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CUSTOMIZED TRAINING WITH AN APPLICATION TO MASS
SPECTROMETRIC IMAGING OF CANCER TISSUE

BY SCOTT POWERS1, TREVOR HASTIE2 AND ROBERT TIBSHIRANI3

Stanford University

We introduce a simple, interpretable strategy for making predictions on
test data when the features of the test data are available at the time of model
fitting. Our proposal—customized training—clusters the data to find training
points close to each test point and then fits an �1-regularized model (lasso)
separately in each training cluster. This approach combines the local adap-
tivity of k-nearest neighbors with the interpretability of the lasso. Although
we use the lasso for the model fitting, any supervised learning method can
be applied to the customized training sets. We apply the method to a mass-
spectrometric imaging data set from an ongoing collaboration in gastric can-
cer detection which demonstrates the power and interpretability of the tech-
nique. Our idea is simple but potentially useful in situations where the data
have some underlying structure.

1. Introduction. Recent advances in the field of personalized medicine have
demonstrated the potential for improved patient outcomes through tailoring med-
ical treatment to the characteristics of the patient [Hamburg and Collins (2010)].
While these characteristics most often come from genetic data, there exist other
molecular data on which to distinguish patients. In this paper we propose cus-
tomized training, a very general, simple and interpretable technique for local re-
gression and classification on large amounts of data in high dimension. The method
can be applied to any supervised learning or transductive learning task, and it
demonstrates value in applications to real-life data sets.

This paper is motivated by a newly proposed medical technique for inspecting
the edge of surgically resected tissue for the presence of gastric cancer [Eberlin
et al. (2014)]. Gastric is the second most lethal form of cancer, behind lung cancer
[World Health Organization (2013)], and the state-of-the-art treatment for gastric
cancer is surgery to remove the malignant tissue. With this surgical procedure, re-
moval of all diseased tissue is critical to the prognosis for the patient post-surgery.
The new medical technique uses mass spectrometric imaging, rather than visual
inspection by a pathologist, to more quickly and more accurately evaluate the sur-
gical margin of the tissue for the presence of cancerous cells. This new technique
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FIG. 1. Histopathological assessment of a banked tissue example. This hematoxylin and eosin stain
has been hand-labeled by a pathologist, marking three regions: gastric adenocarcinoma (cancer),
epithelium (normal) and stroma (normal).

replaces the procedure wherein the tissue samples are frozen until the pathologist
is available to manually label the tissue as cancer or normal (see Figure 1).

The data are images of surgical tissue from a desorption electrospray ionization
(DESI) mass spectrometer, which records the abundance of ions at 13,320 mass-
to-charge values at each of hundreds of pixels. Hence, each data observation is a
mass spectrum for a pixel, as illustrated in Figure 2.

The 13,320 ion intensities from the mass spectrum for each pixel were aver-
aged across bins of six4 to yield 2220 features. Each pixel has been labeled by a
pathologist (after 2 weeks of sample testing) as epithelial, stromal or cancer, the
first two being normal tissue. Each of 20 patients contributed up to three samples,
from some or all of the three classes. The training set comprises 28 images from
14 patients, yielding 12,480 pixels, and the test set has 12 images from 6 different
patients, for a total of 5696 pixels.

In Eberlin et al. (2014) the authors use the lasso (�1-regularized multinomial re-
gression) to model the probability that a pixel belongs to each of the three classes
on the basis of the ion intensity in each bin of six mass-to-charge values. In that
study, the lasso performed favorably in comparison with support vector machines
and principal component regression. For a detailed description of the lasso, see
Section 2.2. For the purposes of the present paper, we collapse epithelial and stro-
mal into one class, “Normal,” and we adopt a loss function that assigns twice the
penalty to misclassifying a cancer cell as normal (false negative), relative to mis-
classifying a normal cell as cancer (false positive). This loss function reflects that
missing a cancer cell is more harmful than making an error in the opposite direc-
tion. We collapse the two types of normal cells into one class because our collabo-
rators are interested in identifying only the cancer cells for surgical resection. We
find that treating epithelial and stromal as separate classes does not meaningfully
change our results.

