 
E[W2I = R2/3 +E[L2I + R * E[L ] - R -1 .  j ( R -  t)2* Pr {V[tl + D< S}dt 

0 

w + R  

tl-O(w)j,  I 
0 0 

Pr {V[t] + D< Sldtdw 

w + R  

+ 2 * R  -I [1 -G(w)]*  I ( t - w ) * P r { V [ t ] + D < S } d t d w .  (13) 
0 w 

To evaluate the basic expressions (10) - (13), we need Pr {V[t] +D<S} as a func- 
tion of t. In general it is not easy to get computationally tractable expressions 
for this function. However, in case the demand per customer is Gamma distribut- 
ed we end up with numerically attractive expressions for n, E[W] and E[W2]. 
This is discussed in the next section. 

4 Expressions in Case of Gamma Distributed Demand per Customer 

In this section we discuss the basic expressions for the case of Gamma distributed 
demand per customer. We focus on the waiting probability z~ and the first two 
moments of the waiting time distribution E[W] and E [W  2] respectively. 
Waiting time probabilities can be approximated by fitting an appropriate proba- 
bility distribution function to the first two moments of the conditional waiting 
time (i.e. the waiting time given that it is nonzero). For example, fitting a mixture 
of Erlang distributions has shown to be very useful for practical applications (see 
e.g. Tijms (1986)). However, it is possible to calculate waiting time probabilities 
using the approach discussed in the previous section (see Appendix 2). 

Let us focus on tractable expressions for zc, E[W] and E[W2]. First we need 
an expression for PrIV[t]+D<_S]. Because the total demand in a period of 
length t is a compound Poisson process, we can easily write down the probability 
that V[t] +D does not exceed x for some x>_0: 

Pr{V[t] +D<x} = ~ (2t)ie-at/i!*F(i+l)(x) , x > O  , (14) 
i = 0  

where F(i)(x) denotes the/-fold convolution of F(x). Substitution of (14) in (10) 
yields the following expression for the waiting probability: 



Customer Waiting Times in an (R, S) Inventory System with Compound Poisson Demand 323 

"=I-'-'*~Ff'+"(S)*I[I-~ j=0 

+j=o ~ O'R)Je-aR/JI * Zi-J(2 ) 1 

where 

Zi(2) = ~ [1 - G(t)] * (2 t)ie -xt/i! dt . (15) 
0 

For the first two moments of the waiting time distribution we obtain respectively 

E[W] = R / 2 + E [ L ] - ( R 2 ) - I ,  ~ F(i+o(S ) 
i=O 

* R* 1 -  (~R)Je-aR/j! --(i+1)* 1 -  ~ (J.R)Je-)'R/j! 
L /=o j=O 

'[ ] 1 + ~, 1 -  (2R)~e-~R/k! *z jo0  
j=O k=O 

and 

E[W 2] = Rz/3 +ElL  21 + R * E[L ] - ,~ -2 ,  ~ F(i+ I)(s ) 
i=0  

* �9 1 -  (;.R)Je-XR/j! - 2 ( i + 1 ) ,  1 -  ~ (XR)Je-~R/j! 
j=o j=o 

[ ]/ + ( i + 1 ) ( i + 2 ) ,  1 -  ~ (2R)Je-~R/j! . (R2Z)+2E[L] 
j = 0  

~ -  ] -,.,.o [;go,''e-'" 
- 2 ,  ~ ( i + l - j ) ,  1 -  (2R)%-Xn/k!  ,Zj(X)/XR . 

j=O k=O 

Now assume that F(x) is a Gamma distribution with parameters 0 and r: 

2 

(16) 

/ 4 

(17) 
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A" 

