
Customizing Component-Based Architectures by

Contract

Orlando Loques1 and Alexandre Sztajnberg2

1Instituto de Computação – Universidade Federal Fluminense (UFF)

Rua Passo da Pátria – Niterói – RJ – Brasil
loques@ic.uff.br

2Instituto de Matemática e Estatística – Universidade do Estado do Rio de Janeiro

Rua São Francisco Xavier, 524 / 6018-D – Maracanã – RJ - Brasil
alexszt@ime.uerj.br

Abstract. This paper presents an approach to describe, deploy and manage

component-based applications having dynamic functional and non-functional

requirements. The approach is centered on architectural descriptions and

associated high-level contracts. Besides specifying non-functional (or QoS)

requirements, these contracts are used to guide architecture customizations

required to enforce the requirements. The infrastructure required to manage the

contracts follows an architectural pattern, which can be directly mapped to

specific components included in a supporting reflective middleware. This

approach allows designers to write a contract and to follow a standard recipe to

insert the extra code required to its enforcement in the supporting middleware.

1 Introduction

The current software development technology offers a rich diversity of options to

specify the interfaces and write the functional code of program components. Once

built and made available, these components can be used to compose different

applications, having specific non-functional requirements, that should be deployed in

diverse operating environments. However, the specification of non-functional

requirements and the implementation of the corresponding management strategies are,

generally, embedded in the code of the components in an ad-hoc manner, mixed with

the application’s specific code. This lack of modularity makes component reuse

difficult, also making difficult verification and debugging tasks. In this context, there

is a growing interest for handling non-functional aspects in a specific abstraction level

[2, 5, 11]. This approach would allow to single out the resources to be used and the

specific mechanisms that will be required to support the non-functional aspects, and,

if possible, turn automatic the configuration and management of those resources.

Besides requirements normally associated to communication system level

performance, non-functional (sometimes called QoS) requirements (or aspects)

include characteristics such as availability, reliability, security, real-time, persistency,

coordination and debugging support. Such kind of aspect can be handled by reusable

mailto:alexszt@ime.uerj.br

2 Orlando Loques1 and Alexandre Sztajnberg2

services provided by middleware infrastructures or native systems support. This

approach makes feasible to design a software system based on its architectural

description, which includes the functional components, the interactions among those

components and also the non-functional requirements, which depend on the properties

of the supporting infrastructure. To this end, it has to be provided a means to specify

those requirements in the context of the application’s architecture description and,

also, there is to be available an environment that allows to deploy those requirements

over the system resources even during running time.

Among the available techniques to specify non-functional constraints, we highlight

the concept of contract [7]. A contract establishes a formal relationship between two

or more parts that use or provide resources, where rights, obligations and negotiation

rules over the used resources are expressed. For instance, a parallel computing

application can have a contract defining rules to replicate processing resources, in

order to guarantee a maximum execution time constraint.

In the previous context, this work presents the CR-RIO framework (Contractual

Reflective - Reconfigurable Interconnectable Objects) [5, 1] conceived to specify and

support non-functional contracts, associated to the architectural description of an

application. The approach helps to achieve separation of concerns [10] facilitating the

reuse of components that implement the functional computation in other application

systems, and allows the non-functional requirements to be handled separately during

the system design process. The framework includes a contract description language,

which allows the definition of a specialized view of a given software architecture. The

supporting infrastructure required to impose the contracts during running time follows

an architectural pattern that can be implemented by a standard set of components

included in a middleware. The results of our investigation point out that the code

generation of these components can be automated, unless of some explicit parts of

code related to specific contract and resources classes.

In the rest of this paper, we initially describe the key elements of the framework

including the architecture description language with support to contracts. Next, we

present the supporting infrastructure and demonstrate the validity of the framework

through an example. Complementing the article we present some related proposals

and provide some conclusions.

