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CUT-PCR: CRISPR-mediated, ultrasensitive detection

of target DNA using PCR
SH Lee1,9, J Yu2,9, G-H Hwang3, S Kim1, HS Kim1,4, S Ye1, K Kim1, J Park5, DY Park6, Y-K Cho5,7, J-S Kim1,4 and S Bae3,8

Circulating tumor DNA (ctDNA) has emerged as a tumor-specific biomarker for the early detection of various cancers. To date,

several techniques have been devised to enrich the extremely small amounts of ctDNA present in plasma, but they are still

insufficient for cancer diagnosis, especially at the early stage. Here, we developed a novel method, CUT (CRISPR-mediated,

Ultrasensitive detection of Target DNA)-PCR, which uses CRISPR endonucleases to enrich and detect the extremely small amounts

of tumor DNA fragments among the much more abundant wild-type DNA fragments by specifically eliminating the wild-type

sequences. We computed that by using various orthologonal CRISPR endonucleases such as SpCas9 and FnCpf1, the CUT-PCR

method would be applicable to 80% of known cancer-linked substitution mutations registered in the COSMIC database. We further

verified that CUT-PCR together with targeted deep sequencing enables detection of a broad range of oncogenes with high

sensitivity (o0.01%) and accuracy, which is superior to conventional targeted deep sequencing. In the end, we successfully applied

CUT-PCR to detect sequences with oncogenic mutations in the ctDNA of colorectal cancer patients’ blood, suggesting that our

technique could be adopted for diagnosing various types of cancer at early stages.
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INTRODUCTION

On the basis of advances in sequencing technology, it is well
accepted that cancer is generally driven by oncogenic
mutations.1,2 Several studies have provided evidence that
tumorigenesis strongly correlates with the prevalence of somatic
mutations in certain types of cancer.3,4 The COSMIC (Catalogue of
Somatic Mutations in Cancer) database includes hundreds of
thousands of human cancer-associated somatic mutations that are
classified by tumor type and disease.5 Recently, circulating tumor
DNA (ctDNA), which is released into the bloodstream from tumor
cells as cell-free DNA (cfDNA) fragments, has been proposed as a
tumor-specific biomarker candidate.6–12 Thus, diagnosing tumors
at early stages might be possible by simply detecting tumor-
specific somatic mutations in the ctDNA from a patient’s
blood.10,13 However, cfDNAs in the blood plasma generally
contain extremely small amounts of tumor DNA, which are
reportedly dependent on the tumor burden or cancer stage.13,14

Therefore, especially in the early stages of cancer, a highly
sensitive and specific method would be required to diagnose a
tumor by detecting ctDNA.15–22

The clustered regularly interspaced short palindromic repeats
(CRISPR) and CRISPR-associated (Cas) protein system, an
adaptive immune response in prokaryotes, are well known for
their specific DNA target recognition and cleavage.23,24 The
versatility of the CRISPR system has allowed us and other groups
to broadly utilize it, not only for genome editing in various

organisms,25–30 but also to cleave DNA in vitro.31 CRISPR
endonucleases, such as type II Cas9 or type V Cpf1, specifically
induce double-stranded breaks in target DNA by recognizing a
protospacer-adjacent motif (PAM) downstream or upstream,
respectively, of target DNA sequences corresponding to that of
a guide RNA (gRNA).32–37

To use ctDNA for cancer diagnosis, it is necessary to detect, in a
highly accurate manner, the small amounts of ctDNAs with
missense mutations among the relatively very large amounts of
wild-type cfDNAs. By adapting the accurate and specific cleavage
ability of CRISPR endonucleases in vitro, it is possible to enrich
tumor-specific versus wild-type alleles by specifically cleaving the
wild-type DNAs. Here, we devised a new method employing the
CRISPR system, termed CUT (CRISPR-mediated, Ultrasensitive
detection of Target DNA)-PCR (polymerase chain reaction), that
efficiently enriches oncogenic mutant DNAs by eliminating wild-
type DNAs before PCR amplification. We note that by altering
gRNAs corresponding to various wild-type DNAs, one can easily
and precisely reduce different background DNA signals in an
unbiased manner. After the wild-type DNAs are cleaved by CRISPR
endonucleases, the mutant target regions are amplified by PCR
and then exquisitely identified by targeted deep sequencing using
next-generation sequencing facilities. Because PCR amplification is
performed after background wild-type sequences are reduced, the
CUT-PCR process minimizes polymerase-generated errors and
maximizes target cleavage specificity.
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RESULTS AND DISCUSSION

