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The skin microbial community is a multifunctional ecosystem aiding prevention of

infections from transient pathogens, maintenance of host immune homeostasis, and

skin health. A better understanding of the complex milieu of microbe-microbe and host-

microbe interactions will be required to define the ecosystem’s optimal function and

enable rational design of microbiome targeted interventions. Malassezia, a fungal genus

currently comprising 18 species and numerous functionally distinct strains, are lipid-

dependent basidiomycetous yeasts and integral components of the skin microbiome. The

high proportion of Malassezia in the skin microbiome makes understanding their role in

healthy and diseased skin crucial to development of functional skin health knowledge and

understanding of normal, healthy skin homeostasis. Over the last decade, new tools for

Malassezia culture, detection, and genetic manipulation have revealed not only the

ubiquity of Malassezia on skin but new pathogenic roles in seborrheic dermatitis,

psoriasis, Crohn’s disease, and pancreatic ductal carcinoma. Application of these tools

continues to peel back the layers ofMalassezia/skin interactions, including clear examples

of pathogenicity, commensalism, and potential protective or beneficial activities creating

mutualism. Our increased understanding of host- and microbe-specific interactions

should lead to identification of key factors that maintain skin in a state of healthy

mutualism or, in turn, initiate pathogenic changes. These approaches are leading

toward development of new therapeutic targets and treatment options. This review

discusses recent developments that have expanded our understanding of Malassezia’s

role in the skin microbiome, with a focus on its multiple roles in health and disease as

commensal, pathogen, and protector.
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MALASSEZIA: A MAJOR COMPONENT OF THE SKIN
MICROBIOME

Human skin serves as our protective physical barrier, but also consists of a complex micro-

environmental ecosystem. The skin surface micro-environment is colonized by a wide range of

microorganisms, including bacteria, archaea, viruses, and fungi, collectively referred to as the skin
microbiome.While initially considered as a 2 m2

flat surface representing a smaller and less influential
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niche than gut or lung, when one considers skin’s 3-dimensional

topography it becomes an estimated30m2, similar in surface area to

gut or lung. This, coupled with access to viable epidermis in deeper

invaginations (such as the follicle infundibulum), the skin becomes

an important and relevant microbial niche (Gallo, 2017). The

complex ecosystem in any individual is governed by the skin’s
divergent niches, ranging from dry (heel, volar forearm) to moist

(antecubital fossa, axilla) to dry and oily (face, upper back) tomoist

and oily (scalp), driving high microbial variability between niches.

While there remains microbial variability between individuals, it is

relatively low compared to that between different body site niches

(Grice et al., 2009; Oh et al., 2014).MultikingdomDNA sequencing
has revealed the skin microbiome has notably higher viral and

fungal representation when compared to gut (Arumugam et al.,

2011;Ohet al., 2014).The skinmicrobiome is also temporally stable

over long periods regardless of the environmental perturbations

experienced in daily life (Oh et al., 2016). Factors such as short term

washing with common (non-antimicrobial) hygiene products does
not disrupt the skin commensal microbial diversity, but can help

displace opportunistic pathogenic colonizers (Two et al., 2016). The

eukaryotic component of skin microbiome is dominated by

Malassezia (Findley et al., 2013; Oh et al., 2014; Jo et al., 2016;

Byrd et al., 2018), which are found in highest abundance on

sebaceous sites including scalp, face, chest, and upper back, and

in lower abundance on trunk and arms. Feet are the exception with
lowerMalassezia content and higher overall fungal diversity (Table

1) (Findley et al., 2013). Interestingly, the diversity of commensal

skin fungi can also vary with geography and possibly ethnicity in

healthy individuals (Leong et al., 2019).

Metagenomics defines the genetic information from a single

microbe as one functional unit, a set of genes, and is used as such
to determine the presence of individual microorganisms and

predict abundance. However, the relative number of genomes

provides an estimate of abundance independent of the cellular

size, or interactive biomass, which differs considerably between

organisms. For metagenomic ecological analyses, it is important

to consider the potential biomass of each microbial community

member, as biomass is how bacteria, fungi, or viruses interact

with the host as a functional unit. Using conservative estimates of

cell size, Malassezia have 200–500 times the cellular biomass per
genome relative to Staphylococcus epidermidis. Hence it would be

reasonable and likely meaningful to consider biomass availability

during interaction with the host (Ramasamy et al., 2019). Doing

so promotes the fungal biomass component of sebaceous skin to

at least an equal footing with bacteria.

