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Abstract—MK-3 is a new proprietary authenticated encryption

algorithm based on the duplex sponge construction. To provide

security autonomy capability, such that different users can have

sovereign variants of the encryption algorithm, MK-3 is designed

to be customizable. Two levels of customization are supported,

Factory Customization and Field Customization. Customization

is done by modifying functions and function parameters in the

algorithm to yield differing cipher functions while preserving the

algorithm’s security. This paper describes the MK-3 algorithm’s

customization options and discusses results of testing designed to

verify security autonomy among the customized variants.

I. INTRODUCTION

The MK-3 authenticated encryption algorithm [1][2] uses

the duplex sponge construction [3]. As such, the algorithm’s

design centers on a bijective function that maps a 512-bit input

state to a 512-bit output state. The bijective function consists

of several rounds: 10 rounds for a 128-bit key, 16 rounds for

a 256-bit key. Each round consists of a substitution layer with

16×16-bit S-boxes, a bit permutation layer, a mixer layer, and

a round constant addition layer.

The MK-3 algorithm is intended to be customizable. Each

customized version must yield a different encryption algorithm

that is not interoperable with any other version, while still

being as secure as the original algorithm analyzed by Kelly

[1].

This paper’s novel contributions are threefold. First, whereas

the original paper [1] described just the basic MK-3 algorithm,

this paper describes modifications to the basic algorithm’s

design to implement customized versions of the algorithm.

Second, this paper analyzes the cryptographic security of cus-

tomized versions of the algorithm. Third, this paper analyzes

whether customized versions of the algorithm are noninterop-

erable with each other and with the original version.

The MK-3 algorithm supports two levels of customization:

Factory Customization and Field Customization. The Factory

Customization capability allows different customized encryp-

tion algorithms to be provided to various customers. The user

cannot affect this level of customization. Rather, settings are

specified for a customized version, after analysis to ensure

that the customized version remains secure. These settings are

stored in firmware and are loaded into the encryption circuitry

at power-on. Factory Customization is implemented in any or

all of the bijective function layers.

Fig. 1. MK-3 duplex sponge construction

The Field Customization capability allows the user to cus-

tomize the encryption algorithm further after power-on. These

settings are stored in a 128-bit register that can be changed at

any time during operation (except in the middle of a message).

All possible register values must yield different, fully secure

customized algorithms. Field Customization is implemented in

the bijective function’s mixer layer.

This paper is organized as follows. Section II describes

the MK-3 authenticated encryption algorithm. Section III

describes the requirements for military security autonomy

among different users of a cryptographic algorithm. Section IV

describes how MK-3’s Factory Customization and Field Cus-

tomization are implemented and explains why customized ver-

sions are still secure. Section V reports results of experiments

to determine whether different customized MK-3 versions are

in fact noninteroperable. Section VI offers concluding remarks.

II. MK-3 AUTHENTICATED ENCRYPTION ALGORITHM

MK-3 is a new authenticated encryption algorithm that

meets government and military security requirements. It is

based on a simplified version of the duplex sponge construc-

tion [3]. Refer to Fig. 1. Padding and field separation are

applied at higher levels in the system. For this reason, it

is sufficient to specify only the MK-3 state and the MK-3

bijective function F.

The MK-3 state size is 512 bits, consisting of a 128-bit rate

portion R and a 384-bit capacity portion C. With this rate and

capacity, MK-3 can support key sizes of 128 bits and 256 bits.

These are the NIST recommended symmetric key sizes [4].



Fig. 2. MK-3 round function; each line is one 16-bit word

The MK-3 bijective function consists of a number of iterated

rounds: 10 rounds for a 128-bit key, 16 rounds for a 256-bit

key. Fig. 2 shows the round function, comprising four steps:

the Substitution Step (S), the Bitwise Permutation Step (π),

the Mix Step (M), and the Add Round Constant Step (⊕).

The 512-bit state is partitioned into thirty-two 16-bit words,

and operations are applied to these words.

The first operation in the MK-3 round function is the

Substitution Step (S). The substitution step is a bricklayer per-

mutation that uses 32 identical, bijective 16 × 16-bit S-boxes.