4The third author’s collaborators decided that six was the appropriate bin size to reflect uncertainty
in alignment due to registration error.
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FIG. 2. DESI mass spectra for one pixel taken from each region in the banked tissue example. The
result of DESI mass spectrometric imaging is a 2D ion image with hundreds of pixels. Each pixel
has an ion intensity measurement at each of thousands of mass-to-charge values, producing a mass
spectrum. The three mass spectra in the image correspond to one pixel each. The objective is to
classify a pixel as cancer or normal on the basis of its mass spectrum.

The lasso classifier fit to the data from the 12,480 pixels in the training set
(with the regularization parameter λ selected via cross-validation; see Section 2.3)
achieves a misclassification rate of 2.97% when used to predict the cancer/normal
label of the 5696 pixels in the test set. Among cancer pixels the test error rate is
0.79%, and among normal pixels the test error rate is 4.16%. These results repre-
sent a significant improvement over the subjective classifications made by pathol-
ogists, which can be unreliable in up to 30% of patients [Eberlin et al. (2014)],
but the present paper seeks to improve these results further. By using customized
training sets, our method fits a separate classifier for each patient, creating a locally
linear but globally nonlinear decision boundary. This rich classifier leads to more
accurate classifications by using training data most relevant to each patient when
modeling his or her outcome probabilities.

1.1. Transductive learning. Customized training is best suited for the cate-
gory of problems known in machine learning literature as transductive learning, in
contrast with supervised learning or semi-supervised learning. In all of these prob-
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lems, both the dependent and the independent variables are observed in the training
data set (we say that the training set is “labeled”) and the objective is to predict the
dependent variable in a test data set. The distinction between the three types of
problems is as follows: in supervised learning, the learner does not have access to
the independent variables in the test set at the time of model fitting, whereas in
transductive learning the learner does have access to these data at model fitting.
Semi-supervised learning is similar in that the learner has access to unlabeled data
in addition to the training set, but these additional data do not belong to the test
set on which the learner makes predictions. Customized training leverages infor-
mation in the test data by choosing the most relevant training data on which to
build a model to make better predictions. We have found no review of transductive
learning techniques, but for a review of techniques for the related semi-supervised
problem, see Zhu (2007).

In Section 2 we introduce customized training and discuss related methods. Sec-
tion 3 investigates the performance of customized training and competing methods
in a simulation study. Results on the motivating gastric cancer data set are pre-
sented, with their interpretation, in Section 4. We apply our method and others to a
battery of real data sets from the UCI Machine Learning Repository in Section 5.
The manuscript concludes with a discussion in Section 6.

2. Customized training. First we introduce some notation. The data we are
given are Xtrain, Ytrain and Xtest. Xtrain is an n × p matrix of predictor variables,
and Ytrain is an n-vector of response variables corresponding to the n observations
represented by the rows of Xtrain. These response variables may be qualitative or
quantitative. Xtest is an m × p matrix of the same p predictor variables measured
on m test observations. The goal is to predict the unobserved random m-vector
Ytest of responses corresponding to the observations in Xtest.

Let f̂�(·) denote the prediction made by some learning algorithm, as a
function of Xtrain, Ytrain, Xtest and an ordered set � of tuning parameters. So
f̂�(Xtrain, Ytrain,Xtest) is an m-vector. For qualitative Ytrain, f̂� is a classifier, while
for quantitative Ytrain, f̂� fits a regression. We evaluate the performance of f̂� with

L(f̂�(Xtrain, Ytrain,Xtest), Ytest), where the loss function L is often taken to be, for
example, the number of misclassifications for a qualitative response, or squared
error for a quantitative response.

The customized training method partitions the test set into G subsets and fits a
separate model f̂� to make predictions for each subset. In particular, each subset
of the test set uses only its own, “customized” subset of the training set to fit f̂�.
Identifying subsets of the training data in this way leads to a model that is locally
linear but rich globally. Next, we propose two methods for partitioning the test set
and specifying the customized training subsets.
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2.1. Clustering. Often test data have an inherent grouping structure, obviat-
ing the need to identify clusters in the data using unsupervised learning tech-
niques. Avoiding clustering is especially advantageous on large data sets for which
it would be very expensive computationally to cluster the data. For example, in the
motivating application for the present manuscript, test data are grouped by patient,
so we avoid clustering the 5696 test observations in 2220 dimensions by using
patient identity as the cluster membership for each test point.