2 Basic Framework

The CR-RIO framework integrates the software architecture paradigm, which is

centered in an architecture description language (ADL), with concepts such as

reflection and dynamic adaptation capability [10], which are generally provided in an

isolated fashion in middleware proposals described in the literature. This integration

facilitates the achievement of separation of concerns, software component reuse and

dynamic adaptation capability of applications. CR-RIO includes the following

elements (see Figure 1):

a) CBabel, an ADL used to describe the functional components of the application

and the interconnection topology of those components. CBabel also caters for the

description of non-functional aspects, such as coordination, distribution and different

Customizing Component-Based Architectures by Contract 3

types of QoS requirements. A CBabel specification corresponds to a meta-description

of an application that is available in a repository and is used to deploy the architecture

in a given operating environment; these descriptions can be submitted to formal

verification procedures [3].

b) An architecture-oriented component model, that allows programming the

software configuration of the application; (i) Modules (or components), which

encapsulate the application's functional aspects; (ii) Connectors, used in the

architecture level to define relationships between modules; in the operation level

connectors mediate the interaction between modules; and (iii) Ports, which identify

access points through which modules and connectors provide or require services. This

component model can be mapped to available implementation technologies; in our

experiments components were mapped to Java and Corba objects.

c) A simple software design methodology that stimulates the designer to follow a

simple meta-level programming discipline, where functional aspects are concentrated

in modules (base level) and non-functional aspects are encapsulated in connectors

(meta-level). It is worth to point out that some QoS requirements can be directly

mapped into connectors, which are equivalent to meta-level components, and can be

configured in an application’s architecture.

d) The Configurator, a reflective element that provides services to instantiate,

execute and manage applications with distributed configurations. The Configurator

provides two APIs: configuration and architectural reflection, through which these

services are used, and a persistent architecture description repository, where the two

APIs reflect their operations. A specialized module can consult the architecture's

description repository and decide to make adaptations, for instance, in face of changes

in the QoS support level.

To specify non-functional aspects CBabel employs the concept of architectural

contract. In our approach, an architectural contract is a description where two parts

express their non-functional requirements, through services and parameters,

negotiation rules and adaptation policies for different contexts. The CR-RIO

framework provides the required infrastructure to impose and manage the contracts

during running time. Regarding QoS aspects we propose an architectural pattern that

simplifies the design and coding of the components of the supporting infrastructure,

consistently establishing the relationship between the Configurator and the QoS

contract supporting entities.

Resource allocation

and monitoring

Service

negotiationConfiguration and

Reflection API

Component

instantiation

Configuration

Interpretation
Contract

Interpretation

Architecture

Repository

Architecture

Description

QoS

Contracts

Handling of functional

requirements

Handling of non-functional

requirements

Configuration support

mechanisms

Support Environment (OS, Middleware,...)

CBabel ADL

Component

binding

Resource

management

Fig. 1. The CR-RIO framework

4 Orlando Loques1 and Alexandre Sztajnberg2

3 The QoS Contract Language

In our proposal a functional service of an application is considered a specialized

activity, defined by a set of architectural components and theirs interconnection

topologies; with requirements that generally do not admit negotiation [2]. Non-

functional services are defined by restrictions to specific non-functional activities of

an application, and can admit some negotiation including the used resources. A

contract regulating non-function aspects can describe, at design time, the use of

shared resources the application will make and acceptable variations regarding the

availability of these resources. The contract will be imposed at run-time by an

infrastructure composed by a set of components that implement the semantics of the

contract. Our proposal incorporates concepts from the QML (QoS Markup Language)

[7], which were reformulated for the context of software architecture descriptions [5].

A QoS contract includes the following elements:

a) QoS Categories are related to specific non-functional aspects and described

separately from the functional components. For example, if processing and

communication performance characteristics are critical to an application, associated

QoS categories, Processing and Transport, could be described as in Figure 2.

01 QoScategory Processing {
02 cpuUse: decreasing numeric ; %
03 cpuSlice: increasing numeric %;
04 priority: increasing numeric;
05 memAvaliable: increasing numeric Mbytes;
06 memReserv: increasing numeric Mbytes;
07 }
08 QoScategory { Transport
09 delay: decreasing numeric ms;
10 bandwidth: increasing numeric Mbps;
11 slidingWindowSize: increasing numeric;
12 MSS: increasing numeric;
13 }

Fig. 2. Processing and Transport QoS Categories

The Processing category (lines 1-7) represents processor and memory resources

where the cpuUse property is the used percentage of the total CPU time (low values

are preferred – decreasing), the cpuSlice property represents the time slice to be

reserved / available to a given process (high values are preferred – increasing),

priority represents a priority for its utilization, memAvaliable and memReserv

represent, respectively the available memory in the node and the memory (to be)

reserved for a process. The Transport category (lines 8-13) represents the information

associated to transport resources used by clients and servers. The bandwidth property

represents the available/required bandwidth for network connections and the delay

property represents the transmission delay of one bit between two peer components.

