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Abstract: Conventional rigid and generalpurpose on-chip networks occupy significant logic and wire resources in field-
programmable gate arrays (FPGAs). To reduce the area cost, the authors present a topology customisation technique, using
which on-demand network interconnects are systematically established in reconfigurable hardware. First, the authors present a
design of a customised crossbar switch, where physical topologies are identical to logical topologies for a given application.
A multiprocessor system combined with the presented custom crossbar has been designed with the ESPAM design
environment and prototyped in the FPGA device. Experiments with practical applications show that the custom crossbar
occupies significantly less area, maintains higher performance and reduces the power consumption, when compared with the
general-purpose crossbars. In addition, the authors present that configuration performance and cost can be improved by
reducing the functional area cost in FPGAs. Second, a customisation technique for the circuit-switched network-on-chip
(NoC) is presented, where only necessary half-duplex interconnects are established for a given application mapping. The
presented customised NoC is implemented in FPGA and results indicate that the area is reduced by 66%, when compared
with the general-purpose networks.

1 Introduction

In modern multiprocessor system on chip (MPSoC), the
communication performance of the network interconnects is
increasingly becoming a significant and determining factor
for the overall system performance. It is well known that
crossbar interconnects provide high performance and
reduced traffic congestion. Compared with shared buses, the
performance increases because of the parallel nature of
communication of transactions. The conventional full
crossbar establishes all-to-all interconnects to accommodate
all possible traffic patterns, which are in most cases
unknown. Therefore the advantage of the crossbar is that
any logical topology can be mapped to a physical
interconnect with single-hop latency. Nevertheless, a major
bottleneck of the conventional crossbar is the limited
scalability and high area cost because of the quadratically
increasing amount of wires as the number of ports grows.
Recently, network-on-chip (NoC) as a design paradigm has
been introduced to enhance the scalability and related issues
[1]. NoC can be referred to as a network of crossbars and
achieves the scalability by sharing wires, over which
packets are communicated on a multi-hop basis. The NoC
can be packet-switched and circuit-switched networks. A
typical packet-switched network provides only the best-
effort service. It has problems such as unpredictable delay
and throughput mainly because of blocking of traffic inside
the network. The blocking problem can be alleviated by

virtual channels using multiple queues in routers, while a
router with congestion-handling mechanism occupies
significant on-chip resources. Accordingly, we consider a
circuit-switched NoC. However, many multi-core systems
still incorporate rigid and general-purpose interconnection
networks, where a significant portion of network resources
are typically under-utilised by a given application.
Modern MPSoC requires a short time-to-market and

adaptability for targeted applications. Field-programmable
gate arrays (FPGAs) meet these requirements and are
emerging as a main component in modern SoC platform.
We draw a conceptual diagram of an FPGA comprised of a
functional plane and a configuration plane, as depicted in
Fig. 1. The functional plane contains the configurable logic
blocks (CLBs), the input/output blocks and reconfigurable
interconnects. The configuration plane contains a
configuration controller and a datapath including the
configuration memory cells. The flexibility in the functional
plane is realised by the circuitry in the configuration plane.
Each element in the functional plane is configured by
writing bitstreams onto associated configuration memory
cells in the configuration plane. Moreover, modern FPGAs
have the capability to (dynamically) reconfigure only part
of its resources. This operation is called partial
reconfiguration. When the network intellectual properties
(IPs) occupy significant reconfigurable resources, a
significant portion of the configuration memory (or
bitstream) is allocated for the partial reconfiguration of the
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on-chip networks. In this case, the bitstream size accordingly
increases and the configuration time also increases. Therefore
high area cost in the functional plane incurs decreased
performance and increased cost in the configuration plane.
In other words, the reduction of the functional area cost can
be beneficial from the configuration perspective.
In this work, we reduce the high-cost problem in a crossbar

and a circuit-switched NoC, by constructing on-demand
interconnects in a reconfigurable platform. This work is
motivated by the observation that communication patterns
of different applications represent different logical
topologies. The applications in most cases require only a
small portion of all-to-all communications. Fig. 2 depicts
data flow graphs of realistic applications indicating that the

required topologies are much simpler than an all-to-all
topology. Additionally, Fig. 2 depicts the number of nodes
and the number of links for the task graphs. As an example,
MJPEG{6,14} indicates that the MJPEG application
requires six nodes and 14 links.
In this paper, we present a systematic design, an

implementation and an analysis of our customised
interconnects. The main contributions of this work are:

