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Abstract

Empirical scoring functions used in protein-ligand docking calculations are typically trained on a
dataset of complexes with known affinities with the aim of generalizing across different docking
applications. We report a novel method of scoring-function optimization that supports the use of
additional information to constrain scoring function parameters, which can be used to focus a
scoring function’s training towards a particular application, such as screening enrichment. The
approach combines multiple instance learning, positive data in the form of ligands of protein
binding sites of known and unknown affinity and binding geometry, and negative (decoy) data of
ligands thought not to bind particular protein binding sites or known not to bind in particular
geometries. Performance of the method for the Surflex-Dock scoring function is shown in cross-
validation studies and in 8 blind test cases. Tuned functions optimized with a sufficient amount of
data exhibited either improved or undiminished screening performance relative to the original
function across all eight complexes. Analysis of the changes to the scoring function suggest that
modifications can be learned that are related to protein-specific features such as active-site
mobility.

Introduction

The utility of molecular docking to drug discovery is well established, and has been
highlighted in a number of recent reviews, benchmarking studies, and comparative
evaluations [1; 2; 3]. There are a multitude of approaches, but they share the same
underlying strategy: the marriage of a search strategy to a scoring function with the goal of
identifying the optimal conformation and alignment (pose) of a ligand bound to a site within
a protein of known structure. The earliest work in the area, pioneered by Blaney and Kuntz,
used a physics-based formulation of scoring (essentially the non-bonded terms of a
molecular mechanics force-field) and a method for rigid-body placement of small molecules
[4]. Later approaches introduced flexible search and empirically derived scoring functions
[5; 6; 7; 8; 9; 10]. Surflex-Dock is a descendent of one of these earlier dockers, called
Hammerhead [11; 12].

Our most recent work regarding Surflex’s scoring function focused on the idea of using
negative training data to provide a sensible basis for optimizing the repulsive parameters of
an empirical scoring function [13]. These data took the form of computationally generated
putative decoy ligands, which were produced by docking a decoy library to each of the
protein structures from the complexes used in the original parameter estimation [9]. By
making use of such data, it was possible to estimate the value of repulsive terms such as
protein-ligand interpenetration instead of relying on an ad hoc value. The difficulty with an
approach relying only upon positive data (protein-ligand complexes of known affinity) is
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that the inductive bias of the most parsimonious estimation regime is to assume that if an
example of an interaction does not exist (e.g. a ligand atom penetrating a protein atom) then
nothing can be concluded, which leads to a value of zero on the associated term. This is in
contrast with PMF-type approaches, where the normalization procedures lead to an
inductive bias wherein the absence of an observation is indicative of low probability, which
results in a preference against unobserved interactions [14; 15]. Our approach is related to
one reported by Smith et al. [16], who used “noise” molecules in refining scoring functions
for DOCK. However, the genesis of the work reported here and that which preceded it was
our prior work that established the concept of multiple-instance learning in the area of 3D
QSAR using both active and inactive ligands [17; 18].

When docking methods are evaluated, there are three criteria applied. First, docking

accuracy measures the probability that a ligand will be docked in a pose that matches the
experimental determination. Second, screening utility measures the ability of a docker to
rank a list of known ligands of a protein above a set of decoys. Third, scoring accuracy

measures the ability to rank a list of active ligands in order of binding affinity. In most work
with scoring function development, the actual data for parameter estimation relates to
scoring accuracy [7; 9; 19; 20]. Parameters are sought to minimize the difference between
computed and experimental affinities for ligands with known bound geometries. In our
recent report, we showed that it was possible to make use of negative data which related to
screening utility. The approach sought parameters for a scoring function that would
simultaneously minimize computed/experimental affinity differences and minimize the
excursion of computed decoy affinities beyond a fixed threshold [13].

In this paper, we generalize this concept so that information from each of the three areas of
docking application may be used to influence the refinement of Surflex’s scoring function.
Data of the following form may be used to refine the scoring function:

1. Protein/ligand complexes of known affinity (as before). The constraint is that the
computed score should be as close as possible to the experimental one for the
highest scoring pose that is close to the experimentally determined one.

2. Ligands known not to bind a protein beyond some threshold. The constraint is that
the computed score for any pose (expressed as pKd) should not exceed a settable
threshold.

3. Ligands known to bind a protein, but without a precise determination of affinity.
The constraint is that the computed score for the best pose (expressed as pKd)
should exceed a settable threshold.

4. A set of ligands known to bind a protein along with a set of ligands thought not to
bind. The constraint is that the separation of the best poses of actives and decoys be
maximized.

5. The correct pose of a ligand for a protein along with incorrect poses of the same
ligand. Here the constraint is that the score for the best close-to-correct pose must
exceed all scores for clearly incorrect poses.

The first three types of data bear on scoring, the fourth bears on screening utility, and the
last bears on geometric docking accuracy. The optimization procedure implements a
weighted objective function for parameter optimization based on simultaneous consideration
of all types of data. In such an optimization problem, the issue of which pose of a ligand to
consider becomes important. As with our previous work [9; 17; 21], we explicitly address
this problem by making explicit choices of pose as the scoring function evolves. For
example, given a protein/ligand complex with known affinity, it is appropriate to make use
of the experimental ligand pose as the initial pose in parameterizing the scoring function.
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However, while the experimental pose may be a very good static approximation of the true
interaction between the ligand and protein, small variations in the ligand position (within the
accuracy of the crystallographic experiment) may yield different scores. Consider a
computed pKd of 7.0 at the precise crystallographic pose of a ligand whose known pKd is
8.0. If a very close pose yields a maximum for the function of 8.0, one should use the 8.0
score, which entails no error for the scoring function. This issue is discussed in detail in our
earliest work on scoring functions for docking [9], which was based on earlier work in 3D
QSAR [17]. The approach has been formalized within the machine-learning community as
multiple-instance learning [18], and it has a substantial impact on the performance of
systems where hidden variables (here the precise pose of a ligand) are present.

In what follows, we demonstrate that this generalized multiple-constraint optimization
procedure is able to improve the screening performance of Surflex-Dock in a protein-target
specific manner. Given that operational use of docking programs typically involves a user
with large amounts of non-public data relating to the particular target under study, we expect
that the ability to specifically tune docking parameters based on such data will lead to
substantial practical benefits in all three areas of docking performance.