This step is the main source of confusion within the cipher. It

is the only nonlinear step, as is typical with most substitution-

based symmetric key algorithms [5].

The second operation is the Bitwise Permutation Step (π).

Bitwise permutations are easily implementable in hardware via

a simple rerouting of wires. Compared to a permutation on the

words of the state, a bitwise permutation intuitively provides

much better diffusion. The bitwise permutation step is the main

source of long-range diffusion (i.e., across the entire state) in

the algorithm.

The third operation is the Mix Step (M). The purpose of the

mix step is to provide local diffusion (i.e., across two words)

and to increase the linear and differential branch numbers

of a round from two to three. MK-3 uses a mixer based

on multiplication by a 2×2 matrix in GF(216) modulo the

irreducible polynomial p(x) = x16
+ x5
+ x3
+ x2
+1. The mixer

takes a vector of two input words A and B and multiplies the

vector by an invertible matrix, producing a vector of output

words A′ and B′:
(

A′

B′

)

=

(

1 x

x x + 1

)

×

(

A

B

)

The final operation is the Add Round Constant Step (⊕).

A constant 512-bit value is added to the state using bitwise

exclusive-or. To disrupt symmetry and prevent slide attacks, a

different round constant is added in each round.

III. MILITARY SECURITY AUTONOMY

Sovereign cryptography refers to the capability that allows

cryptography users to install their own cryptographic algorithm

into a product after delivery and without U.S. Government or

radio vendor involvement. This provides the customer with

the capability of “Security Autonomy.” Security Autonomy

is defined as the ability to manage the security posture of

an information system in a way that is independent of any

third party. This not only includes independent operational

management of the system, but also independent design and

maintenance of the security elements of the system.

The most significant challenge to providing sovereign cryp-

tographic capability is policy related. The U.S. Department

of State export policy regulates the international distribution

of military-grade cryptographic technologies and specifically

limits sovereign cryptography approaches in military commu-

nications equipment. Development and economic feasibility,

deployment logistics, system security verification and system

reliability testing present additional challenges.

For military applications, a Security Autonomy capability

can also be provided by supplying users with their own

customized versions of a proprietary cryptographic algorithm.

The MK-3 cryptographic algorithm can be customized in

various ways. This capability is provided with two types

of customization, namely Factory Customization and Field

Customization.

Factory Customization is substantial in that the structure and

major components of the cryptographic algorithm are modi-

fied. One disadvantage of Factory Customization is that human

error can cause degradation of the cryptographic system’s

security. MK-3 employs an encryption/decryption algorithm

structure that can be customized under well understood design

constraints. Proper Factory Customization and verification al-

lows a custom algorithm variant to be provided with maximum

security.

Users might also want to restrict knowledge of their own

variant of a cryptographic algorithm. To this end, the MK-3

design allows the algorithm to be customized in the field.

Field Customization allows users to make changes to the

cryptographic algorithm via a tool after the device is provided

to them. All possible parameters that can be input into the

system via the tool to provide the Field Customization are

equally valid, and none degrade the cryptographic strength

of the algorithm. In addition, parameters for this mode of

customization are known only to the user.

IV. MK-3 CUSTOMIZATION IMPLEMENTATION

Customized versions of the MK-3 algorithm are imple-

mented by altering the round function in specific ways de-

signed to preserve the algorithm’s security while ensuring

that different customized versions of the algorithm are not

interoperable. Factory customizations affect any or all steps of

the round function. Field customizations affect the Mix Step.

A. Factory Customization

The MK-3 round function is designed to be customizable.

The user cannot change the customized features once they

are installed at the factory. The parameters and functions are

designed to preserve the algorithm’s security; consequently,



each potential group of parameters and functions must be

analyzed to ensure they meet security requirements.

1) Substitution Step Factory Customization: The MK-3

S-box computes the following function of the 16-bit input α:

S(α) = A · α−1
+ b

The input is treated as an element of GF(216)/ f (x), where

f (x) is a degree-16 irreducible polynomial; the inverse α−1

is computed; the inverse is treated as a 16-bit vector and an

affine transform is applied, yielding the 16-bit output. The

affine transform is defined by a 16×16-bit invertible matrix A

and a 16-bit vector b. The MK-3 paper [1] specified an S-box

with a particular irreducible polynomial f (x), matrix A, and

vector b.