The use of those categories, and of the other elements of the language to be described

next, is presented in Section 4.

Customizing Component-Based Architectures by Contract 5

b) A QoS profile quantifies the properties of a QoS Category. This quantification

restricts each property according to its description, working as an instance of

acceptable values for a given QoS Category. A component, or a part of an

architecture, can define QoS profiles in order to constrain its operational context.

c) A set of services can be defined in a contract. In a service, QoS constraints that

have to be applied in the architectural level are described, and can be associated to

either (i) the application’s components or (ii) the interaction mechanism used by these

components. In that way, a service is differentiated from others by the desired /

tolerated QoS levels required by the application, in a given operational context. A

QoS constraint can be defined by associating a specific value of a property to an

architecture declaration or associating a QoS profile to that declaration.

d) A negotiation clause describes a negotiation policy and acceptable operational

contexts for the services described in a contract. As a default policy, the clause

establishes a preferred order for the utilization of the services. Initially the preferable

service is used. According to the described in the clause, when a preferable service

cannot be maintained anymore, the QoS supporting infrastructure tries to deploy a

service less preferable, following the described order. The supporting infrastructure

can deploy a more preferable service again if the necessary resources are again

available.

3.1 Support Architecture

CBabel described architectures and QoS contracts are stored as meta-level

information. Based on this information a set of middleware components (see Figure

9), composing a well-defined architectural pattern [5] is used to instantiate the

application and to manage the contracts. The Global Contract Manager (GCM)

interprets a contract description and extracts its service negotiation state machine.

When a negotiation is initiated the GCM identifies which service will be negotiated

first and sends the related configuration descriptions, to each participating node, and

the associated QoS profiles to the Local Contract Managers (LCM). Each LCM is

responsible for interpreting the local configuration and activating a Contractor to

perform actions such as resource reservation and method requests monitoring.

If the GCM receives a positive confirmation from all LCM involved, the service

being negotiated can be attended and the application can be instantiated with the

required quality. If not, a new negotiation is attempted in order to deploy the next

possible service. If all services in the negotiation clause are tried with no success, an

out-of-service state is reached and a contract violation message is issued to the

application level. The GCM can also initiate a new negotiation when it receives a

notification informing that a preferred service became available again.

The Contractor has several responsibilities: (a) to translate the properties defined

by the QoS profiles into services of the support system and convey the request of

those services (with adequate parameters) to the QoS Agents; (b) when required, to

map each defined interaction scheme (link) into a connector able to match the

required QoS for the actual interaction, and (c) to receive out-of-spec notifications

from the QoS Agents. The information contained in a notification is compared against

the profile and, depending on its internal programming, the Contractor can try to

6 Orlando Loques1 and Alexandre Sztajnberg2

make (local) adjustments to the resource that provides the service. For instance, the

priority of a streamer could be raised in order to maintain a given frame generation

rate. In a case where this is not possible an out-of-profile notification is sent to the

LCM.

QoS Agents encapsulate the access to system level mechanisms, providing

adequate interfaces to perform resource requests, initialize local system services and

monitor the actual values of the required properties. According to the thresholds to be

monitored, registered by the Contractor, a QoS Agent can issue an out-of-spec

notification indicating that a resource is not available or does not meet the

specification defined in the profile.

4 Example

During our research we developed some prototype examples to evaluate and refine

the framework. A virtual terminal in a mobile machine was used to evaluate security

and communication aspects in the context of a mobile network [6]. In [1] it was

presented a video on demand application, an application with fault tolerance

requirements, and the application with timing requirements which will be detailed in

the next subsections.

4.1 Data Acquisition-Processing Application

Let us consider a data acquisition system, which periodically receives data and image

coming in batches from one or more sensors. The received image and data have to be

processed and filtered before being stored in a data base. This basic architecture can

be used in different application contexts and run on different support environments.

For example, a simple application, with a single data source, can run on a single

processor, provided that enough processing power is available to execute the required

pre-processing activities within the required time interval for data acquisition. A

complex application, where data comes from many geographically-distributed

sensors, as well as where more complex and time consuming processing and filtering

activities are performed, will require more processing power in order to meet the

timing restrictions. Yet, a more complex application could have its processing

requirements changing considerably along its running time; e.g., because an increase

in the amount of input data triggered by the occurrence of an external event.