The optimization procedure has been implemented as a standalone Surflex program
(Surflex-Dock-Optimize, version 1.0). The scoring function parameter files can be used by
the released version of Surflex-Dock which has been updated to allow for loading parameter
files (version 2.11-lp). A future release of the Surflex-Dock software will incorporate the
optimization feature directly. The software that implements the algorithms described here is
available free of charge to academic researchers for non-commercial use (contact the
corresponding author for details on obtaining the software). Molecular data sets presented
herein are also available.

Methods

The optimization procedure described herein is general enough for use with any
parameterized scoring function. For the purposes of this paper, results are reported for the
scoring function used in Surflex-Dock. A relatively brief review of this scoring function and
its parameters will be given as other work offers a more detailed account [3; 9]. This will be
followed by a description of the data used for training and testing optimized scoring
functions. The last section will describe the optimization procedure itself. All training and
testing data sets used in this study have been taken from published docking benchmarks that
are freely available. They may be obtained by contacting the corresponding author of this
paper.

Scoring Function

The scoring function employed by Surflex-Dock was originally trained on 34 protein-ligand
complexes representing a variety of functional classes whose dissociation constants ranged
from 10−3 to 10−14. This function was optimized to predict the experimental binding
affinities of each complex, resulting in an effective means for modeling the non-covalent
interactions between small organic molecules and proteins. The function is continuous and
piece-wise differentiable with respect to pose. Listed in order of import, the terms of the
scoring function are hydrophobic complementarity, polar complementarity, and entropy.
Parameters are listed in Table 1. The following four equations define the scoring function:

Eq. 1
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Eq. 2

Eq. 3

Eq. 4

The hydrophobic and polar terms (Eqs. 1 and 2) dominate the scoring function. These terms
operate on the pair-wise van der Waals surface distance r between atoms, coupled with
information such as element type, formal charge, and atom status as a hydrogen bond donor
or acceptor. The distance dependence of the hydrophobic and polar interactions are
composed of a Gaussian, sigmoid, and quadratic penetration term. The polar term is further
scaled by directionality and formal charge. The directionality term between atoms I and J is
computed based on three vectors (normalized to unit length): the vector from between I and
J (bij in Eq. 2), the preferred direction of interaction of I (vi), and the preferred direction of
interaction of J (vj). If multiple directional preferences are present (as for a carbonyl
moiety), the preference that yields the maximal polar interaction is used. Additional details
can be found in the original paper describing the scoring function [9]. Figure 1 plots the
relative hydrophobic and polar scores for an ideal contact. Due to the large number of
hydrophobic contacts typically seen between a protein and a ligand, on average the
hydrophobic term tends to dictate scoring despite a smaller peak value per ideal contact. An
ideal hydrogen bond for the scoring function exists, for example, when the center of the O in
C=O is 1.97Å away from the center of the H in an N-H and the four atoms are co-linear.
This results in a contribution of 1.25 pKd units to the interaction score.

The polar repulsion term (Eq. 3) measures the penalty for placing atoms of similar polarity
in close proximity and is scaled by direction. The remaining entropic term (Eq. 4) captures
the degrees of rotational and translational freedom lost to the ligand upon binding. This
ligand-centric penalty scales linearly in the number of rotatable bonds and linearly with the
log of its molecular weight.

As described in the Introduction, our previous work refined the original scoring function,
determining weights for penalty terms that govern steric interpenetration and
noncomplementary polar contacts [13]. This new function (Surflex-Dock v1.31 and all
succeeding versions) was shown to be an improvement over the original and is the default
scoring function used by the program. The set of parameters that define the default function
are the starting point for further optimization in this work.

The protocol used for generating training data, performing scoring function optimization,
and testing protein-specific scoring function optimization was implemented as a standalone
Surflex module (Surflex-Dock-Optimize v1.0). Test set validation performance in this work
was calculated using the standalone optimization suite. Scoring function parameter files
generated by this process can be loaded into the latest released Surflex-Dock program [12]
(v2.11-lp, which has an added –lparam command-line switch). The results presented here
are statistically indistinguishable from those generated by employing the derived parameters
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from optimization to dock the test ligands using Surflex-Dock v2.11-lp with the –lparam
option.

Training Data Set

This work employed several publicly available molecular datasets for training the scoring
function. The original 34 complex set used to train the original scoring function was used to
provide an “anchor” for the scoring function during further optimization [9]. Each of the 34
complexes was annotated by an experimentally derived Kd. This set served as a control
during optimization to ensure that the parameters of the tuned function do not stray
exceedingly far from the values of the default function.

Screening enrichment data was gathered from two primary sources: the PDBBind database
[22] and the DUD database [2]. The former was the basis for our previous work [13] that is
used again here (called the Pham Benchmark). The Pham benchmark consisted of 27 protein
structures with 256 known active ligands from the PDBBind database along with two decoy
databases. Those targets from the Pham benchmark that overlapped with the DUD database
[2] were chosen as case studies for training our scoring function. Table 2 lists the targets
along with information about the number and composition of active ligands:
acetylcholinesterase (AChE), estrogen receptor (ER), coagulation factor Xa (FXa), HIV-1
protease (HIVPR), poly(ADP-ribose) polymerase (PARP), thrombin, trypsin, and thymidine
kinase (TK). The protein structures for these eight targets served as the docking targets for
both the training and test sets. The 107 cognate ligands of these eight targets from the Pham
set became the training data from which the scoring function would learn to distinguish
active from non-active. Active ligands may be referred to as positive examples in what
follows.

Two decoy libraries taken from the Pham benchmark were used as the decoy training
background in optimizing for screening enrichment. Two sources were used to test the
potential of training bias towards a particular set of decoys. One library was derived from
the work of Bissantz et al. [23] which contained 990 randomly selected nonreactive organic
molecules with 0 to 41 rotatable bonds from the Available Chemicals Directory (ACD). This
benchmark (hereon referred to as the Rognan set) was culled to a more drug-like set of 861
molecules with a maximum of 15 rotatable bonds [11]. The ZINC database (version
07.26.2004) [24] was the source for the second decoy set. This database was compiled from
the catalogs of numerous small molecule vendors and represents a collection of purchasable
compounds suitable for virtual screening. A random subselection of 1000 molecules was
taken from the drug-like subset (1,847,466 total) to generate the ZINC1 decoy benchmark
[13]. We will refer to compounds from a background library interchangeably as either
decoys or negative ligands. Recent work by Irwin and Shoichet [2] considered multiple
decoys sets and compared their physical properties as well as the degree of challenge they
posed in screening. The DUD set itself, which was designed with knowledge of the specific
active ligands for the targets under construction, was the most challenging in their
experiments. Among the “agnostic” decoy sets (constructed with no specific knowledge of
the targets under consideration), the ZINC1 set was the most challenging, and the Rognan
set was the least. Consequently, in what follows, we focus most of our attention on the
ZINC1 results.