Molecular phylogenetic and genomic studies have shown
Malassezia belong to Basidiomycota, Ustilagomycotina and

class Malasseziomycetes. Malassezia have undergone an

unfortunate and complex series of nomenclature changes

which have clouded their research history. Originally

discovered by Malassez and Sabaouraud in the late 19th

century, their resistance to cultivation led to the conclusion
that there was one species, named Malassezia (Malassez, 1874;

Sabouraud, 1897). In the 1950’s there were three identified

species, renamed as Pityrosporum (which is still found in some

textbooks): P. ovale, named for their oval shape; P. orbiculare, for

their round shape; and P. pachydermatis, as the species found on

animal as opposed to human skin (Rhoda, 1939). Other

nomenclature included M. furfur serovars (A, B or C) now re-
classified as A-M. furfur, B-M. globosa and C-M. restricta

(Cunningham et al., 1990; Ashbee et al., 1993; Batra et al.,

2005). Today the Malassezia genus is diverse and comprises 18

species, with numerous functionally distinct strains (Figure 1)

(Theelen et al., 2019). Malassezia have haploid genomes of 8–9

Mb, among the smallest for free-living fungi. They have evolved
genetic content enriched for genes specific to their environment,

encoding lipases, phospholipases and acid sphingomyelinases for

utilization of lipids, and proteases for utilization of proteins (Poh

TABLE 1 | Summary of currently described Malassezia species present in human body sites associated with health and/or disease.

S/

N

Malassezia Species Group

(Figure 1)

Body site†

(Human)

Health/

Disease‡
References

1 M. furfur A D, S, SC, Sy AD, D, SD,

PV, SI, F

(Simmons and Gueho, 1990; Boekhout T et al., 2010; Cabanes, 2014; Iatta

et al., 2014)

2 M. obtusa A D, S AD, D, SD (Boekhout T et al., 2010; Cabanes, 2014; Prohic et al., 2016)

3 M. japonica A D, S AD (Sugita et al., 2003)

4 M. yamatoensis A D, S AD, SD (Sugita et al., 2004; Boekhout T et al., 2010)

5 M. sympodialis B D, M, S D, SD, AD,

PV, F

(Gupta et al., 2004; Boekhout T et al., 2010; Aguirre et al., 2015; Patron,

2016)

6 M. dermatis B D, S AD (Sugita et al., 2002; Boekhout T et al., 2010; Guého-Kellermann and Begerow,

2010)

7 M. restricta (all humans) B D, M, S, F D, SD, AD, P (Nakabayashi et al., 2000; Batra et al., 2005; Boekhout T et al., 2010; Guého-

Kellermann and Begerow, 2010)

8 M. globosa (all humans) B D, M, S, F D, SD, AD,

PV, P

(Gupta et al., 2004; Boekhout T et al., 2010; Cabanes, 2014)

9 M. pachydermatis (normally

animal, not human)

B Sy SI (Boekhout T et al., 2010; Chow et al., 2020)

10 M. arunalokei B S, ear D, SD (Honnavar et al., 2016)

11 M. slooffiae (rare) C D, S SD (Boekhout T et al., 2010)

Non-human associated species: M. brasiliensis (Parrot-Group A); M. psittaci (Parrot-Group A); M. equina (Horse, Cow); M. nana (Cat, cow, Dog-Group B); M. caprae (Goat, Horse-Group

B); M. vespertilionis (Bat-Group C); M. cuniculi (Rabbit-Group C).
†Body Site: SC-Scalp; F-foot; Sy- systemic (blood, urine); S-sebaceous; M-moist; D-dry.
‡Health/Disease: AD-Atopic dermatitis, PV-Pityriasis Versicolor; D-Dandruff; SD-seborrheic dermatitis; P-psoriasis; F-folliculitis; SI-systemic infections.
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et al., 2020). They lack a fatty acid synthase and d-9 desaturase,

likely due to their habitation on oil rich sebaceous skin, and

hence have an evolutionary inability to synthesize lipids as part

of their adaptation to life on skin (Saunders et al., 2012; White

et al., 2014; Wu et al., 2015). The most closely related and well-

established fungus is the plant pathogen Ustilago maydis, which
also targets their plant host for degradation, but via secretion of

enzymes to break down proteins, pectin, and wax common to

plant surfaces. Interestingly, while closely phylogenetically

related to Ustilago, Malassezia secrete an enzyme armada

much more similar to the distantly related Candida albicans,

an example of niche-specific evolution (Xu et al., 2007).
TheMalassezia clade can be subdivided into three major groups,

as seen in Figure 1 and Table 1. Group A are represented as M.

furfur-like, are more robust in culture, less frequent inhabitants of

human skin and more often linked to skin or septic disease. Group

B are more common on healthy human skin, withM. restricta and

M. globosa by far the most common and found on the skin of all
humans, followed by M. sympodialis, then distantly by the other

Group B members. The Group B exception is M. pachydermatis,

which can cause human septic infections but is only normally found

on animal skin. Figure 1 also reveals pathways of chromosomal

rearrangements resulting from centromere loss of function

(Sankaranarayanan et al., 2020). A nine-chromosome ancestral

lineage is hypothesized, which carried through to most of Group
B. One centromere was lost to generate the eight-chromosome M.

sympodialis group, and then another to generate the seven-

chromosome Group C. M. pachydermatis and M. obtusa remain

six-chromosome outliers. A series of horizontal gene transfers have

been defined and further cloud the phylogeny (Ianiri et al., 2020).