In such changing scenario, it is desirable to provide concepts and mechanisms to

allow the basic architecture to be gracefully adapted in order to cater for the

requirements of each different application context. For example, for the simple

application a CPU reservation scheme would be enough to guarantee the processing

power required for the application. For the complex application, assuming that it is

parallelizable, a solution would be to distribute the execution, for example using a

master-worker architecture. Such parallel architecture could be deployed on a grid of

processors provided that some operational requirements are met in order to not hinder

the application's performance; e. g., the allocated nodes should have enough resources

and their message transport time to the master should be lower than a given limit.

Customizing Component-Based Architectures by Contract 7

Moreover, considering that the processing requirements can increase or decrease

along the application running time, the number of parallel workers can be

dynamically configured. Thus, when the processing demand increases, the number of

parallel workers could be increased in order to reduce each one individual

computation time, aiming to achieve an overall speed-up. Accordingly, the number of

workers can be reduced in order to free system resources when the processing

demands decreases.

We highlight that components of our architectural contract support framework can

encapsulate the access to different available resource management services, in order

to obtain the information required to enforce the architectural adaptations. In a related

work we used the contract approach to express and implement contracts related to

multimedia distributed applications based on services provided by the OpenH323

framework [12]. For the architectural contracts presented in this paper we consider

parameters such as CPU reservation / monitoring, CPU availability, network

bandwidth, and resource discovery that can be provided by available platforms such

as the WNS framework [14].

In the example presented in this section we demonstrate how our approach using

software architecture and contract concepts can be used to: (a) describe the

application’s components and respective topology configuration; (b) describe the

policies on resource usage required to comply with the processing constraints

imposed by the application and (c) effectively deploy the application with the support

of middleware components included in the framework.

4.2 Basic Configuration

The basic configuration of the application is depicted in Figure 3. A client module

collects the data from the sensors and sends them to the server for pre-processing. As

soon as the pre-processing procedure is finished the server signals the client, which

then can send a new data sample to be processed. The interaction between the client

and the server (or servers) modules is explicitly mediated by a connector that will

help to implement the application contract.

c-sprocDataSet procDataSet

Client Server

Fig. 3. Data Acquisition-Processing Application

Figure 4 presents the CBabel description of the application’s architecture,

composed by a client (client - line 3), a server (server – line 4), and their connection

topology; interaction is performed through the client’s procDataSet out port and the

server’s procDataSet in port (line 6). Note that this interconnection could be statically

defined using a specific connector to mediate the client-server interaction,

8 Orlando Loques1 and Alexandre Sztajnberg2

encapsulating the required communication or interaction mechanism. However, as the

non-functional requirements include communication, processing and replication

aspects, the use of connectors in the architecture will be defined separately in a

contract or automatically selected by the contract support middleware.

01 module Client_Server {
02 port procDataSet;
03 module Client {out port procDataSet;} client;
04 module Server {in port procDataSet;} server;
05 instantiate client, server;
06 link client.procDataSet to server.procDataSet;
07 } capture_images;
08 start capture_images;

Fig. 4. CBabel description of the application’s architecture

In an initial context we assume that the client and server components are deployed

in the same node. In this case, to attend the application’s requirements, processing and

storage resources have just to be reserved for the server module. The QoS contract

regarding such requirement is described in Figure 5. The prioProc service (lines 14-

16) states that the instantiation of the server module at the host1 node is associated to

the ProcMem processing QoS profile (lines 19-22). In that case, the server module

instantiation is conditioned to the availability of enough storage capability (at least

200 Mbytes) and of a processing slice of at least 0.25 (25%) of the processor’s time.

The Contractor is responsible for translating the requirements regarding the storage

and processing resources described in the contract (in this case,

Processing.cpuSlice >= 0.25; Processing.memReserv >= 200;), into parameters

that can be passed to the Processing QoS Agent.

13 contract {
14 service {
15 instantiate server at host1 with profile PROCMEM;
16 } prioProc;
17 negotiation {prioProc -> out-of-service;};
18 } oneServer;
19 profile {
20 Processing.cpuSlice >= 0.25;
21 Processing.memReserv >= 200;
22 } ProcMem;

Fig. 5. prioProc contract description

In this first context, the requirements are static and if the Global Contract Manager

receives a service violation notification, an out-of-service state is reached and no

other service is attempted according the associated QoS contract (line 17). Thus, the

application cannot execute given the lack of resources.