† We present a table-based topology customisation
technique to implement crossbar switches, using which the
crossbar provides identical physical topologies to arbitrary
topologies that an application requires. The proposed
custom crossbar has been integrated in the automated

Fig. 1 Conceptual diagram of FPGA

Fig. 2 Parallel specifications of practical applications

a MPEG4 {12,26}
b PIP {8,8}
c MJPEG {4,5}
d Wavelet {22,36}
e MJPEG {5,7}
f MJPEG {6,14}
Application{m, n} indicates that the application requires m nodes and n links
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ESPAM design flow [2, 3] and prototyped. Implementation
results for the MJPEG applications show that our custom
crossbar reduces the area by 67% and the power
consumption by 71%, compared to reference crossbar
interconnects.
† To reduce the area cost, we present a customisation
technique for the NoCs. The topology embedding is
conducted, using which the utilised resources of the NoC
and topology tables are determined. Using our table-based
technique, only necessary inter-router and intra-router
network resources are established. As a result, an
experiment indicates that 66% of the area is reduced when
compared with the general-purpose NoC.
† We examine the configuration performance and cost in
FPGAs. A lower bound of the configuration time and
required bitstream sizes are obtained. As a result,
customised interconnects can provide better configuration
performance and cost (66% on average).

The organisation of this paper is as follows. In Section 2,
related work is presented. In Section 3, the design and
implementation of the customised crossbar interconnects are
described. In Section 4, the customised circuit-switched NoCs
are described. Finally, conclusions are drawn in Section 5.

2 Related work

A crossbar consists of a switch module and a traffic controller.
A design of a customised scheduler is described in [4], where
the on-demand scheduler is systematically implemented. In
[5], customised crossbar switch is presented. In this paper,
we further present implementation and prototype results for
realistic benchmarks. Additionally, we present a customisation
technique for (circuit-switched) NoCs. Furthermore, we also
analyse the performance and cost from the configuration
perspective in FPGAs.
In [6, 7], an application-specific crossbar generation is

presented, which is similar to our work in that the area is
reduced. A simulation-based approach is adopted in [6, 7],
where an application traffic tracing is conducted to
synthesise the application-specific topology, which requires
hours of design space exploration time. However, in our
method, on-demand topology information is systematically
extracted in the application specification step. Using the
extracted topology information, variable-sized custom
(shared) arbiters are connected to slaves and different-sized
multiplexers are utilised. Our method allows that any
topology (from a single node to an all-to-all topology) can
be systematically implemented. In [6], the customised
crossbar performs lower than the full crossbar. However,
our method ensures that the customised crossbar does not
perform lower than the full crossbar. Our experiment
indicates that the presented customised crossbar performs
better and reduces power consumption. Additionally, a
multiprocessor system combined with our custom crossbar
was rapidly prototyped on the reconfigurable hardware
using the ESPAM tool chain. Finally, we obtained the cost
and performance in the configuration layer as well as the
functional layer.
Recently, a number of application-specific NoC designs are

proposed. In [8], a topology-adaptive parameterised network
component is presented. The physical topology in [8] is
constructed between packet routers. Our NoC customises
the topology based on the half-duplex routing paths. This
means the intra-router resources in our NoC can be
customised, while each router in [8] is not customised. In

[9], an individually customised switch for NoCs is
presented. In [9], parameters are specified for an individual
multiplexer instance and an arbiter instance. Our work is
similar to [9] in that on-demand topology is configured for
a switch module. Based on topology embedding, our
method further customises the intra-router buffers, as well
as inter-router half-duplex links. In other words, our
customisation allows the systematic removal of un-utilised
buffers and interconnects in an entire circuit-switched NoC.

3 Construction of on-demand topology

Our goal is to design a crossbar in which the physical
topology and logical topology are identical. The physical
interconnects are additionally required to be instantly
switched to adaptively meet the dynamic traffic patterns. In
this section, we describe a system organisation and an
implementation of the presented switch module.