The MK-3 security analysis in [1] was based on these

characteristics of the S-box:

• No fixed points, where S(α) = α.

• No opposite fixed points, where S(α) = bitwise comple-

ment of α.

• Maximum differential probability ≤ 2
−14.

• Maximum linear bias ≤ 2
−8.

However, the security analysis did not assume any particular

values for the irreducible polynomial f (x), the matrix A, or the

vector b. Therefore, the Substitution Step can be customized,

without affecting the algorithm’s security, by changing any or

all of f (x), A, and b, yielding a different S-box mapping.

A tool set is used to create a customized S-box. Given a

degree-16 irreducible polynomial f (x), the tool generates a

random invertible matrix A and a random vector b; analyzes

the resulting S-box to verify that it meets the preceding

security requirements; and repeats if necessary with different

A and b until the S-box is suitable.

2) Bitwise Permutation Step Factory Customization: The

Bitwise Permutation Step in [1] rearranges the 512 bits of the

state via this formula:

π(x) = 31x + 15 (mod 512)

where x is the input bit position (0 ≤ x ≤ 511) and π(x) is

the output bit position (0 ≤ π(x) ≤ 511).

The MK-3 security analysis in [1] was based on these

characteristics of the bitwise permutation:

• Each output bit of a given S-box goes to a different

mixer’s input bit.

• The bitwise permutation has no fixed points, where

π(x) = x.

• The order of each bit position is greater than the number

of rounds in the bijective function.

As the bijective function goes through multiple rounds,

each bit position in the input state is repeatedly permuted

by applying the above formula. Repeatedly applying the

permutation formula to a bit position—that is, computing

π(π(. . . (π(x))))—eventually yields the same bit position as

the original x. The “order” of a bit position is the number of

repetitions needed for a bit to return to its original position.

A bit that returns to the same position during the rounds of

the bijective function is a weakness that an attacker might

be able to exploit. (For example, an attack on the PRESENT

block cipher was successful due in part to its round function’s

bitwise permutation, which has fixed points and small orders

[6].)

Any bitwise permutation formula that meets the preceding

security requirements may be used without degrading the

security of MK-3. Kelly [1] identified 384 suitable permutation

formulas. The factory customizes the Bitwise Permutation Step

by choosing one of these formulas.

3) Mix Step Factory Customization: As will be seen, Field

Customization of the Mix Step uses a fixed 256-element

lookup table. Each table element gives the coefficients of a dif-

ferent degree-16 irreducible polynomial. The table’s contents

are established during Factory Customization. The factory cus-

tomizes the table by choosing 256 different polynomials from

among the 4080 possible degree-16 irreducible polynomials.

4) Add Round Constant Step Factory Customization: The

Add Round Constant Step exclusive-ors a 512-bit constant into

the state. Each round uses a different round constant. Kelly [1]

specified particular round constants.

The security of MK-3 depends on these characteristics of

the round constants:

• Every round constant is different.

• There is no structure in the round constants.

However, the security analysis does not depend on the

particular values of the round constants. Therefore, the Add

Round Constant Step can be customized, without affecting the

algorithm’s security, by choosing different round constants that

meet the preceding requirements.

A recommended method for creating round constants is

to apply a cryptographic hash function, such as SHA-512

or SHA-3-512, to compute the digests of successive counter

values starting from an arbitrary value, and to use the digests

as the round constants.

B. Field Customization

MK-3 includes a 128-bit Field Customization Register

(FCR) that performs additional customization beyond the

factory installed function and parameter settings. The FCR’s

contents may be changed at any time during operation. All of

the possible FCR values yield fully secure, yet noninteropera-

ble customized versions of the MK-3 algorithm. The user can

therefore pick any FCR value without needing to analyze the

security of the resulting version.

As previously stated, each mixer in the Mix Step treats its

inputs as field elements in GF(216), that is, polynomials. The

mixer’s outputs A′ and B′ are computed from its inputs A and

B by these formulas:

A′ = A + xB

B′ = x A + xB + B

The mixer’s output computations involve field multiplications.