For example, another recent LSU tree, while very similar implies

different grouping and relationships (Ianiri and Heitman, 2020).
These findings highlight that while much has been learned about

Malassezia phylogeny there is still a long way to go to

understanding this unusual clade. Unfortunately, many

Malassezia species do not have complete genomes, so further long

read sequencing and assembly of chromosome-level genomes will

be necessary to further refine Malassezia evolution. The lack of
capability to cultivate manyMalassezia species and strains has been

an impediment to genome sequencing and characterization of gene

function. Developing new culture conditions to allow cultivation of

new species and continuation of the consortium/repository based

exchange of genome information will advance understanding about

Malassezia. The genomic relatedness of known and sequenced
Malassezia spp. is useful for future species genome assembly and

gene assignment, but unfortunately a large number of Malassezia

genes fall into the category of unknown function and exist as

families of similar gene structure. The reasons for duplication or

multiplication of genes inMalassezia in the perspective of evolution

could be addressed by genome evolution studies (Sankaranarayanan

et al., 2020). The availability of more completeMalassezia genomes
will further the understanding of unknown gene function, identify

FIGURE 1 | Phylogenetic tree of all 18 currently accepted Malassezia species. Malassezia can be subdivided into subgroups A, B, and C based on Wu et al. PLoS

Genetics 2015. Tree constructed from most current NCBI LSU data (Table 1) using the MAFFT method to generate multi-align sequence (MSA), UPGMA

(unweighted pair group method with arithmetic mean) for clustering, phylogenetic tree viewed using Newick viewer. MAFFT v6.864 is a multiple alignment program

for amino acid or nucleotide sequences (Katoh et al., 2005). (http://www.trex.uqam.ca/index.php?action=mafft and http://mafft.cbrc.jp/alignment/software/). Known

species of inhabitation and activities can be found in Table 1. Arrows indicate hypothesized chromosome losses associated with development of new species

(Sankaranarayanan et al., 2020). Dark blue box = nine chromosome ancestral lineage. Dark blue arrows, nine chromosome lineages. Light blue arrow predicted

centromere loss to eight chromosomes. Pink arrow predicted centromere loss to seven chromosomes. Orange arrow unknown chromosome loss to six

chromosomes. Yellow unknown event ()? resulting in loss to six chromosomes. (* = documented by centromere loss) (M. pachydermatis chromosome number

postulated from complete genome assemblies, M. obtusa hypothesized based on PGFE karyotype) (Kiuchi et al., 1992; Boekhout et al., 1998; Kim et al., 2018).
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potential pathways to harness unidentified roles in host-commensal

or host-pathogen interactions.

Historically, Malassezia genetic engineering has been

extremely challenging. However, it has now been accomplished

via agrobacterium-mediated transformation (Ianiri et al., 2016;

Celis et al., 2017; Ianiri and Heitman, 2020). For example, gene
deletion of a bacterially derived flavohemoglobin gene found in

all Malassezia spp. detoxifies skin generated nitric oxide and is

involved in Malassezia/Host interaction (Ianiri et al., 2020).

Other gene deletion studies have shown that the multidrug

transported PDR10 is involved in Malassezia furfur antimicrobial

resistance (Ianiri et al., 2019). Finally, insertion of marker and
tracking genes intoMalassezia for use in in vitro, ex vivo, and in vivo

models should assist in more detailed investigation of Malassezia/

Host interactions (Goh et al., 2020). Improved gene and genome

information will assist with further identification of novel proteins

that trigger skin disease, inflammation, antifungal response,

immunological response of host and mechanistic functions in
clinical perspective.

Microbial community and host interactions have multiple

effects: broadly classified as commensal, pathogenic, or

mutualistic (Schommer and Gallo, 2013). Commensalism is an

active relationship between individuals of two species in which

one species obtains benefits from the other without benefiting the

latter. In a commensal paradigm Malassezia obtains the benefit
of a food source while causing no effect to the human host.

Pathogenicity is a relationship where one member is harmed, in

this situation with Malassezia activity resulting in direct host

damage through specific secreted virulence factors or toxins that

negatively affect the host; or indirectly through induction of a

damaging host response. In fungal infection, it is necessary to
have a functional definition of virulence and pathogenicity,

termed a “Damage Response Framework (DRF). In the DRF, a

“causal” microorganism may manifest disease directly through

products or antigens, or indirectly via induction of a harmful

host response. In the DRF a pathogen is defined as eliciting a

functional change from a commensal to a pathogenic state

(Casadevall and Pirofski, 1999; Casadevall and Pirofski, 2003;
Casadevall and Pirofski, 2018). Mutualism is classed as an active

relationship where both species benefit. ForMalassezia, they may

not only survive on our skin but also may provide protection

from contextually pathogenic microbes such as S. aureus (Li

et al., 2018). Many acute skin infections have underlying

microbial contributions which are improved by antimicrobial
treatment (Golan, 2019). However, due to the frequency of

unknown individual susceptibilities, it is often challenging to

successfully satisfy Koch’s postulates to prove causality by

individual microbial components (Koch, 1893; Grice and

Dawson, 2017). It is therefore important to delineate the

context of microbial interactions with skin disease outcomes.