Data was uniformly prepared by an automated procedure. All protein structures were
converted from PDB to Sybyl mol2 format and protonated at physiological pH. Active site
rotamers such as hydroxyls and thiols, as well as imidazole tautomers, were sampled and
selected for interaction with the co-crystallized cognate ligand. Ligands were minimized
using a DREIDING-like force-field as implemented within Surflex [25; 12]. The active site
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models (called protomols) necessary for docking with Surflex were generated using the
crystallized ligand (surflex-dock – proto_bloat 1.0 proto xtal-lig.mol2
protein.mol2 p1). Initial ligand poses used as input to the scoring function refinement
algorithm were generated using Surflex-Dock-Optimize, which yields equivalent poses to
Surflex-Dock version 2.11 with default screening parameters (surflex-dock –pscreen
dock_list mol-archive.mol2 p1-protomol.mol2 protein.mol2 log).

Test Data Set

To cleanly assess the performance of our tuned function, we conducted screening
enrichment experiments on positive and decoy ligands that were never encountered in
training. As described above, each of the 8 test targets were shared between the Pham and
DUD benchmarks. We made use of the Pham actives for training, which contained fewer
examples of known ligands than present in the DUD set. We used the DUD actives that did
not include any from the Pham set as ligands to test scoring functions that had been
optimized with knowledge of the Pham actives. A fair test required a new decoy
background. Another 1,000 unique molecules were randomly selected from the drug-like
subset of ZINC, this time from version 2007. The process of generating the new decoy set
made use of 2D molecular similarity to eliminate the overlap between the testing and
training decoy libraries. The test decoy set will be referred to as ZINC2.

Optimization Procedure

This work introduces a constraint based optimization scheme that allows the use of several
different sources of data in customizing a scoring function. We will begin by defining the
available constraints and how they might be utilized to create scoring functions optimized
for a particular task. We will then cover the optimization protocol in detail, along with the
options that govern its use.

During any parameter optimization regime, the goal is to extremize the value of an objective
function as we explore the parameter space. Our objective function is described by user-
defined constraints on training data. Constraints come in three flavors: scoring, screening,
and geometric. Together these constraints combine to form the objective function.

Score constraints relate a particular protein and a single ligand or set of ligands to a target
score. The user can specify whether the predicted score should be exactly/above/below the
target score. Moving in an undesired direction from the target score incurs a squared penalty
(see Table 3). This is, in fact, the original training regime where the scoring function was
tuned to fit experimental binding affinities [9]. In the current formulation, we would create
34 individual score constraints of equal weight, one for each of the 34 protein-ligand
complexes, indicating success as an exact match to the experimental Kd. Using additional
such constraints, a user could potentially tune the performance of a scoring function for
more accurate rank-order prediction of novel ligands. By focusing, for example, on training
data that was dominated by the lead series of interest, better predictions of potency for new
ligands in the series could result.

Screening constraints allow a user to denote that one set of positive ligands (e.g. a set of
cognate ligands) should score measurably higher than a set of negative ligands (e.g. a set of
decoys). Performance is assessed by ROC AUC. A function that could flawlessly determine
whether a ligand is positive or negative would have an AUC of 1.0. Conversely, a classifier
which randomly assigned ligands a positive or negative label would achieve an AUC of 0.5
in the average case. The impact of a screening constraint on the objective function is
formulated as the square of its ROC area’s deviation from 1.0 (see Table 3), scaled by 100 to
ensure that its value shares the same effective range as the other constraint types. Using such
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data, a user can tune a scoring function to perform well in finding new leads for a particular
protein of interest in a screening experiment. This particular scenario will be presented in
detail in the results that follow, owing to the existence of a large publicly available database
for testing.

Geometric constraints offer a method for addressing what are termed “hard failures” in
docking. Given an incorrect prediction of a ligand’s pose, it may stem from either a failure
of the search method (the best pose was not found, but it would have scored best, termed a
soft failure). Or, it may stem from a problem in the scoring function: the best-scoring pose
may actually score higher than the correct one (a hard failure). A geometric constraint
enforces the rule that no incorrect pose may score higher than the best correct pose. Any
deviation results in a squared penalty (see Table 3). In focused medicinal chemistry efforts
that are guided in part by docking, the geometric predictions can be very important. By
providing a method to learn from hard docking failures, a user can take advantage of
structures where docking predictions were wrong to improve future performance.

Constraints can be organized further into weighted groups. This feature allows one to
arbitrate the influence of certain constraints over the objective function. Consider the
following scenario: one has 34 protein-ligand complexes whose scores the function should
predict exactly (34 score constraints). One also has a set of known actives and inactives for a
given protein, necessitating the need for a single screening constraint. It is important to
explicitly be able to control the relative importance of these two types of constraints in
modifying the scoring function. To ensure that a single constraint is not overwhelmed by the
presence of numerous competing constraints, we can place the 34 score constraints in one
group and the single screening constraint in a second group. The optimization procedure is
implemented such that each constraint group has an equal bearing on the objective function.
In this example, the objective function essentially will see first the 34 individual scoring
constraints and the single screening constraint as having equal relative importance. Users
may additionally specify a weight be given to a group, providing more control of influence
of different data on the objective function.

Figure 2 depicts a high level view of the optimization procedure. Our method can be
organized concisely into three components: Input → Optimize → Output. The input consists
of constraint information and an initial set of parameters from which the optimization will
begin. The constraint information is simply a set of proteins and ligands coupled with
metadata informing the objective function as to how it should interpret its training data. The
initial values used in all experiments were the default Surflex-Dock parameters reported
previously [9; 13].