F ( x )  = ~ Ory r- l e - ~ . 
0 

Then the convolutions F (i) (x)  are Gamma distributions with parameters 0 and 
i . r  and the values F(i+I)(S) can be calculated numerically using available 
routines (cf. Press, Flannery, Teukolsky and Vetterling (1986)). The waiting time 
characteristics can be calculated by truncating the infinite sum after some integer 
Ne when the relative change in n (respectively E [ W ]  and E[W2]) is smaller than 
some predefined value e. The only part remaining is the calculation of the values 
ZiQ.) for i = 1,2 . . . . .  Ne. In principle these values can be calculated using stan- 
dard numerical integration routines for a wide variety of probability distribution 
functions for the lead time G(t ) .  Especially, Laguerre integration is an efficient 
numerical method for this type of integrals (see e.g. Van Hoorn (1984)). How- 
ever, for some specific distribution functions analytical expressions for Zi(2) 
can be obtained (see Appendix 1 for deterministic, Erlang distributed and 
Hyperexponential distributed lead times). 

5 Other Performance Measures 

The approach presented in this paper is suitable for deriving approximations of 
other relevant performance characteristics. As an example we derive expressions 
for the mean physical stock and the fraction of the demand delivered directly 
from stock (denoted by fl). We remark that other methods to approximate these 
performance measures are available (see De Kok (1990)). 

5.1 The M e a n  Physical  S tock  

First we derive an expression for the probability that the physical stock at time 
t = T +  m R  exceeds x. We condition on Q[t], the number of orders arrived until 
t. Given that Q[t] = i, we have that the physical stock at time t exceeds x if the 
cumulative demand in the period [iR, t] does not exceed S - x .  So, 

m 

Pr{IT+mn>-x} = ~ P r [ Q [ T + m R ]  = i } . P r [ V [ T + ( m - i ) R ] < _ S - x }  , 
i = 0  

O < x < S  , 
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where IT+mR denotes the physical stock at time T+ mR.  Analogous arguments 
as the ones used in Section 3 (integrating over T and letting m ~  oo) yields 

o ~  

Pr{ I>_x}=R- l*  ~ [ G ( t ) - G ( t - R ) l * P r { V [ t l < - S - x l d t  , O<x<_S . (18) 
o 

The mean physical stock can be derived by integration over x: 

ooS 
E[I] = R - 1 ,1  I [G (t) - G ( t -  R)] �9 Pr { V[t] <_ S -  x ldxd t  . 

0 0  
(19) 

5.2 The Fraction o f  Demand Satisfied Directly from Stock on Hand 

To obtain this service level, we observe that 

fl = E [Do]/PD , (20) 

where D O denotes the demand of an arbitrary customer which is delivered direct- 
ly from stock. Do exceeds x if both the customer demand D and the available 
physical stock exceed x. So we have 

Pr [Do>x} = [1 -F (x ) ]  *Pr g___x} . (21) 

Combining (18), (20) and (21) yields 

S 
B = (RPD) - 1 .  I [ G ( t ) -  G ( t - R ) ]  *l [1 -F (x ) ]  , P r  {V[t] <_S-xldxdt. 

0 o 
(22) 

Remark that the expressions for the mean physical stock and the service level can 
be computed explicitly in case of Gamma distributed demand per customer. 

6 Numerical Results 

In this section we examine the accuracy of the approximating expressions by 
comparison to discrete event simulation. We consider the following parameter 
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values. As normalizations we take R = 1 and PD = 10. The arrival rate of  
customers equals 2 = 5 or 25 per time unit. The demand per customer is gamma 
distributed with squared coefficient of variation c 2 = 1.5. We choose the mean 
lead time of  an order as PL = 0.5 and 2. Both deterministic lead times (c 2 = 0) 
and Erlang distributed lead times (c 2 = 0.25) are considered. Note that for 
deterministic lead times the expressions are exact, because then orders do not 
cross. We did not consider hyperexponential distributed lead times, because lead 
time variation is not very large in practise. We choose the order-up-to level S 
such, that the service level fl approximately equals 0.75, 0.90 and 0.99 (where S 
is rounded to an integer value). This is done using a standard numerical search 
procedure and the approximate method as described in the previous sections. The 
low service level (fl = 0.75) is considered because one usually finds in practice 
that at intermediate stockpoints in a logistic network target service levels are in 
the range of  0.60 to 0.80. 