3.1 System overview

In this work, the Kahn Process Network (KPN) model of
computation is considered as a programming model. A KPN
is a network of concurrent processes that communicate over
unbounded first in first out (FIFO) channels and
synchronise by a blocking read on an empty FIFO. The
main advantage is that the synchronisation scheme is
relatively simple. Processors synchronise only with the full/
empty status of the hardware FIFO. Subsequently, a parallel
programmer does not need to explicitly handle the
synchronisation, since the synchronisation is inherently
supported by the hardware. Fig. 3 depicts a simplified

Fig. 3 Simplified system organisation

a Four-node MJPEG application
b Port-mapped system
c System organisation
Bold lines depict that processor P2 reads from a remote FIFO F2
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system organisation for a four-node MJPEG application. In
our system, the crossbar transfers requests (from processors)
and data (from FIFOs). The communication controller in [2]
is used in this work as a common network interface. Fig. 3b
depicts that processor P2 reads from a remote memory FIFO
F2 as represented by the bold line. The (simplified)
customised switch module is depicted in Fig. 3c.
Multiplexers for other ports are not depicted for the sake of
clarity. P2 sends a read-request to the traffic controller and
the traffic controller forwards the request to the
communication controller CC1. The designated FIFO
responds to the traffic controller whether the FIFO is empty
or not. If the FIFO is not empty, the traffic controller
generates control signals to establish a communication line.

3.2 Details of custom switches

We exploit the fact that the logical topology is represented by
a task graph (KPN), in which each node has possibly a
different number of incoming and outgoing links. In this
work, a parameterised multiplexer array has been
implemented for switch modules as a design technique.
Topology-specific and different-sized multiplexers ensure
that demanding interconnects are established. In our work,
a topology table is systematically extracted from the
application specification, such that any topology can be
systematically implemented from single node to all-to-all
topology. The custom crossbar interconnects are
implemented with the following two steps. First, the graph
topology is extracted from the KPN specifications. Each
processor port has a set of incoming and outgoing links, as
depicted in Fig. 4. Table A indicates the number of
incoming links and a list of ports from which the links are
originated (see Fig. 3a). As an example, port p′2 has one
incoming link from port p1, indicating that processor P2 can
possibly read the data located in the FIFOs connected to
port p1. Table B indicates the number of outgoing links and
a list of ports to which the links are directed. As an
example, port p1 has two outgoing links to ports p′1 and p′2,
indicating that either processor P1 or P2 reads the data
located in the FIFOs connected to port p1. Table A and B
are used to systematically implement customised
multiplexer arrays instead of full multiplexers. There are
two types of multiplexers, namely processor-side
multiplexers and FIFO-side multiplexers, as depicted in
Fig. 4. Table A is used to implement processor-side
multiplexers controlled by CTRL_FIFO signals and
Table B is used to implement FIFO-side multiplexers
controlled by CTRL_PROC signals.

Second, the two tables described above are passed to a
VHSIC hardware description language (VHDL) function as
static parameters to actually establish a circuit link. The
function to generate parameterised multiplexers has been
implemented with a simple priority encoder. Once the
request is given the priority, two cycles are required to
establish a circuit link to the designated target port. Once a
link is established, a remote memory behaves as a local
memory until the link is cleared. It can be noted that an N-
port full crossbar contains N-way full multiplexers per port,
while our network contains variable-way multiplexers per
port, depending on the graph topology. In this way, the
implemented custom crossbar provides significantly reduced
area without performance degradation.
It can be noted that our custom crossbars constitute overlay

functional interconnects on top of underlying reconfigurable
FPGA fabrics. In this work, the interconnect is customised
at compile time. The design flow instantiates on-demand
interconnects, based on the extracted traffic information.
The interconnect architecture uses the reconfigurability of
the FPGAs which is an inherent part of the design flow.