Each epoch of optimization proceeds as follows:

1. Score all ligands with the current parameters

2. Assess error as defined by the objective function

3. Check for a stopping condition:

a. Have we exceeded the maximum number of epochs?

b. Have we reached our error goal?

c. Have we not found a new error extremum for some maximum number of
epochs?

4. If we have satisfied a stopping condition, generate output

5. Otherwise, take a step in parameter space
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6. Repeat from step 1

The individual steps are described in more detail below.

Step 1: Scoring all ligands

We use the scoring function with the current set of parameters to score each ligand pose. As
discussed in the Introduction, one complication that arises from the optimization exercise is
that as the scoring function changes, so too does the optimal pose which extremizes the
value of the function. Initially, we begin with poses provided as input by the user with the
underlying assumption that the provided pose is also the highest scoring pose. However, as
parameters change, the original pose may no longer lie at the extremum of the scoring
function. The solution is to interleave local pose optimization along with parameter
optimization. Pose optimization occurs on a schedule during the overall procedure when a
certain number of successful function parameter modification steps have been taken.
Following a local gradient-based optimization of the current ligand pose, the new pose is
added to a “pose cache” for that ligand. Each time a ligand is scored, all cached poses are
scored with the highest score returned as the representative score for this ligand. The results
reported here used a pose cache that stored five of the most recent high scoring poses.

Note that the most general approach would require re-docking of ligands whose true pose
was unknown. However, due to computational complexity concerns, this was not
implemented. The effect may be approximated by interleaving re-docking between separate
invocations of the optimization procedure.

Step 2. Assessing error

The objective function is defined as the mean squared error (MSE) over all constraints n:

Eq. 5

Refer to Table 3 for the error forms of each constraint type. Since the best possible MSE is
zero, the procedure seeks to minimize MSE. A good step in the course of optimization is
defined as one in which the current epoch MSE is lower than the previous epoch.

Step 3. Checking stopping conditions

All three stopping conditions (maximum number of epochs, MSE goal, and maximum
number of epochs with no MSE improvement) are user definable options. In this work, we
used values 100,000, 0.0001, and 200, respectively.

Step 4. Generate output

The most important output is the newly optimized parameter set, which is a text file
containing scoring function parameter values (e.g. “new.param”). These can be used
immediately by Surflex-Dock to perform a task of interest (scoring function parameters are
loaded with -lparam new.param as an argument to Surflex-Dock v2.11 or later).

Step 5. Take a step in parameter space

This scheme interleaves two ways of sampling the parameter space: random walking and
line optimization. A random walk is used to ensure broad parameter space exploration and to
overcome local minima. Line optimization yields precisely optimized local minima from
any given starting point. Each search method is used for a number of iterations, then the
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search method is switched. Of course, many more complex search strategies exist. However,
this procedure yielded robust results and required little time for optimization. On a typical
example requiring both scoring and screening constraints, the parameter optimization
process took under an hour on typical desktop hardware.

Cross-validation: Selecting the proper training regime

In order for the tests on the eight protein targets described to be fair and appropriately
“blind” we needed to determine the preferred optimization regime using other data. The goal
is to combine protein-specific screening constraints with the scoring constraints that gave
rise to the original Surflex-Dock scoring function. The critical issue has to do with the
relative weighting of the two types of constraints. To understand how these constraints
interact, we selected two DUD proteins not in our prediction set: P38 MAP kinase (P38) and
dihydrofolate reductase (DHFR). These were chosen because of their large number of
known actives (256 and 201 actives, respectively). We performed 10-fold cross-validation
using several group weight combinations. For each training fold iteration, actives were
randomly partitioned 30%–70% into training and testing sets. So, while the 34 score
constraints provided an anchor for the current scoring function, the protein-specific
screening constraint provided pressure to learn to score the active training molecules above
the ZINC1 decoy set. The optimizer, which is stochastic, was run beginning with default
scoring function parameters three times. The best scoring-function parameter set by MSE for
each fold was chosen to run a screening enrichment test on the remaining 70% of active
compounds against the ZINC1 background. We tested multiple constraint group weight
combinations, and we computed the mean ROC AUC over the ten cross-validation folds for
each weight combination (Table 4 summarizes the results). Note that in testing a particular
scoring function, a full docking was carried out.

When using default parameters, the scoring function is just better than random on P38 with a
mean ROC AUC = 0.549 over the ten folds screened against ZINC1. The scoring
combination that gives the screening data zero weight gives nearly the same results, as it
should (see row 6 in Table 4). Utilizing this weight mixture is equivalent to freeing all
scoring function parameters as we re-optimize using only the binding affinities for the 34
complex set. The original parameters appear to be stable under re-optimization, despite
employing a more exhaustive search procedure in the present work. Note, the same effect
was seen in the DHFR case.

Conversely, zeroing the scoring constraint weight (row 7 of Table 4), improved ROC area to
almost 0.70 for P38 (from 0.549) and to 0.941 for DHFR (from 0.750). However, by
ignoring the scoring constraint, occasionally pathological behavior resulted in terms of the
magnitude of the scores computed using the optimized scoring functions. Since the internal
docking search strategy makes use of some thresholds on scores, it was important to retain a
similar scale. As we increased the relative weight of the screening constraint, we observed
both the improvements in screening performance under cross-validation while maintaining a
sensible scale where the scores could be interpreted as pKd. Note that increasing weights on
the scoring constraints yielded the expected regression toward the use of only the scoring
constraints.

Given the evidence from the cross validation study on P38 and DHFR, we chose to test the
optimization scheme on the blind data for the eight targets with two constraint groups: a
scoring constraint group defined by the scoring constraints within the 34 complex set; and a
screening constraint group comprised of that complex’s training actives and a set of decoys.
The scoring and screening constraint groups were assigned weights of 1 and 5, respectively.
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Results & Discussion

The primary test of the scoring function optimization method is in a screening enrichment
assessment against eight different protein targets (see Table 2). We have been careful to
avoid any contamination of the test by either the active ligands used for scoring function
tuning or by the decoys used. The test data for each of the eight targets includes novel active
ligands and employs a different set of decoy molecules (the ZINC2 set). We also uniformly
applied the procedure that was developed in our preliminary work (which included cross-
validation on two other targets). The overall numerical results are presented in Table 5, with
plots of the relevant ROC curves presented in Figure 3 and Figure 4. As has become
standard practice, we have characterized screening performance in terms of ROC AUC, and
we have also computed 95% confidence intervals to bracket the performance of the tuned
function in each of the eight test cases. The results are broken into three groups, based on the
performance changes.