For all parameter combinations we calculated the waiting probability, the 
mean and squared coefficient of  variation of  the conditional waiting time (i.e. 
the waiting time given that it is strictly positive), the actual service level fl and 
the mean physical stock. We compared this to results from discrete event simula- 
tion. For each case we simulated 1000000 customers. The Tables 1 - 3 show the 
results for the service levels 0.75, 0.90 and 0.99 respectively. 

The tables show that for most cases the (approximate) values are very close 
to the simulation results. Significant deviations mainly occur for relatively long, 
stochastic lead times. A probable cause is the assumption that orders cannot 
overtake each other. 

Table 1. Results for service level fl = 0.75 (R = 1, PD = 10 and c 2 = 1.5) 

;~ PL c2 S •w E[W[ W>0] 2 c wI w> 0 Actual Mean 
fl Stock 

Sim 0.233 0.41 0.55 0.751 40 
5 0.5 0 85 Appr 0.231 0.41 0.55 0.751 40 

Sim 0.232 0.45 0.60 0.753 42 
5 0.5 0.25 86 Appr 0.231 0.45 0.60 0.753 42 

Sim 0.239 0.63 0.58 0.750 56 
5 2.0 0 173 Appr 0.238 0.63 0.58 0.750 56 

Sire 0.240 1.00 0.78 0.752 68 
5 2.0 0.25 181 Appr 0.241 1.00 0.75 0.750 69 

Sim 0.246 0.25 0.59 0.748 97 
25 0.5 0 332 Appr 0.244 0.25 0.59 0.750 98 

Sim 0.246 0.31 0.69 0.748 109 
25 0.5 0.25 340 Appr 0.245 0.31 0.69 0.750 110 

Sim 0.248 0.33 0.63 0.747 126 
25 2.0 0 731 Appr 0.246 0.34 0.63 0.749 127 

Sim 0.249 0.89 0.91 0.750 230 
25 2.0 0.25 802 Appr 0.247 0.87 0.82 0.750 231 
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Table 2. Results for service level fl = 0.90 (R = 1, PD = 10 and c 2 = 1.5) 

A ~L c2 S nw E [ W  I W>0] 2 cwl w> 0 Actual Mean 
fl Stock 

Sim 0.046 0.31 0.67 0.950 90 
5 0.5 0 139 Appr 0.046 0.31 0.66 0.949 90 

Sim 0.046 0.35 0.73 0.950 94 
5 0.5 0.25 143 Appr 0.046 0.35 0.71 0.950 94 

Sim 0.047 0.46 0.70 0.950 121 
5 2.0 0 245 Appr 0.047 0.46 0.70 0.949 121 

Sim 0.047 0.85 0.95 0.951 160 
5 2.0 0.25 283 Appr 0.048 0.83 0.86 0.950 160 

Sim 0.047 0.17 0.72 0.950 207 
25 0.5 0 455 Appr 0.048 0.17 0.71 0.950 207 

Sim 0.048 0.23 0.85 0.950 239 
25 0.5 0.25 487 Appr 0.048 0.24 0.82 0.950 240 

Sim 0.048 0.23 0.76 0.950 265 
25 2.0 0 889 Appr 0.049 0.24 0.74 0.950 267 

Sim 0.052 0.81 1.17 0.948 555 
25 2.0 0.25 1173 Appr 0.049 0.74 0.90 0.950 557 

Table 3. Results for service level fl = 0.99 (R = 1, PD = 10 and c 2 = 1.5) 