A GF(216) field multiplication is the polynomial product of

the field elements modulo an irreducible degree-16 polynomial



Fig. 3. MK-3-based authenticated stream cipher, 128-bit key

p(x). Kelly [1] specified the mixer’s irreducible polynomial as

p(x) = x16
+ x5

+ x3
+ x2

+ 1.

However, the security analysis does not depend on the par-

ticular choice of the mixers’ irreducible polynomial. Choosing

a different irreducible polynomial will alter the output values

computed by the above formulas, thereby altering the MK-3

round function’s mapping, without affecting its security.

The 128-bit FCR is partitioned into sixteen 8-bit sections,

one section for each of the sixteen mixers in the round func-

tion. Each mixer’s circuitry uses the value of the corresponding

FCR section as an index into the 256-element irreducible

polynomial table described previously to obtain the irreducible

polynomial coefficients for that mixer. Note that different

mixers can be made to use different irreducible polynomials.

Thus, changing the FCR setting in the field changes the

mapping calculated by each mixer, yielding a customized

version of the MK-3 algorithm. Because the FCR setting

picks each mixer’s polynomial out of a factory-specified table

of irreducible polynomials, every possible FCR setting is

guaranteed to yield a valid mixer mapping.

V. MK-3 SECURITY AUTONOMY TESTING

To evaluate whether Field Customization yields noninter-

operable versions of MK-3, we created two software imple-

mentations of an MK-3-based authenticated stream cipher,

including the FCR. Fig. 3 depicts the first implementation,

which inputs a 128-bit key and a 128-bit nonce and outputs

a 128-bit keystream (KS) and a 128-bit tag. Fig. 4 depicts

the second implementation, which inputs a 256-bit key (split

into two 128-bit chunks) and a 128-bit nonce and outputs

a 128-bit keystream and a 128-bit tag. The keystream and

tag are what would be obtained by encrypting an all-zero

plaintext block. (While we used a single keystream block in

our tests, multiple keystream blocks might be generated when

encrypting an actual message.)

We tested the original MK-3 version from [1] as well as ten

factory-customized versions. The customized versions altered

the S-box’s A matrix and b vector, the Mix Step’s table of

irreducible polynomials, and the round constants, as described

previously.

To test each factory-customized version, we applied various

key, nonce, and FCR inputs (described below), we observed

the keystream and tag outputs, and we used statistical tests

Fig. 4. MK-3-based authenticated stream cipher, 256-bit key

to determine whether the outputs showed random behavior

or nonrandom behavior. Of course, a secure cipher should

generate random outputs.

The statistical tests took the form of odds ratio uniformity

tests on a series of outputs (keystream, tag) resulting from

a series of differing inputs (key, nonce, FCR). The odds

ratio uniformity test uses the methodology of Bayesian model

selection [7]. The odds ratio uniformity test calculates the

logarithm of the posterior odds ratio of two hypotheses: H1,

that the series of output values obeys a discrete uniform

distribution, and H2, that the series of output values does

not obey a discrete uniform distribution. If the log odds

ratio is positive, then H1’s probability is greater than H2’s

probability, indicating that the output series is random. Vice

versa, if the log odds ratio is negative, then H2’s probability is

greater than H1’s probability, indicating that the output series

is nonrandom. For detailed information about the odds ratio

uniformity test, see Appendix B of [8].

We performed four kinds of statistical tests:

• Avalanche Test (AVAL). We inputed an all-zero key, an

all-zero nonce, and an all-zero FCR, and we observed

the keystream and tag outputs. Then we applied a series

of inputs, each of which differed from the original input

by flipping a single bit in the key, nonce, or FCR,

and we observed the series of differences (exclusive-ors)

between the resulting outputs and the original outputs. We

applied odds ratio uniformity tests to detect nonrandom

behavior in the series of differences. These tested whether

flipping a single input bit resulted in completely different

(random) outputs.

• Key Varying Difference Test (KVDT). We inputed an all-

zero key, an all-zero nonce, and an all-zero FCR, and we

observed the keystream and tag outputs. Then we applied

a series of values to the key input while keeping the nonce

and FCR the same. The key inputs formed a Gray code

sequence, in which successive keys differed in just one bit

position. We observed the series of differences (exclusive-

ors) between the each output and the previous output. We

applied odds ratio uniformity tests to detect nonrandom

behavior in the series of differences. These tested whether

a small change to the key resulted in completely different

(random) outputs.