Improved Performance: PARP and HIVPR

In the six cases where 10 or more active ligands were available in the Pham set, we observed
increased or unchanged performance in all cases, with significant improvements in two
cases. These two cases (PARP and HIVPR) will be discussed in detail here.

PARP

Poly-(ADP-ribose)-polymerase is involved in the response to genomic damage that results in
strand breaks. For specific proteins, PARP can add up to 200 residues of ADP-ribose to
form branched polymers, which act as binding sites for repair proteins that play a central
role in DNA metabolism [26]. The majority of inhibitors used to tune the scoring function
for PARP were small and had relatively weak binding, typically in the micromolar range
(see Figure 5 for example structures). The first ROC plot of Figure 3 corresponds to the test
of the PARP-focused tuned scoring function on the blind test data. The improvement in
screening enrichment for the blind test molecules in this case was pronounced, with an
improvement in ROC AUC of 0.10, corresponding to an increase in true-positive rate from
approximately 20% to 90% at a false positive rate of less than 5%.

HIVPR

HIV-1 protease is an aspartic protease with a large, solvent-accessible active site with
several charged polar moieties both interior and proximally exterior to the pocket. Crystallo-
graphic studies have shown that interaction with the interior catalytic triad Asp25-Thr26-
Gly27 as well as surface residues, Asp29 and Asp30, is important for enzyme inhibition [27;
28]. The majority of inhibitors used in training bind in the nanomolar range (example
structures are shown in Figure 5). The second plot of Figure 3 shows the ROC curves for
HIVPR. The tuned function shows a substantial increase in true positive rates at a false
positive rate of 5% relative to the default function from roughly 60% to roughly 85%,
corresponding to enhanced early enrichment.

Effects on Test Ligand Scores

The ROC plots are sensitive to the relative separation of active from decoy ligands.
Increases in the scores for active ligands, decreases for decoys, or a combination of both can
lead to improvements in recovery of active ligands and increase in ROC AUC. The
cumulative distributions of positive and negative scores for the default and tuned functions
(Figure 6) reveal the underlying impetus for enrichment improvement.
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In the case of PARP, the increase in ROC AUC from 0.89 to 0.99 for the tuned function
stemmed from a decrease in the scores of the decoys relative to the untuned function with a
simultaneous increase in the scores of the active ligands. The bulk of the actives, when
docked with the tuned scoring function, had scores approximately 1 log unit higher than
when docked using the default scoring function (this corresponds to the rightward shift from
the solid red curve to the solid green curve in the top plot of Figure 6). Conversely, the
inactives exhibited decreases of roughly 0.5 log units. In the case of HIVPR, performance
increased from a ROC AUC of 0.913 to 0.964. However, in this case, the distribution of
decoy scores changed only slightly and did so in the wrong direction. The improvement in
enrichment came from a significant upward shift of the lowest scoring active ligands by
about 1.0 log units. With the default function, 40% of actives had pKd < 7.5, but only 20%
of actives scored by the tuned functions had pKd < 7.5.

Effects on Surflex-Dock Function Terms

The underlying reasons for the performance increases observed with PARP and HIVPR
stemmed from different sources. In the former case, we observed increased ability to
recognize actives and reject decoys. In the latter case, both sets of scores increased, but with
a specific advantage to the actives. Inspection of the individual terms of the scoring function
before and after the optimization procedure (Figure 7) lends insight into the reasons for
these differences. Three plots are given for each case, showing the default and tuned
functions for the hydrophobic, polar, and polar mismatch terms. The axes are the same as for
Figure 1, with the Y axis being the interaction score in pKd, and with the X axis being the
inter-atomic surface distance in Angstroms. Negative distances indicate nominal
interpenetration of van der Waals radii; note that radii for polar atoms are not scaled, so
ideal polar contacts exhibit numerical interpenetration.

The hydrophobic terms show markedly different modifications in response to tuning for
PARP and HIVPR. In the former case (top left plot), the penalty for atomic surface
interpenetration is decreased somewhat, and the area of positive hydrophobic interaction
(from the Gaussian in Eq. 1) is both more narrow and has lower amplitude. In the latter case,
the softening of the overlap penalty is more significant, and the area of positive interaction
increases. The tuned scoring function parameters are given in Table 6. The decrease in
sensitivity to inter-atomic clashes is reflected in the value of the hrd parameter, which
changed from −0.95 (default function) to −0.16 (tuned function). For HIVPR, we also
considered the effect of generating the training poses (and testing the resulting tuned
function) without the use of Surflex’s ligand pre-minimization and post-docking all-atom
optimization. These procedures are part of the default screening protocol of Surflex, since
they help decrease dependence on input ligand preparation and allow access to Cartesian
movements that can ameliorate clashes between the protein and ligand [12]. This can be
especially important for large ligands. The blue curve in Figure 7 shows that the tuned clash
penalty is even softer when the docking process is restricted to a ligand’s internal
coordinates. In order to obtain reasonably high scores for the large HIVPR ligands, it is
necessary to relax the clashing penalty, and this effect is larger when the ligands are unable
to bend outside of torsional and alignment space. Differences in docking protocol can yield
marked differences in the resulting tuned functions, so particular attention must be given to
replicating the protocol used for generating training data as will be used for operational
application of the resulting tuned function.

The differences in clashing penalty between the PARP and HIVPR cases can be seen in the
polar terms (middle plots of Figure 7), since the hrd parameter also controls excessive
interpenetration between polar atoms. Apart from that, the positive aspect of polar
interactions exhibited similar behavior in the two tuned function, with both increases in the
maximal value of a single polar contact (controlled by the poz parameter) and a slight
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increase in the distance from which complementary polar contacts obtain positive scores
(controlled by the pom parameter, and corresponding to a change from 1.97 Å to 2.09 Å in
inter-atomic center distances for N-H and C=O).