Functional interactions can be scenarios where (i) the skin
microbiota is a direct cause, (ii) the skin microbiota is altered

by changes in the skin and hence generate a deleterious host

response, exacerbating the situation, or (iii) where the microbiota

is uninvolved. Differentiating these functional interactions is

complex and for Malassezia a still developing research area.

MALASSEZIA INTERACTIONS WITH SKIN
AND THEIR ROLE AS A COMMENSAL

Most metagenomic datasets reveal that microbial communities
in different skin ecosystems are determined by topography and

driven by water (sweat), oil (sebum), or other temporally stable

attributes (Findley et al., 2013; Oh et al., 2016). Malassezia are

enriched in sebaceous zones, particularly breast, back, and head,

due to the abundance of the lipid nutrient source (Findley et al.,

2013; Jo et al., 2017). Malassezia density is associated with the

maintenance of skin health (Ashbee and Evans, 2002; Prohic
et al., 2016), and Malassezia are the most abundant fungi

identified at eleven core body sites, all except those on the foot.

M. restricta and M. globosa are by far the most abundant on

human skin, with other species occurring at much lower

frequency (Findley et al., 2013).

In addition to body site, age plays a role in shaping the skin
mycobiome. During gestation, the fetus is exposed to microbes

from the placenta, fetal membranes, amniotic fluid, and umbilical

cord (Pelzer et al., 2017). Immediately after birth, early skin

colonization is influenced by vernix caseosa, a multi-component

defense system (anti-microbial sebum) composed of cellular

contents, water, lipids, and proteins produced by fetal sebaceous

glands during the third trimester (Pickens et al., 2000; Tollin et al.,
2005; Michalski et al., 2017; Szabo et al., 2017). Neonates born

through vaginal delivery acquire microbial communities from the

birth canal and vagina, resembling their mother’s vaginal

microbiota, where neonates born via cesarean section have skin

microbial communities similar to the mother’s skin surface

(Dominguez-Bello et al., 2010; Oh et al., 2010; Aagaard et al.,
2014; Dunn et al., 2017; Georgountzou and Papadopoulos, 2017).

Malassezia colonization occurs immediately after birth, when

neonatal sebaceous glands are active, being driven by maternal

hormones which cross the placental barrier with a progression

over the first few months of life to more closely resemble the adult

microbiome assemblage (Ashbee and Evans, 2002; Bernier et al.,

2002; Ayhan et al., 2007; Nagata et al., 2012). The succession of
mycobiome during birth within individual infants is variable either

due to mothers vaginal mycobiome or vertical transmission

depending on mode of delivery and environmental impact such

as caregivers and other sources (Ashbee and Evans, 2002; Bernier

et al., 2002; Ward et al., 2018). In contrast to the mother’s skin

Malassezia colonization, infant skin only contains two percent
relative abundance shown by either sequencing, PCR, or culture-

based approaches. Despite the higher abundance in mother’s skin,

cesarean compared to vaginally born infants have lowerMalassezia

abundance. The reasons are currently unknown but could be

biological, environmentally influenced, or a reported technical

bias of Internal Transcribed Spacer (ITS) 2 region amplification

(Anna and Bazzicalupoa; Bellemain et al., 2010).
As Malassezia are lipid dependent colonizers, their skin

abundance would be hypothesized to follow the level of

sebaceous gland activity and hence lipid level on skin (Ro and

Dawson, 2005). Soon after birth (3-6 months), the sebaceous

glands become dormant, and Malassezia revert to a low

abundance. With the onset of puberty, increased lipid levels in
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sebaceous regions result in a concomitant increase inMalassezia

abundance (Ro and Dawson, 2005; Prohic et al., 2016).

Comparison of skin fungal communities between healthy

children and adults showed that Malassezia predominates on

adults while in children (age < 14)Malassezia were present but at

lower abundance, and with a more diverse fungal community
including Eurotiomycetes and common dermatophytes (Jo et al.,

2016). This observation of fungal ecological dynamics may partly

be responsible for the prevalence or severity of common skin

disorders seen more frequently in children. Together this points

to a key protective role of Malassezia when fully occupying the

skin niche.