Given the G “clusters” identified by the grouping inherent to the test data, we
identify the customized training set for each test cluster as follows: first, for each
observation in the cluster, find the R nearest neighbors in the training set to that
observation, thus defining many cardinality-R sets of training observations, one for
each test point in the cluster. Second, take the union of these sets as the customized
training set for the cluster. So the customized training set is the set of all training
points that are one of the R nearest neighbors of any test point in the cluster. R

is a tuning parameter that could in principle be chosen by cross-validation, but we
have found that R = 10 works well in practice and that results are not particularly
sensitive to this choice.

When the test data show no inherent grouping, customized training works by
jointly clustering the training and test observations according to their predictor
variables. Any clustering method can be used; here we apply hierarchical cluster-
ing with complete linkage to the data (XT

train,X
T
test)

T . Then we cut the dendrogram
at some height dG, producing G clusters, as illustrated by Figure 3. In each cluster
we train a classifier on the training observations within that cluster. This model is
then used to make predictions for the test observations within the cluster. In this
case, G is a tuning parameter to be chosen by cross-validation (see Section 2.3).

FIG. 3. A dendrogram depicting joint clustering of training and test data, which is the method
proposed for partitioning the test data and identifying customized training sets when the test data
have no inherent grouping. Here the dendrogram is cut at a height to yield G = 3 clusters. Within the
left cluster, the training data (blue leaves) are used to fit the model and make predictions for the test
data (orange leaves).
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2.2. Classification and regression. The key idea behind our method is the se-
lection of a customized training set for each group in the test set. Once these indi-
vidualized training sets are identified, any supervised classification (or regression,
in the case of quantitative outcomes) technique can be used to fit f̂� and make pre-
dictions for the test set. We suggest using �1-regularized generalized linear models
because of their interpretability. Customized training complicates the model by
expanding it into a compilation of G linear models instead of just one. But using
�1 regularization to produce sparse linear models conserves interpretability. For an
n × p predictor matrix X and corresponding response vector y, an �1-regularized
generalized linear model solves the optimization problem

min
β0,β∈Rp

−1

n

∑
�(β0, β|xi, yi) + λ‖β‖1,(2.1)

where �(·) here is the log-likelihood function and depends on the assumed dis-
tribution of the response. For example, for linear regression (which we use for
quantitative response variables),

yi |xi, β0, β ∼ Normal
(
β0 + βT xi, σ

2)
,

while for logistic regression (which we use for binary response variabes),

yi |xi, β0, β ∼ Binomial
(

1,
eβ0+βT xi

1 + eβ0+βT xi

)
.

For multiclass qualitative response variables we use the multinomial distribution in
the same framework. The estimated regression coefficient vector β̂ that solves the
optimization problem (2.1) can be interpreted as the contribution of each predictor
to the distribution of the response, so by penalizing ‖β‖1 in (2.1), we encourage
solutions for which many entries in β̂ are zero, thus simplifying interpretation
[Tibshirani (1996)].

Regardless of the f̂� chosen, for g = 1, . . . ,G, let nk denote the number of
observations in the customized training set for the kth test cluster, and let Xk

train
denote the nk × p submatrix of Xtrain corresponding to these observations, with
Y k

train denoting the corresponding responses. Similarly, let mk denote the number
of test observations in the kth cluster, and let Xk

test denote the mk × p subma-
trix of Xtest corresponding to these training observations, with Y k

test denoting the
corresponding responses. Once we have a partition of the test set into G subsets
(some of which may contain no test observations), with tuning parameter � our
prediction for Y k

test is

Ŷ k
test = f̂�

(
Xk

train, Y
k
train,X

k
test

)
.(2.2)

Note that if joint clustering is used to partition the test data, the customized train-
ing set for the kth test cluster may be empty, in which case f̂�(Xk

train, Y
k
train,X

k
test)

is undefined. The problem is not frequent, but we offer in Section 2.4 one way
(of several) to handle it. Once we have predictions for each subset, they are com-
bined into the m-vector CTG,�(Xtrain, Ytrain,Xtest), which we take as our predic-
tion for Ytest.
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2.3. Cross-validation. Because customized training reduces the training set
for each test observation, if the classification and regression models from Sec-
tion 2.2 were not regularized, they would run the risk of overfitting the data. The
regularization parameter λ in (2.1) must be large enough to prevent overfitting
but not so large as to overly bias the model fit. This choice is known as the bias-
variance trade-off in statistical learning literature [Hastie, Tibshirani and Friedman
(2009)].