3.3 Implementations

In this section, we present implementation results of the
customised crossbars. We collected task graphs of realistic
applications from the five-node H.264 application to the 40-
node audio–video (AV) application [10–21]. Assuming
that a single node is associated with a single crossbar port,
the networks are synthesised, placed and routed using the
Xilinx ISE tool on Virtex-II Pro (xc2vp100-6-1704) target
FPGA. We targeted a Xilinx Virtex-II Pro device while any
reconfigurable hardware can be a targeted device. The other
state-of-the-art FPGA devices (that supports a partial
reconfiguration) have reduced configuration frame size and
increased logic density. However, these devices have minor
architectural difference. The area cost of the functional
plane is typically represented by the occupied logic slices
required by an application. Fig. 5 depicts the area for
different topologies. As a result, our custom crossbar
occupies on average 67% less area than the full crossbars.
The area of our network is not only dependent on the
number of nodes that determines the network size but also
on the network topology.

3.4 Integration in the ESPAM framework
and prototype

Our custom crossbar has been integrated as a modular
communication component in the ESPAM tool chain as
depicted in Fig. 6, in which the MJPEG data flow
specification in Fig. 2c is considered as an example. In
ESPAM, three input specifications are required, namely
application/mapping/platform specification in XML. A KPN
application specification is automatically generated from a
sequential Matlab program using the COMPAAN tool [22].
Each process is assigned to a specific processor in the
mapping specification. The number of processors, the type
of network and the port mapping information are specified
in the platform specification. Fig. 6 depicts how the
customised interconnects can be implemented from the
four-node MJPEG application specification. In the platform
specification, four processors are port-mapped on a
crossbar. From the mapping and platform specifications,
port-mapped logical network topology is extracted (using
the Yapi profiler [23]) as a static parameter and passed toFig. 4 Parameterised switch for MJPEG{4,5} topology in Fig. 3
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ESPAM. Subsequently, ESPAM refines the abstract platform
model to an elaborate parameterised RTL (hardware) and C/

C++ (software) models. Finally, the commercial Xilinx
XPS tool generates the netlist with regard to the parameters
passed from the input specifications and generates a
bitstream for the FPGA prototype board to check the
functionality and the performance.
Using the ESPAM tool chain, an actual system has been

prototyped onto the ADM-XPL FPGA board [24]. We
experimented on an MJPEG encoder application that
operates on a single image with size 128 × 128 pixels. We
have experimented with the three alternative task graphs in
Figs. 2c, e and f, where our network provided the on-
demand topologies. The implemented system is
homogeneous in that each node contains a 32-bit
MicroBlaze processor. Fig. 7 depicts the prototype results,
in terms of performance and power consumption. Fig. 7a
depicts the system cycles for different topologies. The
system cycles decrease as the number of processors
increase. When the system incorporates six-node network,
the system performs 4.6 times better than a sequential
processing. It can be observed that the topology plays an
important role for the system performance. Fig. 7b depicts a

comparison of power consumption. We use XPower tool
[25] to measure the dynamic power consumption. As a
result, the custom crossbar reduces the power by 71%
compared to the full crossbar. This is because of the fact
that the signal switching activity occurs only for on-demand
interconnects. In addition, the capacitive load of the custom
switch is much less than the loads of the full switch.
In this experiment, we compared the custom crossbar and

full crossbar. In [2, 3], it is reported that the ad hoc point-
to-point interconnects perform better than the crossbar for a
particular application. It can be noted that the ad hoc point-
to-point interconnects are implemented for only a particular
single application. For different applications, the ad hoc
interconnects should be (manually) re-designed. However,
our customisation methodology is relatively more
systematic such that the customised crossbar is generated
for any application, without changing the crossbar
implementation itself.

4 Customised circuit-switched NoC

As described earlier, when the general-purpose NoC is
mapped onto FPGA fabrics, the main drawback is the
increased area cost in the functional layer and the increased
configuration overheads. In this work, considering Æthereal
NoC [26] as an example, we apply the topology
customisation technique for NoCs. The guaranteed
throughput Æthereal NoC operates as a virtual single-hop
crossbar with a physically pipelined transmission [26]. In
this section, to reduce the high area cost in the general-
purpose NoCs, we present a customised circuit-switched
NoC (CCSN) targeting the reconfigurable fabric.

4.1 Customisation method and analysis

Our main method is to establish only necessary network
resources. If two modules do not communicate, the
methodology removes the corresponding I/O ports of the
switch, the buffers and the corresponding links. In fact,
logic-synthesis tool finds unconnected ports and optimises
the un-connected resources away. It can be noted that logic
synthesis tool automatically optimises them away only
when the un-connectivity is properly specified. We present
how to specify the un-connectivity (using the uni-
directional topology information) to guide the logic
synthesis tool to optimise away the un-connected resources.