In contrast to the decrease in the repulsive effect of inter-atomic clashes, we see a marked
increase in the repulsive effect of proximal same-charge moieties for both PARP and
HIVPR. The rightmost plots of Figure 7 show increases both in the overall magnitude of
same-charge repulsion penalty (controlled by the pr2 parameter) as well as an increase in
the distance at which the effect becomes important (controlled by the prm parameter). In the
case of HIVPR, the magnitude of the same-charge repulsion penalty increased 75% over the
default function, and for PARP, it increased approximately 45%.

Examples of Effects on Docked Actives and Decoys

The changes in the tuned scoring functions are evident in the behavior of specific test
ligands. Figure 8 (top panel) shows the experimentally determined pose of a cyclic urea
HIVPR inhibitor bound to the protease (PDB code: 1BVE). Note the position of the
hydroxyl groups of the central 7-member ring relative to the catalytic aspartic acids ASP-
A25 and ASP-B25 in dark blue. The test ligand (ZINC03833842) has a very similar
structure and is shown in its docked pose using the tuned scoring function in the middle
panel. Despite a poor ring geometry that was present in the input structure (ring search
within Surflex was not employed), the docked pose with the tuned scoring function is
reasonable, with sensible interactions between the hydroxyls on the central ring system to
the aspartic acid residues as well as good placement of the “arms” of the ligand. The bottom
panel shows the same ligand docked using the default scoring function. In this case, the
inhibitor was clearly docked poorly.

This ligand was ranked 44th out of 1038 molecules (38 actives + 1000 ZINC2 decoys) by the
default scoring function. However, when re-docked using the tuned function, it was ranked
1st. The pose resulting from application of the tuned function is very different, owing to the
differences in the penalty terms. If we rescore the tuned function pose using the default
function, the steric clashing term alone generates more than 10 pKd units in additional
penalty. The large difference in penalty terms between the two functions leads to widely
different poses among the active ligands when using the different functions. Among all of
the active test ligands, the typical deviation in top-scoring pose between the application of
the two functions was quite high (mean rmsd of 5.5Å), reflecting both the flexibility of the
ligands as well as the substantial change in the scoring function, especially the parameters
that controlled steric clashing. With HIV protease, it is known that ligand binding causes
substantial conformational changes to the enzyme [28]. Treatment of the protein structure as
rigid has obvious computational benefits in terms of search complexity, but in cases where
this treatment is especially inaccurate (e.g. with large ligands), lowering the steric penalty
serves as a surrogate for modeling induced fit. The scoring function optimization scheme
provides a systematic method to exploit such protein-specific features.

In the case of PARP, the active site is much smaller, and it appears to undergo a smaller
degree of movement on binding inhibitors. This is evidenced by the stronger penalty for
steric clashes as compared with HIVPR, and it also shows in the degree to which docking
with the tuned scoring function yields different top scoring poses compared with docking
with the default function. For PARP, 17/31 test ligands dock within 0.5Å rmsd between
tuned and default functions, with only 4 ligands above 1.0Å rmsd, including 2 above 2.0Å
rmsd. Figure 9 shows the ligand with the largest geometric deviation between docking with
the two different scoring functions. The left panel shows the pose generated using the tuned
function, and the middle panel shows the pose from the default function. While the pose is
not grossly different, as in the HIVPR case shown above, the pose from the tuned function is
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clearly closer to correct, making the appropriate contacts common to PARP inhibitors. Note
that this case was the exception. Most of the top-scoring poses changed very little, but the
tuned function yielded systematically higher scores for the actives. In the rightmost panel, a
relatively high-ranking decoy is shown as docked using the default scoring function (it
ranked 138/1031 molecules). The tuned function, when used to rescore the poses produced
by docking using the default function ranked the decoy at 736/1031. In the full docking that
gave rise to the ROC performance shown in Figure 3, this decoy ranked 961/1031. So, while
the changes in the scoring function had relatively subtle effects on the active ligands, the
effects on the decoys were more substantial.

Small Performance Changes: Four targets

Optimization yielded small, but not statistically significant improvements in three of four
cases (ER, Thrombin, and TK), and produced an insignificant decrease in performance in
the other case (Trypsin). Perusal of the training results revealed that there was little
information to be extracted from the input data. The default function yielded a mean ROC
AUC in the training data of 0.95 (minimum 0.93, maximum 1.0). Following optimization,
the average training performance was 0.98 (minimum 0.97, maximum 1.0). While the
training procedure yielded the desired effect on the training data, given that there was very
little room for improvement, the net result was that little improvement was seen in the test
data. Lacking a significant number of examples that are poorly ranked, there should be no
expectation of a significant change after training. However, the fact that the function
parameters are stable in this situation is a useful characteristic. This is aided by inclusion of
the original set of 34 complexes as part of the weighted training regime.

Performance Decreases: Too little training data

In the two cases (FXa and AChE) where just six molecules were available as active ligands
from which to tune the scoring function, overall performance on the test libraries was
reduced in a statistically significant fashion (see Table 5). To test whether the lack of active
ligand examples was the source of the reduction in performance, we added 20 randomly
selected actives from the test sets for FXa and AChE to their training sets. After retuning the
scoring functions using the same procedure as before, the addition of active training ligands
was shown to reverse the degradation. Figure 4 shows the ROC plots corresponding to these
additional experiments. In the case of FXa, the tuned function yielded a significant increase,
though just marginally in a statistical sense. In the case of AChE, while performance was
improved (instead of substantially decreased), the screening utility was still low.

Training on the very small number of actives pushed the optimization protocol toward
specific parameter changes for a skewed population of actives. Increasing the number of
training examples avoided this skew, but still did not address the problem of weak screening
performance. AChE contains a long, narrow binding pocket formed by the aromatic rings of
14 conserved residues [29]. Two active sites are known to exist: a main site located at the
bottom of the aromatic gorge, and a secondary site 14Å away near the opening of the
binding cavity [30]. This target represents a difficult case in that inhibitors may occupy just
the main site or interact with both sites. The active site used in our study (pdb code: 1E66)
was taken from the structure of AChE in complex with huprine X [31], a small molecule
with only 40 atoms that binds the primary active site at the bottom of the long pocket. We
repeated the optimization under identical conditions with the extended training set, but we
used a different structure for AChE (pdb code: 1H23). In this structure, the bound ligand
was much larger, huperzine A, which occupies both the primary and secondary sites [32].
We then executed the screening enrichment test making use of both structures, keeping the
highest score from either run as the representative ligand score. The results from this
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experiment were encouraging. Under this treatment, the ROC AUC of the tuned function
improved to 0.753, which was significantly better than the default function performed using
only a single structure. In this case, scoring function tuning alone was not sufficient to
overcome serious limitations imposed by the structure that was used for docking.