TABLE I
NUMBER OF NONRANDOM ROUNDS FOR EACH TEST

AND MK-3 VERSION, 128-BIT KEY

Version AVAL KVDT NVDT FVDT

Original 2 1 2 1
Custom 1 2 1 2 3
Custom 2 2 1 2 3
Custom 3 2 1 2 1
Custom 4 2 1 2 3
Custom 5 2 1 2 1
Custom 6 2 1 2 4
Custom 7 2 1 2 3
Custom 8 2 1 2 1
Custom 9 2 1 2 1
Custom 10 2 1 2 4

• Nonce Varying Difference Test (NVDT). This was the

same as the Key Varying Difference Test, except the

nonce was varied rather than the key. These tested

whether a small change to the nonce resulted in com-

pletely different (random) outputs.

• FCR Varying Difference Test (FVDT). This was the same

as the Key Varying Difference Test, except the FCR

was varied rather than the key. These tested whether a

small change to the FCR resulted in completely different

(random) outputs.

We tested with the bijective function reduced to one round,

two rounds, and so on up to the full number of rounds.

With just one round, the outputs were nonrandom (the log

odds ratio was negative). As the number of rounds increased,

eventually the outputs became random (the log odds ratio was

positive). This analysis determines the number of rounds that

are required to ensure that the outputs’ behavior is random.

Table I gives the results of the AVAL, KVDT, NVDT, and

FVDT tests on the original version and the ten customized

versions of the MK-3-based stream cipher with a 128-bit key.

The table reports the number of nonrandom rounds detected.

For example, the AVAL test result says that when the bijective

function is reduced to one or two rounds, the test reported

nonrandom behavior in the keystream and tag outputs; that is,

the values in a series of outputs were not uniformly distributed.

With the bijective function reduced to three or more rounds,

the test reported random behavior in the outputs. As the full

number of rounds is 10 for a 128-bit key and eight rounds

exhibited random output behavior, the “randomness margin”

for this test is 8/10 or 0.80. The worst-case randomness margin

over all the tests is 0.60.

Similarly, Table II gives the results of the AVAL, KVDT,

NVDT, and FVDT tests on the original version and the ten

customized versions of the MK-3-based stream cipher with a

256-bit key. The full number of rounds is 16 for a 256-bit key;

thus, the worst-case randomness margin is 14/16 or 0.88.

Returning to the original question, whether Field Cus-

tomization yields noninteroperable MK-3 versions: The AVAL

and FVDT results show that when the FCR value is changed,

the output before the change and the output after the change

bear no relationship to each other; more precisely, the differ-

TABLE II
NUMBER OF NONRANDOM ROUNDS FOR EACH TEST

AND MK-3 VERSION, 256-BIT KEY

Version AVAL KVDT NVDT FVDT

Original 1 1 2 2
Custom 1 1 1 2 2
Custom 2 1 1 2 2
Custom 3 1 1 2 1
Custom 4 1 1 2 2
Custom 5 1 1 2 1
Custom 6 1 1 2 2
Custom 7 1 1 2 2
Custom 8 1 1 2 1
Custom 9 1 1 2 1
Custom 10 1 1 2 2

ence is a uniformly distributed random variable. Therefore,

the ciphertexts and tags produced by one field-customized

MK-3 version cannot be successfully decrypted by another

field-customized MK-3 version; in other words, the versions

are noninteroperable. This holds true both for 128-bit keys and

256-bit keys, provided the bijective function computes the full

number of rounds (10 or 16, respectively).

The statistical tests also show that the MK-3 stream cipher

generates unrelated keystreams and tags when the key or the

nonce is changed. A secure cipher requires this behavior.

VI. CONCLUSION

We have described how changing various parameters in the

MK-3 encryption algorithm yields different noninteroperable,

yet fully secure, customized versions. Factory Customization

provides a sovereign cryptography capability to each MK-3

customer; the factory ensures that the customized version is

as secure as the original version. Field Customization allows

each individual user to customize the algorithm further without

needing to do a security analysis. Statistical tests showed that

Field Customization does yield noninteroperable versions.
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