Fig. 5 Implementation results of custom crossbar switches

Fig. 6 Integration of custom crossbar in the ESPAM [2, 3] design

flow
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The presented technique can be generally applied to any type
of network including circuit-switched NoC with any
topology. Unless the uni-directional topology information is
properly specified, the network resources will be established
after the logic synthesis step, even when the established
network resources are not utilised by an application.
We consider the non-customised two-dimensional (2D)-

mesh circuit-switched-network (CSN) as a reference. Fig. 8
depicts an example. Fig. 8a depicts a logical topology of
a five-node MJPEG application. Fig. 8b depicts an
embedding of the logical topology on the 2 × 3 2D-mesh
topology. The logical topology is embedded in a way that
the dilation is minimised. Subsequently, the maximum
dilation for the MJPEG application is 2, (e.g. from P1 to
P3). Fig. 8c depicts the corresponding physical 2D-mesh
CSN after the topology embedding, where each tile
corresponds to the router-IP pair. General-purpose M × N
2D-mesh router network has (6MN2 2M2 2N ) inter-router
half-duplex links. A router internally accommodates
network resources such as buffers, intra-router links and
associated control logic. We define the switch wires inside

a router as the intra-router links. As an example, the three-
port general-purpose router R5 in Fig. 8c establishes six
links around the router, internally three buffers, 9(¼ 3 × 3)
intra-router links. In this way, total amount of network
resources are calculated. Table 1 shows the number of
network resources for different-sized 2D-mesh general-
purpose router networks. Note that the topology is
customised for both request and response channels.
The CCSN is obtained using the table-based customisation

technique as described in the following. A logical connection
consists of two channels, a request and a response channel.
We assume that the XY-routing is used for both of the
request and response channels. First, the path utilisation
table is extracted for each port in router instances after the
topology embedding. Fig. 9a depicts the connectivity graph
and the corresponding topology table. The topology table
contains the utilised connectivity information. As an
example, the local port in the router R5 is connected to two
ports, specifically port index 1 and 3. This is represented by
(2, 1, 3, 0, 0, 0). The router R5 requires totally three intra-
router links (south � local, local � west, local � south

Fig. 8 Customisation of circuit-switched NoCs

a Logical topology
b Topology embedding
c Topology-embedded physical network
d Router R5 before customisation
e Customising router R5
f Physical network after topology customisation
g Router R5 after customisation

Fig. 7 Prototype result of custom crossbars for MJPEG applications

a Performance of different-sized systems
b Power consumption of different crossbars for 6-node MJPEG {6,14} application
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links), instead of 32 links. In this way, the table for the entire
network is represented as the 3D array. Second, unnecessary
network resources are eliminated in each router using the
extracted topology table. Fig. 9b depicts how
the multiplexer is customised. For a single multiplexer,
we define a record type (MuxTableRecordType) that
contains required an input port list and a selected input.
Additionally, we implement a function GenerateCustom

Mux that takes the (record type) topology table and returns
a selected input. The customised multiplexers are instantiated
using the generate statements in VHDL. As an example,
Fig. 8d depicts the customised router R5. Moreover,
unnecessary buffers are also eliminated. As an example, two
buffers are required for the south, local ports in the router R5.
Figs. 8f and g depict how the Æthereal router architecture is
customised for the router R5 using the topology table.

Table 1 Resources in general-purpose 2D-mesh router network

2D-mesh 2 × 3 3 × 3 3 × 4 4 × 4 5 × 5

number of routers three-port 4 4 4 4 4

four-port 2 4 6 8 12

five-port 0 1 2 4 9

inter-router links 26 42 58 80 130

intra-router links 68 125 182 264 453

number of buffers 20 33 46 64 105

Fig. 9 Customisation method

a Topology table
b Implementation
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Consequently, the CCSN is derived and depicted in Fig. 8e.
Furthermore, the unnecessary inter-router links and the
associated control logic are also eliminated, because these
resources are logically/physically disconnected. As an
example, one inter-router link to the west port is optimised
away. Table 2 shows the utilised resources of the CCSN for
the MJPEG{5,7} topologies. This indicates that the CCSN
utilises significantly less resources of the general-purpose CSN.
Similar to this case study, we obtained the CCSN from the