By using the specific recognition property of CRISPR endonu-
cleases for DNA PAM sequences, it is possible to cleave PAM-
containing wild-type DNA sequences selectively, reducing back-
ground DNA signals and enriching cancer-specific mutant DNA
signals (Figure 1a). The representative type II CRISPR endonuclease
Cas9, derived from Streptococcus pyogenes (SpCas9), and type V
Cpf1, from Francisella novicida (FnCpf1), respectively, recognize
the PAM sequences 5′-NGG-3′, located downstream of the target
DNA,33 and 5′-TTN-3′, located upstream of the target DNA.37

Therefore, if oncogenic mutant sequences are generated by
single-base substitutions, such as these (NGG4NGH or
NGG4NHG, H is A, C or T; TTN4TVN or TTN4VTN, V is A, C or
G, in wild-type DNA sequences) wild-type DNAs can be selectively
and precisely eliminated by SpCas9 or FnCpf1, respectively.23,37

After wild-type DNA cleavage, pooled DNAs can be identified
directly with PCR amplification followed by targeted deep
sequencing.38

We inspected all possible target sites registered in the COSMIC
database in silico to determine whether various orthologonal Cas9
or Cpf1 proteins would be applicable for the specific destruction
of the corresponding wild-type sequences. As shown in Figure 1b,
among 325 856 mutations registered in the COSMIC database
(version 77), 90.4% are single- or multiple-nucleotide substitutions.
Insertions and deletions account for 2.9% and 6.6% of the entries,
respectively, and unknown patterns represent 0.2%. For each
indel, we searched for an adjacent PAM sequence to design
sgRNA because CRISPR endonucleases barely cleave mutant DNA
that contains indels in the gRNA target region.31,37 In the case of
the substitutions, however, CRISPR endonucleases can typically
cleave mutant DNAs as well as wild-type DNAs in vitro because of
their ability to recognize sites that vary by one or a few
nucleotides from the gRNA sequence (off-target effects).39

However, PAM recognition by CRISPR endonucleases is much
stricter; they rarely cleave target DNA that lacks a PAM sequence
even if the target DNA is exactly complementary to the gRNA.
Thus, we determined whether each substitution mutation might
have destroyed a PAM sequence in the corresponding wild-type
DNA, which would mean that the wild-type DNA would be cleaved
much more readily than the oncogenic DNA that lacked a proper
PAM. Further analyses resultantly showed that 98.9% of the indels
(Supplementary Table 1) and 80.5% of the substitutions
(Supplementary Table 2) represent DNA targets that can be
selectively cleaved by the various orthologonal Cas9 or Cpf1
proteins reported to date, suggesting that our CUT-PCR method

would be useful for detecting about 80% of the oncogenic
mutations in the COSMIC database (Figure 1c).
To validate that CRISPR endonucleases could selectively cleave

target DNA as specified in the CUT-PCR protocol, we performed
in vitro cleavage assays with T-vector cloned sequences containing
various missense mutations (Supplementary Table 3). We
expected that CRISPR endonucleases with gRNAs specific to the
wild-type sequence would specifically deplete the wild-type DNA.
We chose five recurrent cancer-associated mutations in the KRAS
gene (KRAS c.35G4A, c.35G4T, c.34G4T, c.35G4C and
c.34G4C) for testing type II SpCas9 and one in the GNAQ gene
(GNAQ c.626A4T) for testing type V FnCpf1. Both oncogenes are
well known for their tumorigenicity.40,41