The number of clusters G is also a tuning parameter that controls the flexibility
of the model. Increasing G reduces the bias of the model fit, while decreasing G

reduces the variance of the model fit. To determine the optimal values of G and �,
we use standard cross-validation to strike a balance between bias and variance.
Because transductive methods have access to test features at training time, we
explain carefully in this section what we mean by standard cross-validation.

The training data are randomly partitioned into J approximately equal-sized
folds (typically J = 10). For j = 1, . . . , J , X

(j)
train denotes the submatrix of Xtrain

corresponding to the data in the j th fold, and X
(−j)
train denotes the submatrix of data

not in the j th fold. Similarly, Y (j)
train denotes the responses corresponding to the data

in the j th fold, and Y
(−j)
train denotes responses not in the j th fold.

We consider G and A as the sets of possible values for G and �, respectively.
In practice, we use G = {1,2,3,5,10}. We search over the grid G × A, and the
CV-selected parameters G and � are

(
G∗,�∗) = arg min

G∈G,�∈A

J∑
j=1

L
(
CTG,�

(
X

(−j)
train , Y

(−j)
train ,X

(j)
train

)
, Y

(j)
train

)
.

In more detail, the G clusters for CTG,�(X
(−j)
train , Y

(−j)
train ,X

(j)
train) are obtained as

described in Section 2.1, and the loss for the j th fold is given by

L
(
CTG,�

(
X

(−j)
train , Y

(−j)
train ,X

(j)
train

)
, Y

(j)
train

)

=
G∑

k=1

L
(
f̂�

(
X

(−j)k

train , Y
(−j)k

train ,X
(j)k

train

)
, Y

(j)k

train

)
.

2.4. Out-of-sample rejections. As noted in Section 2, when joint clustering is
used to partition the test data and identify customized training sets, predictions for
a particular test subset may be undefined because the corresponding customized
training subsets do not contain any observations. Using the convention of Bottou
and Vapnik (1992), we refer to this event as a rejection (although it might be more
naturally deemed an abstention). The number of rejections, then, is the number
of test observations for which our procedure fails to make a prediction due to an
insufficient number of observations in the customized training set.
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Typically, in the machine learning literature, a rejection occurs when a classi-
fier is not confident in a prediction, but that is not the case here. For customized
training, a rejection occurs when there are no training observations close to the
observations in the test set. This latter problem has not often been addressed in the
literature [Bottou and Vapnik (1992)]. Because the test data lie in a region of the
feature space poorly represented in the training data, a classifier might make a very
confident, incorrect prediction.

We view the potential for rejections as a virtue of the method, identifying situ-
ations in which it is best to make no prediction at all because the test data are out-
of-sample, a rare feature for machine learning algorithms. In practice, we observe
that rejections are rare; Table 6 gives a summary of all rejections in the battery of
machine learning data sets from Section 5.

If a prediction must be made, there are many ways to get around rejections.
We propose simply cutting the dendrogram at a greater height d ′ > dG so that
the test cluster on which the rejections occurred is combined with another test
cluster until the joint customized training set is large enough to make predictions.
Specifically, we consider the smallest d ′ for which the predictions are defined.
Note that we update the predictions only for the test observations on which the
method previously abstained.

2.5. Related work. Local learning in the transductive setting has been pro-
posed before [Wu and Schölkopf (2007), Zhou et al. (2004)]. There are other re-
lated methods as well, for example, transductive regression with elements of local
learning [Cortes and Mohri (2007)] or local learning that could be adapted to the
transductive setting [Yu, Zhang and Gong (2009)]. The main contribution of this
paper relative to previous work is the simplicity and interpretability of customized
training. By combining only a few sparse models, customized training leads to a
much more parsimonious model than other local learning algorithms, easily ex-
plained and interpreted by subject-area scientists.