CSN for the benchmark topologies [10–21]. To do this,
logical topologies with n-nodes are embedded onto

��

n
√⌈ ⌉

×
��

n
√⌈ ⌉

2D-mesh. As a result, on average 70% of
buffers, 28% of the intra-router links and 70% of inter-
router links are utilised by the applications as depicted in
Fig. 10. It can be noted that our customisation method can
be applied to the general CSN with any topology. Our
topology construction method is similar to [9] in that the
switch wires are customised for individual routers. In [9],
parameters are specified for an individual multiplexer
instance and an arbiter instance. In our work, a topology
table is extracted from the topology embedding. Our
method also customises the intra-router buffers as well as
inter-router half-duplex links. In other words, our table-
based customisation allows the systematic removal of un-
utilised buffers and interconnects in an entire multi-hop NoC.
In many cases, NoC is used for flexibility and scalability

issue in a general-purpose system. It can be seen that we
propose to construct an ad hoc interconnection starting
from an NoC paradigm. Additionally, the proposed method
can be well adapted for data-oriented application. If no
additional path can be used in NoC owing to the
simplification, we might consider that it would be better to
use a dedicated interconnect. However, even though NoC is
simplified (such that un-utilised NoC resources are not
established), we consider that maintaining an NoC
paradigm is important because a dedicated point-to-point
interconnects become limited as technology scales and
system becomes complex. The complexity of NoC can be
reduced using the presented technique, even when

applications are managed for hundreds of components as far
as there are network resources which are un-utilised by the
traffic. Either in the general-purpose system and
application-specific system, there can be un-utilised network
resources provided that the routing paths for traffics are
typically statically determined.
We additionally conduct an analysis of the cost reductions

(or the marginal cost). We define the marginal cost as the cost
of the additional inputs needed to produce additional unit of
output. As described earlier, the un-connectivity is
represented using the uni-directional topology table. In our
method, the topology table is immediately extracted from
the application specification step and the actual removal is
performed by the logic synthesis tool. Therefore there is no
additional increase of the cost during the removal
procedure. The cost reductions when we remove ‘1 buffer
slot’ and ‘1 port of an output multiplexer’ are:

† Assuming that one 32-bit buffer slot is mapped onto 32
look-up-tables (LUTs) in an FPGA, the cost reductions for
‘1 buffer slot’ are (i) 32 LUTs that are programmed as ‘the
buffer slot’, (ii) wire segments between those LUTs, (iii) all
the network resources that are driven by the LUTs and (iv)
all the network resources that drive the LUTs. It can be
noted that a single LUT has 1-bit output in our targeted
Xilinx Virtex-series FPGAs.
† Assuming that one 32-bit input and N 32-bit output
multiplexer is mapped onto 32 × N LUTs, the cost
reductions for ‘1 port of output multiplexer’ are (i) 32
LUTs programmed as ‘1 port of output multiplexer’, (ii)
wire segments between those LUTs, (iii) all the network
resources that are driven by the LUTs and (iv) all the
network resources that drive the LUTs.

4.2 Implementation and experiments

Recent multi-core NoCs in the deep-submicron technology
occupy less than 15% of chip area [27] even after using
significant buffering resources. An NoC is indeed a small
part of the chip taking mostly advantage of the ample wire
resource. NoCs on FPGA and application specific
integration circuit (ASIC) have different implications. In
FPGAs, a logical NoC is required to be mapped onto
physically fine-grained reconfigurable point-to-point pre-
established fabrics [28]. Accordingly, the on-chip networks
occupy significant logic and wire in FPGAs [29–31]. It is
reported in [30] that FPGA implementations occupy 35
times more area, operate 3.5 times slower and use 14 times

Table 2 Comparison between CSN and CCSN for MJPEG {5,7}
topology

2 × 3 2D-mesh CSN CCSN Utilisation (%)

inter-router links 26 22 85

intra-router links 68 27 40

number of buffers 20 17 85

Fig. 10 Network resource utilisation of CCSN relative to CSN
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more energy. Another study in [31] reports that the average
area ratio of 80. We conduct two experiments to analyse the
cost of NoCs.
First, to compare the area cost in the functional plane, the