Customizing Component-Based Architectures by Contract 9

4.3 Second Configuration - Distributed Parallel Workers

In a second context the servers are replicated though a master-worker architecture in

order to distribute the processing load, based on a slightly modified Master-Slave

design pattern [4]. To this end a Replication QoS category (Figure 6) is introduced.

When this category is used, a special connector is selected to provide the services

related to group communication and maintenance, according to the value of the

groupComm property (line 20). The numberOfReplicas and maxReplicas properties

(lines 17-18) describe respectively the number of replicas to be deployed and the

maximum number of replicas allowed. This last property can be used with

replicaMaint (line 19) in the case of a contract that will handle dynamically creation

of replicas. The distribPolicy property (line 21) indicates a policy to be adopted for

the distribution of replicas (in this case, driven by the best memory, CPU or transport

operating status, or an optimization of these parameters).

16 QoScategory Replication {
17 numberOfReplicas: increasing numeric;
18 maxReplicas: numeric;
19 replicaMaint: enum (add, remove, maintain);
20 groupComm: enum p, multicast, broadcast); (p2
21 distribPolicy: enum (bestMem, bestCpu, bestTransp, optim);
22 }

Fig. 6. Replication QoS category

Again, the preprocessing performed in each server should be concluded before a

new data-set is produced by the client. Here, the communication system transport

time becomes a relevant performance parameter. As the data-set has to be sampled at

a given rate, the deadline within which the server task has to be performed is known

beforehand. So, in a distributed environment, where the communication with the

server adds to the total preprocessing execution time, the overall deadline should

include this parameter. Thus, in order to express this fact, we consider in the contract

a message transport time parameter (line 29, fig.7); the latter aggregated with the

previous processor reservation parameter will provide a trustful means to impose the

application timing requirement at run time. The corresponding contract is represented

in Figure 7.

13 contract {
14 service {
15 instantiate server with profile ProcMem, Preplic;
16 link client to server with profile Pcom;
17 } repProc;
18 negotiation {repProc -> out-of-service;};
19 } repServer;
20 profile {
21 Processing.cpuSlice >= 0.25;
22 Processing.memReserv >= 200;
23 } ProcMem;
24 profile {
25 Replication.numOfReplicas = 5;

10 Orlando Loques1 and Alexandre Sztajnberg2

26 Replication.distribPolicy = optim;
27 } Preplic;
28 profile {
29 Transport.delay < 5;
30 Replication.groupComm = multicast;
31 } Pcom;

Fig. 7. QoS contract for the replication configuration

According to the repProc contract each replica will only be instantiated if the

ProcMem and Preplic profiles properties are satisfied. The number of replicas and the

distribution policy described in the Preplic profile (lines 24-27) are controlled by the

GCM. A number of five replicas were selected (line 25) and the distribution policy

will try to optimize resources (line 26). Additionally, it can be observed that

replicating the server module in different processing nodes implies in creating

instances of this module. This task is also initiated by the GCM as soon as it

establishes the service, delegating the actual configuration of the instances to the

Configurator. In this case, the GCM forwards a list of nodes were the replicated

modules have to be created and the Configurator executes an instantiation batch such

as:

instantiate Server as repl1 at node1;
link client.procDataSet to repl1.procDataSet by groupCon;
instantiate Server as repl2 at node2;
link client.procDataSet to repl2.procDataSet by groupCon;

…

The execution of this batch connects the client module to each replica of the server

(repl1, repl2, …) by a connector composition (groupCon) that provides the group

communication mechanisms (multicast, in this case – line 30). The Configurator

dynamically manages the naming of the replicas and makes this information

consistent for the GCM. For all the established client-replica interconnection this

connector is used to provide the client-server interaction style and the group

communication.

This configuration is robust but still static. If any of the processing or transport

properties of any replica is out of specification the respective LCM is notified by the

QoS Agent, which forwards this notification to the GCM. As no other service is

provided in the contract, the application is terminated.