IMMUNE EDUCATION, HOST
TOLERANCE, AND THE RESPONSE TO
MALASSEZIA

The skin is reliant on commensal microbiota to “train” the

immune system and develop appropriate tolerance, host

defense mechanisms, and immunity against invading

pathogens. Dynamic signals from commensals during early

development are used by the immune system to provide

heterologous defense mechanisms (Naik et al., 2015). These

host interactions are skin-specific, and a resident immune cell

population is recruited for establishing innate and adaptive
responses in the periphery. One of the foremost factors for

skin-microbiota coexistence is host immune tolerance, as

shown in Figure 2. Tolerance is established after birth,

maintained throughout life, and is defined as the capability of

the host to suppress the active immune response against itself

and certain microbes. The microbes in turn also have
mechanisms to evade skin antimicrobial defenses and co-exist

with skin (Zhang and Gallo, 2016). There is a significant body of

literature, reviewed in brief here, regarding the role of the skin

microbiome on normal immune development. However, little is

known about the specific role of Malassezia. This will be an

important area for future research.
Fetal immune development begins as early as nine to fifteen

weeks with formation and maturation of multiple cell types

including B and T lymphocytes (Hayward, 1983). The fetus

A B C

FIGURE 2 | Cross talk between skin and microbiota in healthy and diseased skin states (such as seborrheic dermatitis and atopic dermatitis). The skin and the

immune system evolve together with resident microorganisms to establish commensal microbial relationships (for example, Malassezia in green). In the healthy state

(A), skin maintains high microbial diversity when compared to active disease states in seborrheic dermatitis (SD) and atopic dermatitis (AD) as shown in (B, C).

Keratinocytes sense microbial population through recognition of microbial pathogen-associated molecular patterns (PAMPs) motifs via their pattern recognition

receptors (PRR’s), Leucine rich repeat (LRR’s) containing receptors and Toll-like receptors (TLR’s) as shown in (A). The binding of PAMPs to PRRs, LRRs and TLRs

triggers innate immune responses, resulting in the secretion of antimicrobial peptides that can rapidly inactivate a diverse range of pathogenic microorganisms,

including fungi, bacteria and parasites. The Langerhans cells interact with microbial antigens in the epidermis to detect barrier breach and maintain homeostasis

(A). The skin tolerance is dependent on regulatory T cells, a subset of lymphocytes infiltrate skin, concomitant with hair follicle and skin microbial colonization in

based on cytokines TGF-Beta and IL-10 (A). In SD, alterations in sebum content creates favorable conditions for expansion of Malassezia as the dominant species

that may cause the disease (B). Increased Malassezia colonization initiates specific utilization of stratum corneum fatty acids that are converted into by-products

such as oleic acid, arachidonic acid which irritates and causes inflammation in the skin. Irritants such as indole and Malassezin could increase keratinocyte (KC)

proliferation and induce inflammation (B). Accumulation of histamine in the SD lesions is suggestive of mast cell degranulation (B). In AD there is increased pathogen

colonization that causes probable decreased commensal microbial diversity and a defective skin barrier(C). Malasszeia and other pathogens could stimulate sub

epidermal layers and releases antigens which are recognized by TLR2 receptors feedback to DC or T cell population which stimulates immune response The

disrupted skin barrier allows microbial entry in to skin which probably increases cytokines IL-4, IL-10 and IL-13 levels. Circulating anti- Malassezia IgE has been

reported in AD (C). The figure was created using Biorender.com.
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maintains a high Th2-biased immune system to prevent

proinflammatory Th1-type alloimmune responses to maternal

tissues (Philbin and Levy, 2009), but acquires the ability to

produce IgG and IgM antibodies at 10 weeks gestation with

IgG levels increasing till 22 weeks. The neonates undergo

extreme physical and physiological changes at birth, with the
skin surface experiencing a drastic shift from aqueous and sterile

to dry with a high load of microbial antigens (Hoeger and

Enzmann, 2002). The high Th2 dependent-IL6 cytokine levels,

formed in the prenatal stage, shield against microbial infections,

and these antigens are cleared at birth (Georgountzou and

Papadopoulos, 2017).
Dynamic signals from commensals during early

development are used by the immune system to provide

heterologous defense mechanisms. The evolutionary

interaction between cutaneous commensal microbiota and the

skin immune system involves changing antigen signals to

calibrate immunity against pathogens (Naik et al., 2015;
Quaresma, 2019). From the time of birth, the skin microbiota

develops as a highly diverse and dynamic ecology which

undergoes remodeling due to host and environmental factors

and aids in immune education (Grice et al., 2009; Kong and

Segre, 2012). However, host tolerance is established in the early

phases of immunity development immediately after birth.

During this period skin regulatory T cells (Tregs) establish
immune tolerance to commensal microbes, preserve homeostasis

with skin microbiota, and protect against pathogens (Belkaid

et al., 2002). In neonates, there is a steep influx of Tregs into

skin within the first two weeks, to mediate tolerance specific to

the commensal microbiota (Scharschmidt et al., 2015; Ali and

Rosenblum, 2017). As Malassezia are among the major
commensal fungi in neonates, it can be hypothesized that they

may also induce and establish specific tolerance pathways in the

skin involving Tregs (Figure 2).