For testing the SpCas9, we constructed one plasmid containing
the wild-type KRAS sequence and five plasmids containing
patient-mimic sequences in which the PAM sequence was
changed, as shown in Figure 2a. We validated that each plasmid
can be linearized with NcoI restriction enzyme and then treated
each linearized plasmid in vitro with the SpCas9 complex
containing a single-guide RNA (sgRNA) specific to the wild-type
sequence. As a result, it showed that the SpCas9 complex
selectively cleaved wild-type DNA resulting in shorter DNA
fragments but generally did not cleave the other mutant
sequences that lacked a functional PAM (Figure 2b). We note
that one mutant plasmid containing KRAS (c.35G4A), which has a
5′-NGA-3′ PAM sequence, is marginally targeted by SpCas9
specific for the wild-type sequence, a result already reported in
a previous study.42 For testing the FnCpf1 nuclease, we
constructed two different plasmids, one containing the wild-
type GNAQ sequence and the other the patient-mimic mutated
sequence, as shown in Figure 2c. Both plasmids can be also
linearized with NcoI. In this case, we designed one CRISPR RNA
specific to the wild-type sequence and treated each plasmid
in vitro with the FnCpf1 complex. Results showed that the FnCpf1
complex selectively cleaved wild-type plasmid DNA but not the
mutant sequence that lacked a functional PAM (Figure 2d),
suggesting that FnCpf1 would also be useful for mutant sequence
enrichment in the CUT-PCR process.
To investigate whether CUT-PCR could be used to detect rare

oncogene-specific mutations, we next prepared mixtures in which
the plasmid containing a mutant sequence was serially diluted
with the plasmid containing the wild-type sequence. We then
treated each plasmid mixture in vitro with a CRISPR endonuclease
and a gRNA specific to the wild-type sequence, after which we
amplified the target region using PCR (Figure 3a). We expected
that plasmids containing the wild-type sequence would be
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Figure 1. CUT-PCR method and its applicable targets in the COSMIC database. (a) Schematic of the CUT-PCR enrichment process.
To cleave wild-type DNA specifically, single-guide RNAs were designed to target PAM sites that are destroyed by oncogenic mutations. Such
mutant alleles are not recognized by the CRISPR endonucleases and largely avoid cleavage. After cleavage of wild-type DNA, the DNA in
the pooled solution was amplified with PCR. (b) The classification of human cancer-associated somatic mutations registered in the COSMIC
database. (c) The ratio of CUT-PCR applicable targets among the mutations of indel (blue bar) and substitution (red bar) registered in the COSMIC
database.

CUT-PCR

SH Lee et al

6824

Oncogene (2017) 6823 – 6829



selectively cleaved by CRISPR complexes, resulting in relatively
less amplification, whereas plasmids containing the mutant
sequences would not be cleaved and would therefore be
amplified more. When a mixture of plasmids containing either
wild-type or mutant KRAS (c.35G4T) sequences was treated with
wild-type-specific SpCas9 complexes in vitro, the total amount of
PCR amplicons gradually decreased as the abundance of the KRAS
mutant plasmid decreased (Figure 3b, lanes 1–5), in contrast to
untreated samples (Figure 3b, lanes 6–10). This result indicates
that most wild-type sequences were eliminated by SpCas9,
suggesting that mutant sequences were enriched relative to the
wild-type sequences in the mixture of PCR amplicons. As a
quantitative control for PCR amplification in each reaction,
we added pairs of internal control primers to each mixture and
determined the PCR outcomes relative to these control PCR
products.
To examine the sensitivity of CUT-PCR method, we conducted