4.4 Third Configuration - Dynamic Processing Requirements

Finally, in a third context, it is assumed that the processing requirements change

dynamically, either increasing or decreasing. Thus, we add to the contract

specification three new profiles (maintReplica, addReplica, removeReplica) which

indirectly capture this behavior, allowing to optimize the number of processors

processing the application, and also cater for the processing time deadline. These

profiles include upper and lower bounds to the execution time, which are used to

control the number of worker replicas. The final contract is presented in Figure 8.

Customizing Component-Based Architectures by Contract 11

13 contract {
14 service {
15 instantiate server with profile maintReplica, ProcMem;
16 link client to server with profile Pcom;

17 } Smaint; // basically the same service as repProc
18 service {
19 instantiate server with profile addReplica,ProcMem,Pmax;
20 link client to server with profile Pcom;
21 } Sadd;
22 service {
23 remove server with profile removeReplica;
24 } Sremove;
25
26 negotiation {
27 Smaint -> ((Sremove -> Sremove) || (Sadd -> Sadd));
28 Sremove -> Smaint;
29 Sadd -> Smaint;
30 Sadd -> out-of-service;
31 Smaint -> out-of-service;
32 };
33 } dynRepServer;
34
35 profile {
36 Replication.maxReplica = 10;
37 } Pmax;
38 profile {
39 Replication.Maint = maint;
40 Processing.execution_time >= 500 ms <= 600 ms;
41 } maintainReplica;
42 profile {
43 Replication.Maint = add;
44 Processing.execution_time > 600 ms;
45 } addReplica;
46 profile {
47 Replication.Maint = remove;
48 Processing.execution_time < 500 ms;
49 } removeReplica;

Fig. 8. QoS contract for the dynamic replication configuration

In the dynRepServer contract three services are described. The Smaint service

(lines 14-17) is the preferred one, where the execution time meets the application

requirements and no replicas need to be created (profile maintReplica – lines 38-41).

If the execution time (execution_time property was added to the Processing

category) is greater than the upper bound, the Smaint service is discontinued and the

Sadd service (lines 18-21) is tried. In this case, the addReplica profile is imposed and

one or more replicas are created (line 43), but the number of replicas is limited by the

Pmax profile Replication.maxReplica = 10 property. If this limit is reached no

more replicas can be created and the service cannot be provided. On the other way, if

the execution time gets bellow the lower bound, the Sremove service (lines 22-24) is

12 Orlando Loques1 and Alexandre Sztajnberg2

deployed in order to release resources, removing one or more replicas. The

calculation of the actual number of replicas to be added or removed can be performed

by the GCM using some heuristic based on the information regarded to resource

availability collected from the LCMs.

According to the negotiation clause, where the switching modes for the services

are described, when the Sadd or Sremove services are effective they are renegotiated

while the measured execution time is out of the required range (i.e, < 500 or > 600).

When this value fits again in the preferred range, the establishment of the Smaint

service is again negotiated. Similarly, if any property of the involved profiles is

invalidated during operation, a new negotiation can be initiated. In the worst case,

when the Sadd (or Smaint) service is selected, and no configuration of replicas can

fulfill the contract profiles, an out-of-service state is reached and the application is

terminated. In the next section we discuss how the described configurations could be

deployed using our framework.

4.5 Implementation Details

Each participant node (Figure 9) has instances of the LCM, of the specific

Contractor for the application and of the QoS Agents associated to the resources to be

controlled in each specific platform. The groupCon connector only takes part of the

configuration when the replication services are deployed. As the first step, the GCM

retrieves the application’s contract (for the explanation, we consider the third

configuration only) and creates instances of the LCM in the nodes where the

application components are to be instantiated. Next, it selects the preferred service

(Smaint) to be used and initializes a negotiation activity, sending to the LCMs the

information related to this service, including the associated QoS profiles (ProcMem,

Pcom and maintReplica). Each LCM instantiates (a) the QoS Agents that provide the

interfaces (management and event generation) to the resources used by the service,

and (b) the application specific Contractor, that will interpret the service information

and will interact with the QoS Agents to impose the desired properties.

In the server node, the LCM identifies the processing resources that have to be

managed (instantiate that creates an instance of the server – QoS contract, line 15).