In healthy skin,Malassezia exist as a commensal and benignly

interact with keratinocytes and the immune system, as they

reside mainly on the outer skin surface and the follicular

infundibulum (Sanmiguel and Grice, 2015; Mittermann et al.,
2016). Malassezia are detected by the host immune system

through keratinocytes and various immune cell populations.

The Malassezia cell wall components b-(1,6)-glucans,
glycolipids, and glycoproteins are recognized by proline rich

region (PRR) motifs present in Dectin-2 and Macrophage

inducible Ca2+-dependent lectin receptor (Mincle) host cell
membrane bound CLR (C-type Lectin) receptors in multiple

immune cell types (Ishikawa et al., 2013; Dambuza and Brown,

2015; Underhill and Pearlman, 2015; Sparber and Leibundgut-

Landmann, 2017). Langerin, a PRR expressed on epidermal

Langerhans cells and a subset of dermal DCs, can recognize

beta-glucans expressed on theMalassezia cell wall (De Jong et al.,

2010; Tateno et al., 2010)(de Jong Mol Immunol 2010; Tateno J
Biol Chem 2010). However, what roles these (and other PRRs)

play in Malassezia-induced commensalism, inflammation, and

adaptive immunity is currently not well understood.

Host innate immune activity to Malassezia has been well

documented with various in vitro studies in human keratinocytes

based on secretion of proinflammatory cytokines, chemokines

and AMPs. M. furfur, M. globosa and M. restricta induced

increase in expression of Toll-like receptor 2 (TLR-2), IL-8,

Human beta-defensin 2 (HBD-2), HBD-3 suggests their role in

skin protection. (Baroni et al., 2006; Donnarumma et al., 2014;

Georgountzou and Papadopoulos, 2017). These cytokines and
chemokines recruit immune cells to skin sites with minimal or

compromised barrier, such as the follicle infundibulum, where

Malassezia may be directly exposed to keratinocytes, tissue

resident dendritic cells (DCs), macrophages, myeloid cells and

gd-T cells (Sparber and Leibundgut-Landmann, 2017).

Malassezia can inhibit phagocyte responses to Toll-like
receptor (TLR) stimulation and contribute to cutaneous

invariant gdT cell homeostasis through specific indole

metabolites and AhR receptor signaling in the skin (Kadow

et al., 2011; Vlachos et al., 2012). A murine skin infection

model indicates Malassezia can induce Th17 immunity (IL-23/

17 axis). In healthy human skin, Malassezia are also known to
modulate the inflammatory cytokine response of CCR6+ Th17

memory T cells (Sparber et al., 2019). It is not clear how

Malassezia mediates an immune response for either a

commensal or inflammatory state in human skin.

Innate immune activation in skin enhances the adaptive

immune response (Holt and Jones, 2000). Generally, adaptive

immune responses are stronger in Malassezia-associated
diseases, but their status during commensalism is less clear.

Emerging evidence also indicates that innate lymphoid cells

(ILCs) respond directly to skin fungal populations by

producing IL-17 cytokine (Gladiator and Leibundgut-

Landmann, 2013; Gladiator et al., 2013). To substantiate the

immune response, Malassezia-specific immunoglobulins IgG,
IgM, IgE, and IgA have also been identified in healthy human

sweat and shown to coat Malassezia on the skin surface (Page

and Remington, 1967; Forstrom et al., 1975; Metze et al., 1991;

Cunningham et al., 1992). In summary, although there are

studies beginning to describe the immunological response to

Malassezia as commensals, further studies are required to

elucidate precise mechanisms.

MALASSEZIA AND SKIN DISEASE

Malassezia have now been associated with numerous skin

diseases (Gaitanis et al., 2013; Harada et al., 2015; Prohic et al.,

2016; Limon et al., 2017; Saunte et al., 2020). These skin
conditions are either caused, or exacerbated by, alterations by

Malassezia in a changing skin environment.Malassezia normally

exist as a skin commensal without inflicting disease, suggestive of

contextual pathogenesis. One possible mechanism of Malassezia

mediated skin disease is host genetic susceptibility (Deangelis

et al., 2005). Skin barrier defects, for example, may change

microbiota composition and/or behavior, leading to a
corresponding immune inflammatory response. There are two

modes by which Malassezia interact with the skin. One is direct,

where specific Malassezia metabolites introduce physiological

Vijaya Chandra et al. Malassezia in Human Skin Health

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org January 2021 | Volume 10 | Article 6144466

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


changes such as irritation. The second is indirect, where immune

or allergic pathways are activated and manifest as inflammation

(Grice and Dawson, 2017). One emergent challenge is to

decipher the role of Malassezia as a cause or consequence in

its multifaceted interaction with the skin. Malassezia can cause

hypo- or hyper-pigmented non-inflammatory lesions through
interaction with melanocytes, and with mild barrier defects can

cause pityriasis versicolor, a common skin infection. Often

Malassezia metabolites trigger a scalp inflammatory response

causing dandruff and in severe situations seborrheic dermatitis,

and can invade and inflame hair follicles to cause folliculitis

(Theelen et al., 2018). In other inflammatory skin conditions,
such as atopic dermatitis and psoriasis, there is increasing

evidence about the role of Malassezia. As host susceptibility is

often a prerequisite for fungal pathogenicity, it remains

important for mechanistic investigational studies to be

performed longitudinally in susceptible individuals, as

important pathogenic mechanisms may well be present in
non-susceptible individuals and confound parallel group

studies by not inducing the disease phenotype.