The Effect of Decoy Sets

Our results show very little effect of changing the decoy set used in training. Using either
the Rognan decoy set or the ZINC1 set yielded nearly identical performance (see Table 5).
This makes sense, since the effect of a decoy set in the optimization exercise is based upon
the small proportion of difficult cases that show up as nominal false positives when using
the default scoring function. As long as a decoy set contains some reasonable candidates to
be such false positives, it will serve adequately. Note, however, that there are limits to this.
A decoy set containing only a large collection of different Fullerenes probably would be of
no utility in refining scoring functions for the proteins under study. With respect to the effect
of different decoy sets on testing the performance of docking systems, experience is
somewhat mixed. While our results [13] agree with those of Irwin and Shoichet [2] that the
ZINC1 set (called the “Jain set” in [2]) is more challenging than the Rognan set, the
difference we observed was much smaller in magnitude [12].

In this work, we have chosen to continue to use decoy sets that have been constructed with
no specific knowledge of active ligand structures. We have done so for three reasons. First,
it provides a direct comparison to our previous studies, which employed the same (or
similarly constructed) decoy sets as well as overlapping protein structures [13; 12; 11].
Second, while the statistical likelihood of finding true ligands among a random collection of
screening compounds is known to be low (1/1000 to 1/10,000), it is not at all clear what the
likelihood might be if one selects a set of decoys that have similar size, charge, and
hydrophobicity characteristics, though it is almost certainly higher. Third, even decoy sets
that have been shown to have relatively non-drug-like properties are sufficient to distinguish
the performance of many docking protocols [3].

Accuracy of Training Poses

One might expect that having close to correct poses for active ligands used in training would
have a beneficial impact on the tuned scoring functions. This is a difficult effect to measure,
in part because one typically employs a single protein structure in screening, so we have
used single structures in our experiments. While all of the active ligands in the Pham set (by
construction) had known bound poses, since protein conformations change, not all of those
poses would serve as appropriate starting points using a single protein structure. Rather than
using those directly, we re-docked the active ligands using more aggressive search
parameters. In cases where a pose existed within 2Å rmsd of correct, and whose score was
within 80% of the highest score for any pose, we replaced the highest scoring pose with this
pose for purposes of training. This is related to an approach reported by Smith et al. [16],
where the closest-docked-pose was used in scoring function refinement and compared with
making use of crystallographic poses. After this filtering method was applied, 76% our
training poses were within 2Å rmsd of correct, vs. 46% without filtering. We repeated the
optimization experiment summarized in Table 5. Virtually no difference in test performance
was detected across all eight complexes. To a degree, this parallels what was found by
Warren et al. [1], where they observed little relationship between docking accuracy and
screening utility. However, this is not an intuitive result and requires more investigation.
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Conclusions

The results reported here clearly demonstrate that the parameters governing a scoring
function for protein-ligand interactions can be optimized to improve performance for a
particular task. Moreover, the multiple constraint approach for constructing an objective
function for optimization of scoring functions introduces an extensible framework for
making use of many types of data. In this work, we have optimized the Surflex-Dock
scoring function to enhance screening enrichment for particular targets. Significant
screening improvement was possible when training on as few as 15 known actives, with
substantial increases in early enrichment for HIV protease and PARP. In all cases with 10 or
more actives, screening performance was improved or stayed the same. For those complexes
with less than 10 training ligands, use of the very small data sets was problematic but was
reversed by including additional data.

As a practical matter, many practitioners of docking spend a great deal of effort on very
small numbers of targets. Frequently, such situations involve access to large quantities of
proprietary crystal structures as well as structure-activity data. While refinement of scoring
functions for docking will continue toward addressing the general case of application to any
target, focused refinement may prove to be of great utility to those whose interests lie in
studying a particular target as opposed to caring about the generality of the methodology.
By providing the tools for rapid optimization of scoring function parameters to users, we
hope that the subtle parameter refinements seen here to yield large changes in performance
will be demonstrated on targets “in the wild.”

As a theoretical matter, a rigorous treatment of the multiple instance problem (which pose
do we listen to?) coupled with creative use of objective functions (can we enforce a
constraint that this ligand or pose is supposed to score better than these others?) may prove
to be of use beyond scoring functions in docking or methods in 3D QSAR. The place where
such an approach has obvious applicability, but has not yet been tried to our knowledge, is
in the development and refinement of empirical scoring functions for use in protein folding.
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Figure 1. Hydrophobic and polar terms of the Surflex-Dock scoring function

The Y axis is the interaction score in pKd, and the X axis is the inter-atomic surface distance
in Angstroms. Negative distances indicate nominal interpenetration of van der Waals radii.
Radii for polar atoms are not scaled, so ideal polar contacts exhibit nominal numerical
interpenetration. The hydrophobic term peaks at 0.1 pKd units just as the atoms’ van der
Waal’s shells begin to overlap. The polar term peaks at approximately 1.25 pKd units for an
ideal hydrogen bond.
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Figure 2. Flowchart of the optimization procedure

Constraints and initial parameter values are fed into the optimizer, which then outputs the
best parameters found as well as the optimized ligand scores.
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Figure 3. ROC plots for 6 targets with sufficient training data

Performance for the default scoring function is in red; the tuned scoring function trained
with the ZINC1 decoy background is in green. In all six cases, enrichment performance of
the tuned functions was improved or virtually identical to the default function.
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Figure 4. ROC plots for Factor Xa and ACHE: the effect of increased training set size

For Factor Xa and AChE, just 6 ligands were used in the initial scoring function tuning
(green curves), resulting in significantly worse performance in both cases relative to the
default function (red curves). By adding more data (20 active ligands in each case, blue
curves), the decrease in performance is changed into an increase, a statistically significant
one in the case of FXa. For AChE, making use of two protein structures, each with
separately tuned scoring functions yielded substantially improved performance.
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Figure 5. Example structures for PARP and HIVPR training ligands
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Figure 6. Cumulative distribution of test ligand scores PARP and HIVPR