CSNs and CCSNs are implemented for the benchmark
topologies. Fig. 11a depicts the area cost. The CSN
occupies significant logic resources. As an example, 3 × 4
2D-mesh CSN occupies 8450 slices and 19% of total logic
resources in the xc2v2p100 device, which is the largest
Virtex-II Pro device [25]. For comparison, the CCSN for
MWD{12,13} occupies 2161 slices and reduces the area by
75% of logic slices. In Fig. 11a, the CCSNs reduce the area
of the CSNs by 66% on average for the benchmark
topologies [10–21].
Second, in the configuration plane, we derive the

configuration cost in terms of the bitstream size or
the configuration memory size. As discussed in Section 1,
the configuration performance and cost can be improved by

reducing the functional area cost. To analyse the
configuration overhead of the networks, we derive a lower
bound configuration time based on the utilised functional
area. The configuration time is determined by the required
number of frames. The required number of frames varies
with placement and routing policies. However, the lower
bound of the configuration time can be derived from
utilised logic slices. Assuming that the utilised logic slices
are maximally packed into each frame, the lower bound of
the number of frames can be derived as ⌈(number of
utilised slices/number of slices per CLB × number of CLBs
per column)⌉ × (number of frames per column). The ceiling
operator is used because of the fact that the CLB column is
the basic coherent unit for the configuration. As an
example, 3 × 4 2D-mesh CSN occupies 8450 slices and
requires at least ⌈(8450 slices) four slices per CLB × 80
CLBs per column⌉ × (22 frames per column) ¼ 594
frames. Since a single frame requires 16.5 ms [¼ (206

Fig. 11 Area and configuration overheads of CSN and CCSN in Virtex-II Pro xc2vp100

a Area (number of slices)
b Bitstream size and configuration time of CSN
c Bitstream size and configuration time of CCSN
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words × 32 bits/8 bit interface × 50 MHz)], the
configuration time is derived by 594 × 16.5 ¼ 9801 us. The
required bitstream size is derived by (number of
frames) × (number of bits per frame). A single frame in
Virtex-II Pro contains 6592 bits (206 words and each word
is 32 bits wide [25]). Therefore the lower bound of the
required bitstream size is 3915 648 bits (¼ 594
frames × 6592 bits). For comparison, the CCSN for
MWD{12,13} occupies 2161 slices. Therefore the minimum
number of required frames is ⌈(2161 slices/4 slices per
CLB × 80 CLBs per column)⌉ × (22 frames per
column) ¼ 154 frames. The configuration time is derived
by 154 × 16.5 ¼ 2541 ms. The lower bound of the
required bitstream size is 1015 168 bits (¼154
frames × 6592 bits), which is 74% less than the 3 × 4 2D-
mesh CSN. Fig. 11c depicts the lower bound of bitstream
sizes and the configuration time of the CCSN for our
benchmark topologies. As a result, the lower bound of the
configuration overheads of CCSN is 66% less than
the CSN. It can be noted that the lower bound of the
configuration time and the bitstream size are directly
proportional to the area cost in the functional plane. As the
required resources in the functional plane increases, the
required resource in the configuration plane accordingly and
proportionally increases. Therefore our experiment indicates
that the CCSN can significantly reduce the area cost as well
as the configuration overheads compared to the CSN.

5 Conclusions

We presented topologically customised circuit-switched
interconnects and the experiments in FPGAs. We showed
that the custom crossbar can be implemented using
parameterised multiplexer arrays. Multiprocessors
interconnected with our custom crossbar were implemented
and verified with the automated ESPAM design flow. We
extended the topology customisation method to derive a
customised circuit-switched NoC. The presented
interconnects occupy significantly less area than
conventional general-purpose interconnects. Additionally,
we presented that the configuration performance and cost
can be accordingly improved by reducing the functional
area cost. By utilising the logical topology as a parameter,
the network is adapted to a given application without
modifying the network implementation. Our customised
interconnects efficiently utilise the bandwidth by
establishing on-demand on-chip resources.
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