More recently, local learning has come into use in the transductive setting in
applications related to personalized medicine. The most relevant example to this
paper is evolving connectionist systems [Ma (2012)], but again our proposal for
customized training leads to a more parsimonious and interpretable model. Person-
alized medicine is an exciting area of potential application for customized training.

Several methods [Gu and Han (2013), Ladicky and Torr (2011), Torgo and Da-
Costa (2003)] similarly partition the feature space and fit separate classification
or regression models in each region. However, in addition to lacking the inter-
pretability of our method, these techniques apply only to the supervised setting
and do not leverage the additional information in the transductive setting. Others
have approached a similar problem using mixture models [Fu, Robles-Kelly and
Zhou (2010), Shahbaba and Neal (2009), Zhu, Chen and Xing (2011)], but these
methods also come with a great computational burden, especially those which use
Gibbs sampling to fit the model instead of an EM algorithm or variational methods.
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Variants of customized training could also be applied in the supervised and
semi-supervised setting. The method would be semi-supervised if instead of test
data other unlabeled data were used for clustering and determining the customized
training set for each cluster. The classifier or regression obtained could be used
to make predictions for unseen test data by assigning each test point to a cluster
and using the corresponding model. A supervised version of customized training
would cluster only the training data and fit a model for each cluster using the train-
ing data in that cluster. Again, predictions for unseen test data could be made after
assigning each test point to one of these clusters. This approach would be similar
to Jordan and Jacobs (1994).

2.5.1. Alternative methods. To compare customized training against the state
of the art, we apply five other machine learning methods to the data sets in Sec-
tions 3, 4 and 5.

ST Standard training. This method uses the �1-penalized regression tech-
niques outlined in Section 2.2, training one model on all of the training
set. The regularization parameter λ is chosen through cross-validation.

SVM Support vector machine. The cost-tuning parameter is chosen through
cross-validation.

KSVM K-means + SVM. We cluster the training data into K clusters via the
K-means algorithm and fit an SVM to each training cluster. Test data are
assigned to the nearest cluster centroid. This method is a simpler, spe-
cial case of the clustered SVMs proposed by Gu and Han (2013), whose
recommendation of K = 8 we use.

RF Random forests. At each split we consider
√

p of the p predictor variables
(classification) or p/3 of the p predictor variables (regression).

KNN k-nearest neighbors. This simple technique for classification and regres-
sion contrasts the performance of customized training with another “local”
method. The parameter k is chosen via cross-validation.

3. Simulation study. We designed a simulation to demonstrate that cus-
tomized training improves substantially on standard training in situations where
one would expect it to do so: when the data belong to several clusters, each with
a different relationship between features and responses. We consider real-valued
responses (a regression problem) for the sake of variety. We simulated n train-
ing observations and m test observations in p dimensions, each observation be-
longing to one of 3 classes. The frequency of the 3 classes was determined by
a Dirichlet(2,2,2) random variable. The centers c1, c2, c3 of the 3 classes were
generated as i.i.d. p-dimensional normal random variables with covariance σ 2

c Ip .
Given the class membership zi ∈ {1,2,3} of the ith observation, xi was gen-

erated from a normal distribution with mean czi
and covariance matrix Ip . The

coefficient vector βk corresponding to the kth class had p/10 entries equal to one,
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FIG. 4. Simulation results. In (a), the low-dimensional setting, as σC increases and the clusters
separate, the test error for customized training drops, while the test error for other methods remains
high. In (b), the test errors are much larger overall, but the same pattern persists: customized training
leads to improved results as the clusters separate.

with the rest being zero, reflecting a sparse coefficient vector. The nonzero entries
of βk were sampled uniformly at random, independently for each class k. Given
the class membership zi and coefficient vector xi of the ith observation, the re-
sponse yi had a normal distribution with mean (βzi )T xi and standard deviation
one.