Malassezia and Childhood Skin Infections
New-born fungal infections are usually topical with mild

symptoms. However, in immune compromised or prematurely

born infants’, skin residentMalasseziamay spread into to blood

circulation and disseminate as sepsis, with serious and often

lethal consequence. The initial Malassezia colonization may
cause hypersensitivity reactions in neonatal face, scalp, and

neck skin with non-follicular papulopustular eruptions

referred to as neonatal acne or sebaceous miliria. It is not clear

how these eruptions spontaneously resolve, but they usually do

so within weeks. Neonatal and infantile seborrheic dermatitis

associated with M. furfur shows a scaling scalp, ‘cradle cap’

phenotype and is treated by applying ketoconazole shampoo or
petrolatum gently on scalp skin or affected area (Wananukul

et al., 2005; Zuniga and Nguyen, 2013). Low birth weight infants

are also susceptible to Malassezia skin infections and these

infants are reported to have high fungal load (Speer et al.,

1976; Sperling et al., 1988; Ng, 1994; Sohn et al., 2001;

Kaufman and Fairchild, 2004). Proposed mechanisms for
preterm neonatal skin and systemic infections involves factors

such as the developing fragile skin structure having an

incomplete barrier, an under-developed immune system, and

microbial transmission from caregivers and hospital sources.

Other clinical manifestations of infants of premature births are

invasive Malassezia infections through catheters in neonatal

intensive care units (NICU) (Shek et al., 1989; Pedrosa et al.,
2018; Chow et al., 2020). At the onset of puberty there is

increased activity of sebaceous glands and lipid content

predominantly in facial, scalp and trunk skin. This favors the

growth of specific lipophilic microbial populations such as C.

acnes and Malassezia. However, it is not clear which biological

factors, including changes in skin microbiota, are causative for
acne vulgaris during adolescence (Common et al., 2019;

Ramasamy et al., 2019).

A Role for Malassezia in Pityriasis
Versicolor
Pityriasis versicolor (PV), also called Tinea versicolor, is a mild,

chronic, superficial fungal infection and frequently occurs in

children and adolescents when sebaceous activity is maximum.

The lesions appear as hyper- or hypo-pigmented (discolored

patches), mostly around the trunk and shoulders. Common
clinical presentations are mild itch and scaling in affected areas

(Gordon, 1951; Gaitanis et al., 2013). This mild cosmetic disease

is usually more active in hot and humid weather conditions than

temperate climates. Malassezia are known to cause PV (Gupta

et al., 2002; Crespo-Erchiga and Florencio, 2006). To date M.

furfur, M. globosa and M. sympodialis are the most commonly

identified species in PV (Saadatzadeh et al., 2001), but due to the
numerous changes in Malassezia nomenclature and the recent

identification of many new species it remains unclear if any

specific species is causal for PV. Malassezia usually exist as

individual spherical yeast, however in PV they become

mycelial with profuse hyphal growth and abnormal expansion

in the affected site. Interestingly, histopathological staining from
skin biopsies shows milder signs of skin barrier defects and no

sign of inflammation despite the heavy fungal load. It is possible

that Malassezia take advantage of a compromised skin barrier

and the mycelial form can go in search of a nutrient rich skin

layer (Saadatzadeh et al., 2001). It is not clear how and why there

is minimal inflammation despite the increased mycelial form and

fungal load. Humoral specific IgG response toward M. furfur
antigens has been reported for PV (Silva et al., 1997). Although

PV could be treated by specific antifungal treatments there is

high risk of relapse at up to 80%, which severely impacts the

patients quality of life (Theelen et al., 2018).

Direct Pathogenesis: Malassezia in
Seborrheic Dermatitis and Dandruff
Seborrheic dermatitis and Dandruff (D) are skin conditions

found in sebaceous areas with hair. Dandruff is restricted to
the scalp and involves itchy, flaking skin without visible

inflammation, and is considered a mild non-inflammatory

form of SD (Priestley and Savin, 1976; Danby et al., 1993;

Warner et al., 2001). SD is a common chronic relapsing

inflammatory skin disorder characterized by greasy scales with

erythematous skin and exofoliative scaling (oily-yellow
desquamation) on the scalp, which may extend to face, ears

and upper chest associated with pruritus (Borda and

Wikramanayake, 2015). Triggering factors include stress and

cold, dry weather (Gary, 2013; Borda and Wikramanayake,

2015). The prevalence is higher in men than women,

potentially due to hormonal influence by androgens

(Islamoglu, 2019). However, this may also be a result of
differences in grooming practices between genders. Malassezia

have been identified and correlated to SD and D phenotypes,

with M. globosa, M. restricta, M. dermatis and M. furfur

associated with these conditions (Nakabayashi et al., 2000;

Gupta et al., 2001; Gemmer et al., 2002; Sugita et al., 2002;

Kim, 2009). There are three basic etiologic factors for SD and D;
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Malassezia, sebaceous activity, and individual or host

susceptibility (Deangelis et al., 2005; Ro and Dawson, 2005).