A iz L c~ S nw E[WI W>0] c~vI w>o Actual Mean 
fl Stock 

Sim 0.009 0.26 0.72 0.990 136 
5 0.5 0 186 Appr 0.009 0.26 0.72 0.990 136 

Sim 0.009 0.30 0.78 0.990 143 
5 0.5 0.25 193 Appr 0.009 0.30 0.78 0.990 143 

Sire 0.009 0.39 0.75 0.990 179 
5 2.0 0 304 Appr 0.009 0.39 0.76 0.990 179 

Sim 0.010 0.81 1.13 0.990 246 
5 2.0 0.25 371 Appr 0.009 0.75 0.90 0.990 246 

Sim 0.009 0.14 0.77 0.99i 297 
25 0.5 0 547 Appr 0.009 0.14 0.77 0.990 297 

Sim 0.009 0.21 0.95 " 0.990 353 
25 0.5 0.25 603 

Appr 0.010 0.20 0.88 0.990 354 

Sim 0.009 0.19 0.80 0.990 381 
25 2.0 0 1007 

Appr 0.010 0.19 0.80 0.990 382 

Sim 0.012 0.84 1.74 0.988 865 
25 2.0 0.25 1491 Appr 0.010 0.68 0.94 0.990 868 

W e  f o u n d  t h a t  t h e  c o m p u t e r  t i m e  r e q u i r e d  f o r  o u r  ana ly t i c a l  m e t h o d  s tays  w i t h i n  

r e a s o n a b l e  b o u n d s ,  a l t h o u g h  a lo t  o f  g a m m a  in t eg ra l s  h a v e  to  be  e v a l u a t e d .  A s  
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a test we calculated the waiting probability and the first two moments of the 
waiting time for 112 cases. The average runtime on a Personal Computer with 
80386 microprocessor was about 2 seconds. The maximal runtime was about 10 
seconds. The runtime required increases as the ratio S/I~D increases, because 
then a lot of terms of  the infinite sums in the expressions (15) - (17) have to be 
evaluated. So, the runtime gets high in two cases: Firstly in case of  a very high 
service level (when waiting times are irrelevant). Secondly, when the lead time of  
an order is very long compared to the interarrival times of customers. In case the 
runtime gets too high, application of  the PDF-method as suggested by De Kok 
(1990) can be considered. 

7 Conclusions 

In this paper we presented a method to calculate waiting time characteristics in 
an (R, S) inventory system with compound Poisson demand. For the special case 
of  Gamma distributed demand of  customers we can compute explicitly the per- 
formance measures. We compared the approximate expressions to Monte Carlo 
simulation results. The approximations appear to be very accurate. 

We expect that the approach presented in this paper can be applied to related 
models and other performance characteristics. 

Appendix 1 

Calculating Zi(2) for some special cases. 

The function Zi(A) as defined at formula (15) can be calculated easily for 
some specific lead time distributions. In this appendix we will discuss three im- 
portant cases: Deterministic lead times, lead times having a mixture of  Erlang 
distributions and Hyperexponential distributed lead times. 

A. Deterministic Lead Times 

When the lead time of an order is deterministic, we have that 1 - G ( w )  = 1 for 
w < # t  and 0 for w>ltL. It is easy to see that for this case 
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B. Erlang Lead Times 

Consider the case where the lead time is distributed according to a mixture of. 
Erlang distributions with the same scale parameter a, defined by 

n-2 n-1 
1 - G ( t )  = q* ~ ( a t ) J e - a t / j !  + ( l - q ) ,  ~ ( a t ) J e - a t / j !  , 

j=0 1=0 
t_>O . 

This versatile density is often used in practical applications. It has the property 
that its squared coefficient of variation is within the range (0, 1], where the coef- 
ficient of variation Cx of a positive random variable X is defined as the ratio of 
its standard deviation ax and its mean Px: 

Cx= ax/Px . 

Given the mean .t/L and squared coefficient of variation c 2 of the lead time, the 
parameters n, a and q can be solved (see Tijms (1986)). Then we obtain the 
following expression for Zi(2): 

n - 2 ( i ~ j )  2ictJ 
z i (2  ) = ~ * 

j = 0 (2 q- 0~) i+i+ 1 
+(l-q),(i+n-1), 2ia  n-I  

i ( 2 + a )  i+n 

C. Hyperexponential  Lead Times 

Finally we consider lead times having a Hyperexponential distribution, defined 
by 

1 - G ( t ) = q , e - a l t  + ( 1 - q ) , e  -a2t , t>_O . 