Also, based on the link primitive that interconnects the client module to the server

module (QoS contract, line 16), the LCM in the client’s node identifies the need of a

group communication connector and makes the necessary arrangements to manage

the transport resources. When the LCM instantiates a Contractor it also sends to it the

profiles that have to be attended. In the sequence, the Contractor interacts with the

QoS Agents to request resources and to receive relevant events regarding the status of

the resources. In this example, the Processing QoS Agent associated to a server node

is responsible for reserving and monitoring the CPU time slice (cpuSlice) and

memory (memReserv) for the server module. Also, observe that in addition to monitor

the communication delay the client-server communication channel could optionally

use some kind of resource reservation (e.g., the RSVP protocol) put in effect through

the Transport QoS Agent. After the initial phase, if the required QoS profiles were

imposed, a Contractor notifies the success to its associated LCM that, by its turn,

forwards a corresponding notification to the GCM. If all involved LCMs did return a

Customizing Component-Based Architectures by Contract 13

positive confirmation, the GCM concludes that the negotiation was successful and

that the Smaint service can be established.

In steady state, if a significant change in the monitored values is detected, the QoS

Agents notifies the registered Contractors. If the reported values do not violate the

active QoS profiles, nothing has to be done. If there is a violation, the Contractor can

try to locally readapt the resource in order to keep the service; for instance, passing

new parameters to the QoS Agent. If it is not possible to readapt, the Contractor sends

an out-of-profile notification to the LCM and, in the sequence, another service can be

negotiated.

server

(repln)

Contractor

server

(repln)

Contractor

Contractor

Contract

instantiate repln

at hostN

link client to repln

by c-s.p2pGroup

Global

Contract

Manager

Local

Contract

Manager

server

(repln)

Local

Contract

Manager

Contractor

client c-s

reservation

groupCon

Configurator

QoSAgent

(Transport)

QoSAgent

(Replication)
QoSAgent

(Processing)

update

QoSAgent

(Processing)

update

Fig. 9. Mapping the application contract in the architectural pattern

To exemplify an operation, let’s suppose that while the Smaint service is

operational the Processing QoS Agent in the client node observes that the measured

execution_time value rises beyond the upper bound defined by the maintReplica

profile (> 600). The Processing QoS Agent notifies the Contractor triggering a new

negotiation. The server’s Contractor verifies that a property is out of the ProcMem

profile specification and sends the respective LCM an out-of-profile notification. This

information is then propagated to the GCM, along with an out-of-service notification.

Then the GCM selects the Sadd service and starts the actions required to create a new

replica.

The described infrastructure can be adapted to different support environments,

currently we are working in a prototype using the WNS framework [14]. Many

optimizations are also feasible. For instance, when a Contractor sends an out-of-

profile notification this could be followed by the set of QoS profiles that could be

attended at that moment. Receiving this composed information the GCM could select

the next service to be negotiated, immediately discarding the services with associated

profiles out of the set. Another point of interest is having resource re-adaptation

locally managed by a Contractor, using the interface provided by the QoS Agents.

14 Orlando Loques1 and Alexandre Sztajnberg2

This would be suitable for resources that have embedded re-adaptation policies and

mechanisms. For example, considering the Processing.cpuSlice property, the

Contractor could try to raise the priority of the local server process to maintain this

property within the profile specification. We are investigating how to specify this kind

of concern at the contract level.

5 Related Works and Conclusions

The reflective middleware approach [9] allows for the provided services to be

configured to meet the non-functional properties of the applications. However, the

approach does not provide clear abstractions and mechanisms to help the use of such

requirements in the design of the architectural level of an application. This leads to

the middleware services to be used in an ad-hoc fashion, usually through pieces of

code intertwined to the application’s program. The proposal described in [8] includes

basic mechanisms to collect status information associated to non-functional services.

It also suggests an approach to manage non-functional requirements in the

architectural level, in a way quite similar to ours. CR-RIO complements this proposal

providing an explicit methodology based on contracts and proposing extra

mechanisms to deploy and manage these contracts. More detailed comparisons are

available in [1].

Our approach helps to achieve separation of concerns and component reuse by

allowing non-functional aspects of an application to be specified separately using

high-level contracts expressed in an extended ADL. Part of the codification, related to

a non-functional requirement, can be encapsulated in connectors, which can be

(re)configured during running time in order to cater for the impositions defined by the

associated contract. The infrastructure required to enforce a contract follows an

architectural pattern that is implemented by a standard set of components. We think

that making these structures explicit and available to designers, the task of mapping

architecture-level defined contracts to implementations can be simplified. The

approach has been evaluated through case studies that showed that the code of the

supporting components can be automatically generated, excepting some localized

pieces related to specificities of the particular QoS requirement under consideration.