targeted deep sequencing for each mixture with various ratios of
mutant plasmids using Illumina (San Diego, CA, USA) MiSeq. Every
sample was read at a sequencing depth of at least 10 000 × . We
sought to compare CUT-PCR-based deep sequencing against the
conventional deep-sequencing data. For KRAS (c.35G4T) sample,
mutant plasmids were originally mixed with wild-type plasmids at
a ratio of 100 to 0.01%. Then, DNA target sites were amplified with
PCR after being CUT-PCR-treated or not. As a result, conventional
deep sequencing for missense mutations was limited to 0.1% as in
a previous study.39 However, mutant DNA fragments were entirely
enriched after SpCas9-based CUT-PCR treatments (Figure 3c). For
the mixture that mutant plasmids were mixed at a ratio of 0.01%,
CUT-PCR-treated samples showed a sixfold increase in the
mutated DNA fragment frequency, relative to untreated samples.
For the fold enrichment calculation, we used the value from the
CUT-PCR-untreated sample as the background frequency. In
addition, the mutated DNA fragment frequencies were more
increased (Figure 3d) after multiple rounds of CUT-PCR, resulting
in a greater fold increase (Figure 3e). These results indicate

that the sensitivity of CUT-PCR-based deep sequencing is more
than 0.01%. For the additional comparison with quantitative
real-time PCR, it is hard to detect missense mutations among the
mixtures at a ratio of 1% of mutant plasmids (Supplementary
Figure 1).
We repeated the CUT-PCR procedure with other KRAS mutant

plasmid mixtures as described above (Supplementary Figure 2). For
the mixture that mutant plasmids were originally mixed at a ratio of
0.1%, mutant DNA fragments were significantly enriched by
SpCas9-based CUT-PCR relative to untreated samples (Figure 3f).
Moreover, the values of a fold increase in the mutated
DNA fragment frequency were from 29.6 to 76.3 (Figure 3g).
We noted that, in the case of the KRAS (c.35G4A) mutant sequence,
some of the plasmids were cleaved by wild-type-specific SpCas9
as shown in Figure 2b, but the relative amount of mutant
DNA fragments was strongly increased after CUT-PCR, which
might indicate that wild-type DNA fragments were preferentially
eliminated.
We further tested whether CUT-PCR enrich mutant DNA for

different target sites and different CRISPR types. For the GNAQ
(c.626A4T) mutant and wild-type plasmid mixture, we verified
that FnCpf1 would cleave the wild-type DNA fragment selectively
and sufficiently (Supplementary Figure 3). In line with SpCas9-
based CUT-PCR, we determined that a mixture treated with
FnCpf1-based CUT-PCR showed a 27-fold increase in the
mutant fragment frequency as compared with untreated samples
when GNAQ mutant and wild-type plasmids were originally mixed
at a ratio of 0.1% (Figures 3h and i). To test whether CUT-PCR
could be used more generally, we applied the process to other
oncogenes. We used FnCpf1-based CUT-PCR with CTNNB1
containing a substitution mutation (Supplementary Figure 4)
and SpCas9-based CUT-PCR with EGFR containing a deletion
(Supplementary Figure 5). We also found that one cycle of
CUT-PCR efficiently enriched mutant DNA fragments as in the
above results.
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Figure 2. In vitro cleavage assay with plasmids containing sequences with PAM mutations. (a) Top: schematic of the plasmids containing
sequences with wild-type and oncogenic mutations. PCR amplicons of relevant wild-type proto-oncogene cDNAs were subcloned into the
commercial T-blunt cloning vector (T-Blunt PCR cloning Kit, SolGent, Seoul, South Korea) using the manufacturer’s protocol. Single-base-pair-
substituted mutations (KRAS: c.35G4A, c.35G4T, c.34G4T, c.35G4C, c.34G4C, GNAQ: c.626A4T) were constructed with site-directed
mutagenesis using appropriate primer sets (Supplementary Table 3). Plasmids can be linearized by the restriction enzyme NcoI. Bottom: the
sequences of wild-type and recurrent KRASmutations in the COSMIC database. The PAM sequence (5′-TGG-3′) for SpCas9 is underlined in blue.
Missense mutations are shown in red. (b) In vitro cleavage assay using SpCas9 with linearized plasmids containing wild-type and mutant KRAS
sequences. Target plasmids were first linearized with the restriction enzyme NcoI (New England Biolabs, Ipswich, MA, USA) for 37 °C for 1 h
(10 μl reaction in NEB buffer 3.1). The linearized product was further cleaved by treatment with a wild-type sequence-specific CRISPR nuclease
(Cas9 100 ng, sgRNA 70 ng, 10 μl reaction in NEB buffer 3.1 at 37 °C, 1 h). CF, cleaved fragment; LF, linearized fragment. (c) The sequences of
wild-type and recurrent GNAQ mutation in the COSMIC database. The PAM sequence (5′-TTG-3′) for FnCpf1 is underlined in blue. (d) In vitro
cleavage assay using FnCpf1 with linearized plasmids containing wild-type and mutant GNAQ sequences.
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We ultimately applied the CUT-PCR technique to detect cell-free
ctDNA extracted from the blood plasma of eight colorectal cancer
patients at various stages of the disease. As a control, we used
plasma from four healthy donors. KRAS mutations are frequently