We conduct two simulations, the first with n = m = 300, p = 100 (the low-
dimensional setting), and the second with n = m = 200, p = 300 (the high-
dimensional setting). In each case, we vary σC from 0 to 10. Figure 4 shows the
results. We observe that in both settings, customized training leads to significant
improvement in test mean square error as the clusters separate (increasing σC). In
the high-dimensional setting, the errors are expectedly much larger, but the same
pattern is evident. For KSVM in this simulation we fix K = 3, thus cheating and
giving the algorithm the number of clusters, whereas customized training learns
the number of clusters from the data. For this reason, the performance of KSVM
does not improve as the clusters separate. In fact, it is because none of the other
methods make an attempt to identify the number of clusters that they do not im-
prove as the clusters separate.

4. Results on gastric cancer data set. We applied customized training to the
mass-spectrometric imaging data set of gastric cancer surgical resection margins
with the goal of improving on the results obtained by standard training. As de-
scribed in Section 2.1, we obtained a customized training set for each test patient
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TABLE 1
Source patients used in customized training sets for six test patients. Each column shows, for the

corresponding test patient, what percentage of observations in that patient’s customized training set
came from each of the training patients. Patient labels have been permuted to show the structure in

the data: test patients 1–3 get most of their training sets from patients 1–7, while test
patients 4–6 get most of their training sets from patients 9–14

Training patient

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Test 1 41.7 39.5 22.8 4.4 20.8 4.2 3.5 – – – – 0.3 – –
patient 2 46.2 50.2 40.1 59.6 39.1 44.3 33.7 – – 1.3 – 0.6 – 0.9

3 12.0 9.5 36.9 34.5 28.4 50.8 61.1 – 38.1 – 6.6 32.8 3.6 8.2
4 – 0.2 – 1.2 – – 0.7 38.1 55.8 73.7 20.4 21.2 6.6 25.4
5 – – – 0.2 – 0.6 0.3 52.4 2.2 7.7 50.9 19.7 52.9 25.3
6 – 0.7 0.2 0.2 11.6 – 0.7 9.5 3.9 17.3 22.2 25.3 36.9 40.1

by finding the 10 nearest neighbors of each pixel in that patient’s images and us-
ing the union of these nearest-neighbor sets. Table 1 shows from which training
patients the customized training set came, for each test patient. The patient labels
have been ordered to make the structure in these data apparent: test patients 1–3
rely heavily on training patients 1–7 for their customized training sets, while test
patients 4–6 rely heavily on training patients 9–14 for their customized training
sets.

In this setting it is more harmful to misclassify cancer tissue as normal than it is
to make the opposite error, so we chose to use a loss function that penalizes a false
negative (labeling a cancer pixel as normal) twice as much as it does a false positive
(labeling a normal pixel as cancer). We observe that the results are not sensitive to
the choice of the loss function (in the range of penalizing false negatives equally
to five times as much as false positives) in terms of comparing customized training
against standard training. We compare the results of customized training against
the results of standard training for �1-regularized binomial regression—the method
used by Eberlin et al. (2014)—in Table 2.

We observe that customized training leads to a considerable improvement in
results. For test patients 3 and 4, the test error is slightly higher for customized
training than for standard training, but for all other patients, the test error for cus-
tomized training is much lower. Overall, customized training cuts the number of
misclassifications in half from the results of standard training. We focus on the
comparison between customized and standard training because they are the fastest
methods to apply to this large data set, but, indeed, the other methods described in
Section 2.5.1 are also applicable. We report the overall test misclassification error
and the run time for all methods in Table 3.
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TABLE 2
Error rates for customized training and standard training on the gastric cancer test data, split by
patient and true label of the pixel (cancer or normal), with the lower overall error rate for each

patient in bold. Each error rate is expressed by the percentage of pixels misclassified.
Customized training leads to slightly higher errors for patients 3 and 4 but much

lower errors for all other patients and roughly half the error rate overall

Test patient 1 2 3 4 5 6 All

Standard Cancer – 2.67 0.21 – – 2.70 1.54
training Normal 13.60 0.81 0.13 0.00 6.37 3.63 3.78
(lasso) Overall 13.60 1.61 0.18 0.00 6.37 3.14 2.98

Customized Cancer – 1.07 0.11 – – 1.80 0.74
training Normal 8.66 0.00 1.44 0.40 0.82 0.66 2.04
(6-CT) Overall 8.66 0.46 0.71 0.40 0.82 1.26 1.58

4.1. Interpretation. A key draw for customized training is that, although the
decision boundary is more flexible than a linear one, interpretability of the fit is
preserved because of the sparsity of the model. In this example, there are 2220
features in the data set, but the numbers of features selected for test patients 1
through 6 are, respectively, 42, 71, 62, 15, 21 and 54. Figure 5 shows which fea-
tures are used in each patient’s model, along with the features used in the overall
model with standard training.