However, we should notice that the treatment of low-level details always has to be

considered in any QoS aware application. Our approach can help to identify the

intervening hot spots and make the required adaptations more rapidly.

In our proposal, the composition of contracts can be specified combining in a

unique clause the negotiation clauses of the involved contracts [6]. Contracts

regarding different non-functional aspects can be orthogonal and cause no

interference with each other. Contract conflicts can be handled applying a suitable

decision policy; already assigned resources could then be retaken in order to satisfy

the preferred contracts. We are also investigating the specification of individual

contracts for clients and servers [13]. Besides providing the flexibility to support more

dynamic architectures, this would allow to manage contract composition conflicts

through lower granularity interventions.

Customizing Component-Based Architectures by Contract 15

Acknowledgments. Sidney Ansaloni and Romulo Curty, M.Sc. students, provided

the examples and valuable insights that helped us to present this text. Orlando Loques

and Alexandre Sztajnberg are partially supported by CNPq (grants PDPG-TI

552137/2002 e 552192/2002, respectively). Alexandre Sztajnberg is also partially

supported by Faperj (grant E-26/171.430/2002).

References

1. Ansaloni, S., “An Architectural Pattern to Describe and Implement Qos Contracts”,

Masters Dissertation, Instituto de Computação, UFF, May, 2003.

2. Beugnard, A., Jézéquel, J.-M., Plouzeau, N., Watkins, D., “Making Components Contract

Aware”, IEEE Computer, 32(7), July, 1999.

3. Braga, C. e Sztajnberg, A., “Towards a Rewriting Semantics to a Software Architecture

Description Language”, 6th Workshop on Formal Methods, Campina Grande, Brasil,

October, 2003.

4. Buschman, F., et alli, “Pattern-Oriented Software Architecture – a System of Patterns

(POSA1)”, John Willey and sons, Chichester, ISBN 0-471-95869-7, UK, 1996.

5. Curty, R., "A Methodology to Describe and Implement Contracts for Services with

Differentiated Quality in Distributed Architectures ", Masters Dissertation, Instituto de

Computação, UFF, 2002.

6. Curty, R., Ansaloni, S., Loques, O.G. e Sztajnberg, A., “Deploying Non-Functional

Aspects by Contract”, 2nd Workshop on Reflective and Adaptive Middleware,

Middleware2003 Companion, pp.90-94, Rio de Janeiro, Brasil, June, 2003.

7. Frolund, S. e Koistinen, J., "Quality-of-Service Specifications in Distributed Object

Systems", Distributed Systems Engineering, IEE, No. 5, pp. 179-202, UK, 1998.

8. Garlan, D., Schmerl, B. R. and Chang, J., “Using Gauges for Architecture-Based

Monitoring and Adaptation”, Working Conference on Complex and Dynamic Systems

Architecture, December, 2001.

9. Kon, F. et alli, “The Case for Adaptive Middleware”, Communications of the ACM, pp.

33-38, Vol. 45, No. 6, June, 2002.

10. Loques, O., Sztajnberg, A., Leite, J., Lobosco, M., “On the Integration of Configuration

and Meta-Level Programming Approaches”, in Reflection and Software Engineering V.

1826, LNCS, pp. 191-210, Springer-Verlag, Heidelberg, Germany, June, 2000.

11. Loyall, J. P., Rubel, P., Atighetchi, M., Schantz, R., Zinky, J. “Emerging Patterns in

Adaptive, Distributed Real-Time, Embedded Middleware”, 9th Conference on Pattern

Language of Programs, Monticello, Il., September, 2002.

12. “Open H323”, Quicknet Technologies, http://www.OpenH323.org, 2004.

13. Sztajnberg, A. and Loques, O., “Bringing QoS to the Architectural Level”, ECOOP 2000

Workshop on QoS on Distributed Object Systems, Cannes France, June, 2000.

14. Wolski, R., Spring, Neil T. and Hayes, J., “The Network Weather Service: A Distributed

Resource Performance Forecasting Service for Metacomputing”, Future Generation

Computer Systems", vol. 15, No. 5-6, pp. 757-768, 1999.