found in colon cancer. To enrich mutant KRAS ctDNAs,
we prepared sgRNA for SpCas9 specific to the wild-type
KRAS sequence as described above. As shown in Figure 3, KRAS
sequences containing five different oncogenic mutations (KRAS
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Figure 3. CUT-PCR-based enrichment of plasmid-borne sequences containing missense mutation. (a) Schematic of two sets of primers
for target and internal control region. After treatment of wild-type-specific CRISPR endonucleases, each plasmid mixture
containing sequences with wild-type and oncogenic mutation was amplified using PCR. (b) CUT-PCR experiment for various ratios of
plasmid mixtures containing either wild-type or mutant KRAS (c.35G4T) sequence. DNA plasmids containing wild-type and mutant sequences
were mixed in various ratios and subjected to CRISPR cleavage in vitro. The plasmid mixture was treated with a wild-type-specific CRISPR
nuclease (11 ng total plasmid DNA, 100 ng Cas9, 70 ng sgRNA, 10 μl reaction in NEB buffer 3.1 at 37 °C for 1 h) to cleave wild-type DNA. After
proteinase (Qiagen, Venlo, Netherlands) treatment, samples were purified using a PCR cleanup kit (DOCTOR PROTEIN, Seoul, South Korea,
MD008) and each sample was amplified by PCR using targeted primer sets. To quantify target-specific cleavage, the fold increase in the target
sequence was compared with that of an internal control product, which was amplified with internal control primers (Supplementary Table 3).
The amount of the amplified KRAS target region relative to the internal control PCR product in each lane was calculated. (c) For the KRAS
(c.35G4T) mutation, targeted deep sequencing after CUT-PCR was treated (red bars) or not (gray bars) were conducted for the plasmid
mixtures in which mutant plasmids were originally mixed with wild-type plasmids at a ratio of from 100% to 0.01%. CUT-PCR-enriched
plasmids were further amplified with adaptor primers (Supplementary Table 3) using Phusion polymerase (New England Biolabs). The
resulting PCR amplicons were subjected to paired-end sequencing with the Illumina MiSeq system. Paired-end reads were then analyzed by
comparing wild-type and mutant sequences using Cas-Analyzer (www.rgenome.net/cas-analyzer). For the mixture at a ratio of 0.01%,
frequencies of mutant DNA fragments (d) were measured and the values of fold increase (e) were calculated after multiple rounds of
CUT-PCR treatments. (f) For the four recurrent KRAS mutations (c.35G4A, c.34G4T, c.35G4C and c.34G4C), the frequencies of wild-type
(blue bars) and mutant (red bars) fragments were measured using deep sequencing. In all cases, KRAS mutant plasmids were originally
mixed with wild-type plasmids at a ratio of 0.1%. (g) Fold increase after CUT-PCR in each KRAS mutant DNA frequency was calculated from
the data of f. (h) DNA frequencies of wild-type and GNAQ mutant (c.626A4T) fragments measured using deep sequencing after FnCpf1
mediated CUT-PCR. GNAQ mutant plasmids were originally mixed with wild-type plasmids at a ratio of 0.1%. (i) Fold increase in the mutant
DNA fragment frequency for the recurrent GNAQ mutation calculated from h. Error bars mean s.e.m.; n= 2 for c and 3 for d, f and h; *Po0.05;
**Po0.01.
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c.35G4A, c.35G4T, c.34G4T, c.35G4C and c.34G4C) can be
enriched using one common sgRNA because of PAM
sequence substitution. Because total amounts of cfDNAs in
plasma are low and mutant ctDNA fragments are present at very
low abundance, especially at early stages of disease, we
conducted multiple rounds of CUT-PCR. After each round of
CUT-PCR, we measured mutant and wild-type KRAS allele
frequencies (AFs) by targeted deep sequencing (Figure 4a and
Supplementary Table 4). After the third round of CUT-PCR, we
measured the enriched mutant AF and calculated its fold increase
relative to the wild-type AF (Figure 4b).