In both the PARP and HIVPR cases, we observed substantial improvement in ROC AUC
(+0.10 and +0.05, respectively). Improvements resulted from increases in relative separation
between actives and decoys, and the absolute shifts in scores are shown here in cumulative
histograms. For the default scoring function, ligand distributions are shown in red (solid for
actives and dotted for decoys). For the tuned functions, green is used. In the case of PARP,
the distribution of active scores shifted right, and the distribution of decoy scores shifted
left. For HIVPR, the decoy distribution was shifted insignificantly, but the scores of the least
well scoring actives shifted favorably by about 1 log unit.
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Figure 7. Key function terms for PARP and HIVPR: Effects of tuning

The top row of plots depicts tuned (green) and default (red) versions of the hydrophobic,
polar, and polar mismatch terms for PARP (left to right, respectively). The bottom row
depicts the same for HIVPR, with the addition of a plot (blue) showing the difference
obtained for the hydrophobic term by not employing all-atom optimization for generation of
the training poses of actives and decoys (see text for discussion). For both PARP and
HIVPR, we observed a relaxation of the interpenetration penalty (green curves in the left
two plots at negative distances). However, in the case of HIVPR, which is a larger and more
flexible binding site, the tuned penalty was less severe than for PARP. Also, whereas for
HIVPR, the positive region of hydrophobic contact was slightly broader than the original
function, for PARP it was slightly less broad. Both proteins received slight increases in the
value of polar contact and received significant enhancements to the penalties for
mismatched polar contacts.
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Figure 8. Behavior of an active test ligand within the HIVPR active site

For reference, the orientation of the catalytic residues within the binding pocket is shown in
dark blue. The top panel shows the experimentally determined pose (PDB code: 1BVE) of
the cyclic urea derivative DMP323. The pose shown in the middle panel was generated by
the tuned function, and is similar despite a poor ring geometry from the input structure (ring
searching was not used in the protocol). The hydroxyl groups are oriented correctly to
interact with the catalytic aspartic acid residues. The bottom panel shows the pose resulting
from application of the default function. Here the ligand is docked upside down. The tuned
function was able to find the correct pose due to a relaxation of the steric clashing term
coupled with a large repulsion penalty for placing similar charges in close proximity.
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Figure 9. Test ligands for PARP

The left panel depicts the docked pose of test active ZINC03832208 using the tuned scoring
function. The middle panel shows the same ligand docked with the default scoring function.
The poses are not terribly dissimilar, but the tuned scoring function allows the ligand to
make a number of appropriate polar contacts that are not made by docking with the default
function. The interactions of the ligand’s amide with GLY-863 and SER-904 are
characteristic of PARP inhibitors. The right panel depicts the decoy ZINC04819306 docked
using the default scoring function. It ranked 138/1031 molecules (31 actives and 1000
decoys). When docked using the tuned scoring function (not shown) it ranked 961/1031.
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Table 1

Surflex Parameters

Linear and nonlinear parameters that govern the Surflex scoring function. In total, 17 tunable parameters
model the hydrophobic, polar, and entropic terms. Column 1 lists the variable name as given in Equations 1–4;
column 2 gives the parameter name; and column 3 details the parameter’s application within the scoring
function. Parameters marked with an asterisk are treated as constants and were not optimized.

Equation
Variable

Parameter
Name

Explanation

l1 stz Steric Gaussian attraction scale factor

l2 str Steric sigmoid repulsion scale factor

l3 hrd Steric hard penetration scale factor

l4 poz Polar Gaussian attraction scale factor

l5 por Polar sigmoid repulsion scale factor

l6 pr2 Polar mismatch scale factor

l7 ent N rotatable bonds scale factor

l8 con Molecular weight scale factor

n1 stm Steric Gaussian location

n2 sts Steric Gaussian spread

n3* STT Sigmoid steepness (10.0)

n4 srm+stm Steric sigmoid inflection point

n5* bump_thresh VdW allowance for hard clashing (0.1)

n6 pom Polar Gaussian location

n7 pos Polar Gaussian spread

n8 srm+pom Polar sigmoid inflection point

n9* pbump_thresh VdW allowance for polar clashing (0.7)

n10 hpl Polar direction sigmoid inflection point

n11 csf Charge scale factor

n12 prm Polar repulsion Gaussian location

n13 ms Polar repulsion Gaussian spread
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Table 3

Constraint Definitions and Error Impact on the Objective Function

The system allows 5 different constraints types on input data. Three score constraints are available to define
valid scores for a particular ligand set. A screening enrichment constraint engenders favor of one set of ligands
over another. A geometric constraint indicates emphasis of proper poses over improper poses. The second
column details the necessary input for each constraint type. Error contributions to the objective function are
given in the third column.

Constraint Input Error

score protein protomol ligand(s) = scoretarget (scorepredicted – scoretarget)2

score protein protomol ligand(s) < scoretarget
(scorepredicted – scoretarget)2

if scorepredicted > scoretarget

score protein protomol ligand(s) > scoretarget
(scorepredicted – scoretarget)2

if scorepredicted < scoretarget

screening protein protomol +ligand(s) −ligand(s) 100 · (1 – ROCarea)2

geometric protein protomol +pose(s) −pose(s)
(highest score+pose – score−pose)2

if score−pose > highest score+pose
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Table 6

Parameter values of the default and tuned functions for PARP and HIVPR.

Param Default
PARP
Tuned

HIVPR
Tuned

stz 0.0898 0.0614 0.0891

str −0.0841 −0.0911 −0.0756

sts 0.6213 1.1162 0.4461

stm 0.1339 0.1191 0.1510

srm 0.4880 0.0070 0.5279

hrd −0.9450 −0.3602 −0.1634

poz 1.2388 1.5443 1.4769

por −0.1796 −0.1514 −0.2820

pos 0.3234 0.4196 0.3908

pom 0.6313 0.5422 0.5098

hpl 0.6139 0.6787 0.7248

csf 0.5000 0.1895 0.1753

pr2 −2.5200 −3.7662 −4.4127

prm 0.5010 0.2568 0.4102

ms 0.5000 0.3966 0.5437

ent −0.2137 −0.4551 −0.2590

con −1.0406 −0.2445 −0.9650
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