The Hyperexponential distribution is applicable for lead times having a large 
coefficient of variation. It has the property that its squared coefficient of varia- 
tion is larger than 0.5. We obtain the following expression for Zi(2): 
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Zi(,~ ) = q* (~ + al)i+l ~- (1 - q)*(A + a2) i+ 1 " 

Appendix 2 

Waiting time probabilities. 

As mentioned in Section 4, it is possible to calculate waiting time probabilities 
in case the demand per customer is Gamma distributed. An expression for 
Pr {W> w} is obtained by substitution of (14) in (11): 

w 

Pr{W> w}= M2(w)/R + R -l * 
M l (w)  

j=O 

i 

j=O 

j=O 

[1-G(t)]dt-R-l* ~ F(i+l)(S) 
i=0 

(~,ME(W));e-ZM:(w)/j!]/~. 

(A(R-  w)) i-Je-Z(R-w)/( i - j ) ! .  Yj(M 1 (w);).) 

( - 2  w)i-JeZW/(i-j)! * Yj(w; ~)1 

where 

M1 (w) = Max {w- R, 0} , 

M2(w ) = M a x{R-  w,0} 

and 

Yj(w; X) = ~ [1 - G(t)] �9 (;. t)~e -~t/i! dt . 
w 

To calculate Pr{W>w),  we need the values Yj(w;2) f o r j  = 1,2 . . . .  and the in- 
tegral 

w [1 -G( t ) ]d t .  
~iCw) 
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In this appendix we deal with the special cases of  deterministic lead times, lead 
times having a mixture of  Erlang distributions and hyperexponential  distributed 
lead times. 

A .  Determinis t ic  L e a d  Times  

For  this case we have 

i 
Yi(w;2) = 2 - 1 .  ~ {(2 w ) J e - ~ W / j !  _ ( 2 # L ) j e - ~ U L / j ! }  , 

j=O 
0<_ w<<_12 L 

and Yi (w;2 )  = 0 otherwise. Further we have that 

w 

S 
MI(w) 

[1 - G(t)] dt = Min {W, lXL} -- Min {M1 (W ),gL} �9 

B. Erlang L e a d  Times  

In case the lead time distribution is a mixture of  Erlang distributions, we can 
show that 

n-2(i~iJl 2i6gj i+j Yi(w;2) = ~, * * 
j=o ( 2 + a )  i+:+1 k=o 

[(4 + a)  w] ke-CA +a)W/k ! 

(i+~-- l )  2iol n-1 i+n-I 
+ ( l - q ) *  . * ( 2 + a ) i + n *  

k=0 

[(4 + a ) w ] k e - ( ~ + a ) W / k t  

and 

w 

[1 - G(t)] dt = 
M 1 (w) 

n - 2  
(n - i - 1) * {[a M1 (w)] i e - aM1 (w)/i ! -- (a w)  i e - a w/i !}/a 

i=0 

n-1  
+ (1 - q )*  ~ { [aM 1 (w)] ie -aMl(w)/i! -- (a w) i e  -a  w/i !}/a. 

i=0 

C. Hyperexponen t ia l  L e a d  T imes  

For Hyperexponential ly distributed lead times we can show that  
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Y~(w; :.) - 
q , ~ i  �9 

(2+a0 i+1 j=0 
[(2 + Ctl) w]Je  -(a+~,)w 

j~ 

(1-q)*2i, ~ [ ( A + a 2 ) w l J e - ( ~ + a g w  
'+1  

(2 + :=0 

and 

w 

Mdw) 
[1 - G ( t )] d t  = q *  [e -a,M~(w) _ e -a '  W]/a I + (1 - q ) , [e -a2M,(w) _ e -a2Wl /a  z. 
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