We observe that some pairs of patients have more similar profiles of selected
features than other pairs of patients. For example, about 36% of the features se-
lected for test patient 1 are also selected for test patient 2. And about 39% of the
features selected for test patient 3 are also selected for test patient 2. This result
is not surprising because test patients 1 through 3 take much of their customized
training sets from the same training patients, as observed above. Similarly, about
40% of the features selected for patient 4 are also selected for patient 6, and about
38% of the features selected for patient 5 are also selected for patient 6.

The third author’s subject-area collaborators have suggested that these data may
actually suggest two subclasses of cancer; given that customized training identifies
two different groups of models for predicting cancer presence, this subject-area
knowledge leads to a potentially interesting interpretation of the results.

TABLE 3
Overall test error rates and run times for customized training and the five other methods described

in Section 2.5.1

Method ST CT KSVM KNN RF SVM

Misclassification rate 3.05% 1.58% 9.78% 9.18% 2.44% 2.07%
Run time (minutes) 2.1 2.4 6.0 7.6 21.9 197.8
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FIG. 5. Features selected by customized training for each patient (variables not selected by any
model are omitted from the x-axis). The first row shows features selected via standard training.
Visual inspection suggests that patients 1, 2 and 3 have similar profiles of selected variables, whereas
patients 4 and 5 have selected-feature profiles that are more similar to each other than to other
patients. Using hierarchical clustering with Jaccard distance between the sets of selected features to
split the patients into two clusters, patients 1, 2 and 3 were in one cluster, with patients 4, 5 and 6 in
the other.

5. Additional applications. To investigate the value of customized training
in practice, we applied customized training (and the alternative methods from Sec-
tion 2.5.1) to a battery of classification data sets from the UC Irvine Machine
Learning Repository [Bache and Lichman (2013), Gil et al. (2012), Kahraman,
Sagiroglu and Colak (2013), Little et al. (2007), Mansouri et al. (2013), Tsanas
et al. (2014)]. The data sets, listed in Table 4, were selected not randomly but
somewhat arbitrarily, covering a wide array of applications and values of n and p,
with a bias toward recent data sets. In Table 5 we present results on all 16 data sets
to which the methods were applied, not just those on which customized training
performed well.

Random forests achieve the lowest error on 8 of the 16 data sets, the most of
any method. But the method that achieves the lowest error secondmost often is cus-
tomized training, on 7 of the 16 data sets, and customized training beats standard
training on 11 data sets, with standard training coming out on top for only 2 data
sets. We do not expect customized training to provide value on all data sets, but
through cross-validation, we can often identify data sets for which standard train-

TABLE 4
Data sets from UCI Machine Learning Repository [Bache and Lichman (2013)] used in Section 5

Abbrv. Data set name Abbrv. Data set name

BS Balance scale BCW Breast cancer Wisconsin (diagnostic)
C Chess (king-rook vs king-pawn) CMC Contraceptive method choice
F Fertility FOTP First-order theorem proving
LSVT LSVT voice rehabilitation M Mushroom
ORHD Optical recognition of handwritten digits P Parkinsons
QSAR QSAR biodegration S Seeds
SPF Steel plates faults TAE Teaching assistant evaluation
UKM User knowledge modeling V Vowel
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TABLE 5
Test error of customized training and the five other methods described in Section 2.5.1 on 16

benchmark data sets. The bold text indicates the best performance for each data set.
Customized training is competitive with the other methods and improves