For the (KRAS c.35G4A) mutation shown in the upper panel of
Figures 4a and b, no significant increase in mutant AFs was
observed after multiple rounds of CUT-PCR in the case of control
samples (Figure 4a, blue region). However, we found that mutant
AFs from patients 2, 3, 4, 5 and 7 increased considerably
(Figure 4a, pink region) compared with the average value from
the healthy controls, resulting in fold increases from 164 to 640 as
shown in the upper panel in Figure 4b. We calculated the fold
increase of mutant AFs in the same way for the other mutations
and summarized the results in Supplementary Table 5. As a result,
our CUT-PCR data from cfDNAs provide as much information as
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Figure 4. CUT-PCR-based enrichment of sequences containing recurrent KRAS mutations in cfDNAs from colorectal cancer (CRC) patients and
healthy donors. (a) The AFs of recurrent KRAS mutation candidates (c.35G4A, c.35G4T, c.34G4T, c.35G4C and c.34G4C) were analyzed
from cfDNAs in plasma of eight CRC patients (pink boxes) and four healthy donors (blue boxes). Peripheral blood samples from patients were
obtained from the Pusan National University Hospital (Busan, Korea). This study was reviewed and approved by the Institutional Review Board
(IRB) of PNUH(H-1412-011-024) and UNIST(UNISTIRB-13-002-A). To get cell-free DNA from CRC patients and healthy volunteers, plasma was
obtained from blood sample by using Ficoll-Paque PLUS (GE Healthcare, Chicago, IL, USA) and cell-free DNA was purified from 1 ml of the
plasma with a QIAamp Circulating Nucleic Acid Kit (Qiagen) according to the manufacturer’s protocol. After the multiple rounds of CUT-PCR
treatment using the wild-type KRAS-specific SpCas9 nucleases, each AF of recurrent KRAS mutation sequence was measured using targeted
deep sequencing for all samples, respectively. (b) Fold increase in each KRAS mutant sequence calculated from a after the third round of CUT-
PCR. The cutoff baseline for KRAS-mutated ctDNA observation was determined by averaging the mutant AFs of CRISPR-untreated sample in
healthy controls. Error bars mean s.e.m.; n= 3; **Po0.01, ***Po0.001.
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the pyrosequencing data from tissue samples even in the patients
with stage I cancer.
In conclusion, the CUT-PCR method enriches and thus enables

the sensitive and precise detection of extremely small amounts of
circulating mutant DNA sequences derived from tumor cells via
the removal of background signals through the specific cleavage
of wild-type sequences by CRISPR endonucleases in vitro. We
emphasize that cleaving target genomic DNA in vitro before PCR
amplification increases the fidelity of mutant DNA enrichment by
eliminating the chance of enriching false mutations, which may be
generated by DNA polymerase during PCR amplification. Further-
more, if researchers engineer existing CRISPR endonucleases to
have altered PAM specificities43 or discover new CRISPR endonu-
cleases that recognize different PAM sequences, CUT-PCR-
targetable sites would be further extended, which enlarges the
utility of this method.
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