CUT-OFF FREQUENCY IN RADIALLY
INHOMOGENEOUS SINGLE-MODE FIBRE

Indexing term: Optical fibres

The limit for single-mode operation in a graded-index fibre has
been obtained by calculating the normalised cut-off frequency
of the TEy, mode. The effect of diffusion at the core-cladding
boundary has been estimated.

Introduction: Single-mode fibres offer the potentiality of very
large bandwidths, particularly when operated at wavelengths
of about 1.2 um, where the loss' and dispersion? are low.
Microbending, and thus cabling problems, can be reduced
considerably by appropriate choice of core diameter,
although the problem of jointing remains. Nevertheless,
single-mode fibres merit careful consideration as potential
long-distance transmission lines. A major factor is the limit
for single-mode operation, which is determined by the onset
of the 2nd-order TE,; mode. In a perfect step-index fibre,
this occurs at a normalised cut-off frequency V.= 2.4,
although the apparent value* may be appreciably higher.
However, during the fabrication process, whether by the
concentric crucible or the homogeneous vapour-deposition
techniques, interdiffusion of the components can occur at
the core—cladding boundary, causing a significant rounding
of the stepped profile, particularly with soft glasses.* It is
necessary, therefore, to consider the effect of such refractive-
index grading on V.. We therefore calculate, by a series
method, the cut-off frequency V. for the TE,, mode in a
radially inhomogeneous fibre for a wide range of profiles, and
assess the effect of diffusion at the core—cladding boundary.

Theory: Consider a fibre with a relative-permittivity distri-
bution
e,.(1-2AR* = n,2(1-2AR%) 0< R <1
oy = [ ) = m*( ) o
&,(1-24) = ny? Rz1
where R = radial distance r/core radius a,
= (n,2—ny*)2n,*

and 1 < a < . The extremes « = 1, «o denote triangular
and stepped profiles, respectively.

For the TE,; mode we seek solutions in cylindrical
(r,0,z) co-ordinates for the electric- and magnetic-field
components of the type

E; = —jes(R)
H, = h(R) exp(—jfz) R 5]
H. = h.(R)

Substitution in Maxwell’s equations gives

R) = In core In cladding
eo(R) = see eqn. 4 AK,(WR)
h(R) = J—’Le, “3 ~, AK(WR) G
1 AW
h.(R) = wpa R dR —[Res(R)] — Py Ko(WR)

while, for R < 1, we obtain for e,(R) the equation

d? €9 1 de, 2 2 pa —2 _
=+ RdR+(U —VZR*—R 2)ep=0. . (4)
where K, (W) = modified Hankel function and

V2=U24+W?2=0w?ue,a*2A . . . . . (O
Applying eqn. 3, the condition of continuity of e, and 4, at
the core-cladding boundary gives
W Ko(W)

K, (W)
The cut-off condition is obtained by setting W = 0 into
eqns. 3, 4 and 6. Thus

d? e, + L 1 de,

dR? R drR

d
d—E[R‘"’(R)]= - e at R=1. . (6)

+[V2A(1—R9)—R-2e,=0 . . (7)

andat R =1
~d€g
4R +ep = 0 N . . . . . . . . . (8)

Eqn. 7 may be solved by V. by a series solution in which the
coefficients a, are selected such that eqn. 9 is a solution of
eqn. 7. Thus

eg(R)=§_:oa,,R"+‘ az 0 R )

Note that the convergence is greatly increased, and the
calculation correspondingly simplified, by taking the exponent
of R as n+1 rather than n.

Substituting eqn. 9 into eqn. 7 and equating the coefficients
of terms in each power of R produces a recurrence relation
for the a,:

2><4a2+chao =0
4><6a4+chaz =0

(a+ 1) a+3)azy 1+ V201 =0 N ¢ 1))

(a+ 2)(&'*'4)(1“, 2+ ch(aa_ao) =

where a, = 0. From the Aboundary condition (eqn. 8) the
condition for cut-off is obtained, namely

Y, n+2a,=0 . . . . . . . . .Y
n=0
Finally, substitution of eqn. 10 into eqn. 11 gives an algebraic
equation with real coefficients for V., which may be solved

by the Newton—-Raphson method.

Results: The calculated cut-off frequency V. is shown in
Fig. 1 for the whole range of a-profiles, in a single-mode fibre,
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Fig. 1 Variation with profile parameter o. of cut-off frequency
V. in single-mode graded-index fibre

from a step-index to a triangular-index profile. As expected,
for a step-index fibre (a = o)V, = 2-405 and rises progres-
sively with smaller « to 4-381 at a = 1.

Comparison with other results is possible for the particular
case of a = 2, for which Fig. 1 gives ¥, = 3.518. Thus, for
the same parabolic-index profile, Dil and Blok,® who also
use a series method of solution (although a different form of
series), obtain V, = 3.530 for the HE;; mode. Since the latter
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has a slightly higher cut-off frequency than that of the TE,,
mode, the agreement is satisfactory. Other results are 3-401
for the variational® method and 3-642 for a more apnroxi-
mate perturbation’ method.

Fig. | gives V, for any value of a, and it can be used to
estimate the effect of diffusion at the core-cladding interface
by plotting the refractive-index profiles for various « from
egn. 1. Thus the equivalent of diffusion from the cladding by
up to 10%; of the core radius has practically no effect on V..
Similarly, a fall in refractive index over 259 of the core
radius causes V, to change by only 5%,. Strictly, the corres-
ponding small increase in the refractive index in the cladding
should also be taken into account, but the effect will be small
compared with that in the core.

[t appears that the variational method should be used with
care. For example, when used to deduce the E, component of
the HE,, mode, it gives

. “ 1 JoUj R)
¢ lA=l (LZ_]A)Z Jolji) (

where
J. = Bessel function of order »
Ju=(k—Dthrootof J, =0
A, , = constants
U = normalised propagation constant, as in eqn. 5.

However, it may be shown via the Dini expansion (see
Appendix) that eqn. 12 reduces to E, = 4, Jo(U'R), whereas,
in a graded-index, as distinct from a step-index, fibre a Bessel
function is not an accurate approximation to the field
distribution. In particular, the field distribution far from
cut-off in a parabolic-index fibre is more correctly described
by a Laguerre polynomial.

Further, calculations of spot size and its variation with V,
by using the variational method differ from those obtained
elsewhere.® It is also worth noting that the series method, in
the form of eqn. 9, reduces the computing time by a factor
of about 25.
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Appendix: The Bessel function J,(UR) can be shown from
the Dini expansion to be given by

Jn(UR) =

jkz Jm(jk R)[L'Jm(jk)'lm+ I(Lv)_jk Jm+ l(jk)‘lm(,U)]

k=1 d 2 ]
(va_jkz) Iijkzﬁ{‘,m‘jk“] +(jk2_m2)[Jm(jk)]z
[

N ()

where j,, j, etc. are the positive zeros of the equation

d
:T{J,,,(z):+hJ,,,(z) (h = constant) . . . (14)
z
For h = 0 and m = 0, the j, become the positive zeros of
J1(z), so that eqn. 13 may be rewritten as

. . - Joljx R)
Jo(UR) = 2UJ (L S
o ) 2 )kz;l (L Z_sz)‘]()(]k)

(15)
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