on standard training more often than not

ST CT SVM KSVM RF KNN

Data n p Error Error G Error Error Error Error k %Imp*

BS 313 4 0.112 0.099 3 0.086 0.131 0.131 0.105 20 11.4
BCW 285 30 0.028 0.035 2 0.035 0.038 0.028 0.056 63 −25
C 1598 38 0.026 0.021 10 0.029 0.046 0.006 0.085 36 18.5
CMC 737 18 0.485 0.440 5 0.479 0.523 0.472 0.523 32 9.2
F 50 9 0.160 0.160 1 0.160 0.160 0.180 0.180 2 –
FTP 3059 51 0.557 0.530 5 0.489 0.444 0.427 0.508 47 4.7
LSVT 63 310 0.126 0.142 1 0.111 0.365 0.095 0.222 15 −12.5
M 4062 96 0.000 0.000 1 0.001 0.001 0.000 0.001 15 –
ORHD 3823 62 0.046 0.043 2 0.032 0.049 0.027 0.055 38 6.0
P 98 22 0.268 0.144 3 0.154 0.144 0.082 0.123 5 46.1
Q 528 41 0.176 0.134 5 0.146 0.148 0.140 0.144 19 23.6
S 105 7 0.047 0.047 2 0.066 0.114 0.104 0.066 9 –
SPF 971 27 0.321 0.278 5 0.273 0.281 0.246 0.357 57 13.3
TAE 76 53 0.720 0.470 10 0.653 0.613 0.506 0.493 1 34.6
UKM 258 5 0.041 0.013 1 0.103 0.213 0.068 0.565 79 66.6
V 528 10 0.610 0.491 2 0.387 0.480 0.409 0.508 1 19.5

∗%Imp: Percent relative improvement of customized training to standard training.

ing is better, meaning that G = 1 is chosen through cross-validation. The point of
this exercise is not to show that customized training is superior to the other meth-
ods but rather to show that, despite its simplicity, it is at least competitive with the
other methods.

Table 6 shows all of the rejections that customized training makes on the 16 data
sets, for any value of G (not just the values of G chosen by cross-validation). For
two of the data sets (LSVT Voice Rehabilitation and Parkinsons), it
is clear that the rejections are just artifacts of using a G that is too large relative to
the training sample size n. Such a G is not chosen by cross-validation. However, in
the other data sets, Steel Plates Faults and First-order theorem
proving, rejections occur for moderate values of G. It seems that this rejection
is appropriate because the standard training method leads to an error for each test
point which is rejected. Overall, we observe that rejections are rare.

6. Discussion. The idea behind customized training is simple: for each subset
of the test data, identify a customized subset of the training data that is close to this
subset and use this data to train a customized model. We proposed two different
clustering methods for finding the customized training sets and used �1-regularized



CUSTOMIZED TRAINING 1723

TABLE 6
A listing of all data sets from Section 5 for which K-CTJ makes a rejection for some K . The error

rates in the last two columns refer to the error rate of standard training

Error rate on Error rate
Data set Method Rejections rejections overall

First-order theorem proving 3-CTJ 3 1 0.518
5-CTJ 3 1

10-CTJ 3 1

LSVT Voice Rehabilitation 10-CTJ 2 0.5 0.142

Parkinsons 10-CTJ 4 0.25 0.154

Steel Plates Faults 3-CTJ 1 1 0.294
5-CTJ 1 1

10-CTJ 1 1

methods for training the models. Local learning has been used in the transductive
setting but not in such a parsimonious, interpretable way. Customized training has
the potential to uncover hidden regimes in the data and leverage this discovery to
make better predictions. It may be that some classes are over-represented in a clus-
ter, and fitting a model in this cluster effectively customizes the prior to reflect this
over-representation. Our results demonstrate superior performance of customized
training over standard training on the mass-spectrometric imaging data set of gas-
tric cancer surgical resection margins, in terms of discrimination between cancer
and normal cells. Our approach also suggests the possibility of two subclasses of
cancer, consistent with a speculation raised by our medical collaborators.

In this paper we focused on customized training with �1-regularized methods
for the sake of interpretability, but, in principle, any supervised learning method
may be used, which is an area for future work. Another area of future work is
the use of different clustering techniques. We use hierarchical clustering, but there
may be value in other methods, such as prototype clustering [Bien and Tibshirani
(2011)]. Simulations in Section 3 show that the method can struggle in the high-
dimensional setting, so it may be worthwhile to consider sparse clustering [Witten
and Tibshirani (2010)].
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