Intrinsic host factors, such as composition of sebum and

defective epidermal barrier, likely have an effect on Malassezia

activity (density, lipase expression and nutrient utilization,

immune stimulatory metabolites) that elicits the host
inflammatory response. Metabolites such as oleic acid,

arachidonic acid, malassezin, and indole-3-carbaldehyde act as

skin irritants and are implicated in keratinocyte proliferation and

inflammation as shown in Figure 2. The causative role of

Malassezia in SD and D may be assessed through Koch’s

postulates (Koch, 1893). As Malassezia are found on all
humans, Koch’s first postulate cannot be fulfilled (Mcginley

et al., 1975). However, it remains unclear whether there are

Malassezia strain level differences between healthy and D or SD

skin that manifest the disease. It is also not known whether the

same Malassezia strain(s) that exist as commensals in healthy

skin contextually become pathogenic due to unknown host
environment and susceptibility factors. However, removal of

Malassezia using antifungals improves D and SD, while

removal of bacteria does not, and removal of both bacteria and

fungi provides a similar benefit to the removal of fungi alone

(Vanderwyk, 1964; Vanderwyk, 1967; Leyden et al., 1976).

Furthermore, reintroduction of resistant “P. ovale” (likely M.

globosa) during application of an antifungal (nystatin) are able to
induce D and SD flaking (Gosse, 1969). Finally, a specific

Malassezia metabolite, oleic acid, induces a D like

desquamation when applied to scalp free from Malassezia and

flaking (in individuals previously determined to be susceptible to

D and SD) (Ro and Dawson, 2005). These observations fulfill

three of four Koch’s postulates and clearly establish the
pathogenic role of Malassezia in causing D and SD (Gran

et al., 2020). The mechanisms of individual susceptibility to D

and SD remains unclear, but host genetics implicate immune

response (ACT1, C5, IKBKG/NEMO, STK4) and epidermal

differentiation (ZNF750). However, it is still not known how

disruption to these genetic factors is related to the clinical

presentation of D and SD (Jacobs and Miller, 1972; Evans
et al., 1977; Mancini et al., 2008; Abdollahpour et al., 2012;

Crequer et al., 2012; Nehme et al., 2012; Boisson et al., 2013;

Halacli et al., 2015; Karakadze et al., 2018).

Malassezia in Atopic Dermatitis:
Pathogenesis or Mutualism?
Atopic dermatitis (AD) and psoriasis are characterized by

chronic skin inflammation due to multiple genetic, immune
and environmental factors (Bjerre et al., 2017; Weidinger et al.,

2018; Nowicka and Nawrot, 2019; Langan et al., 2020). The

majority of AD patients have skin barrier dysfunction either due

to mutations in genes such as filaggrin and tight junctions or

from a more generalized disruption from the presence of Th2

cytokines (Palmer et al., 2006; Sandilands et al., 2009; Jungersted
et al., 2010; Rerknimitr et al., 2017; Drislane and Irvine, 2020).

The disruption is similar in both instances with a compromised

barrier as demonstrated by increased trans-epidermal water loss,

high pH, reduced stratum corneum hydration, and altered

microbiota (Yang et al., 2020). Increased percutaneous

sensitization from microbial products or allergens then

produces a vicious cycle stimulating host immunity with

resulting dryness, itching and erythema that often progresses
into lesional flares and infections (De Benedetto et al., 2012;

Lunjani et al., 2018). The incidence of AD is approximately 15%

to 20% of children and up to 10% of adults with an age specific

disease pattern (Eichenfield et al., 2014; Nutten, 2015). The skin

microbiome is strongly associated in pathogenesis of AD with an

over growth of Staphylococcus aureus at the infected lesions
and a distinct microbial configuration in non-lesional

skin including alterations in Malassezia species (Leyden

et al., 1974; Kong et al., 2012; Kobayashi et al., 2015; Chng

et al., 2016).

The role ofMalassezia in AD is supported by both antifungal

treatments reducing the severity of symptoms and that
application of Malassezia extracts or recombinant Malassezia

antigens on AD subjects exacerbates the phenotype (Zargari

et al., 2001; Johansson et al., 2003; Brodska et al., 2014; Glatz

et al., 2015; Prohic et al., 2016) (Figure 2). Malassezia are

frequently isolated from and associated with AD, with M.

globosa and M. restricta found more frequently followed by M.

sympodialis andM. furfur (Sugita et al., 2001; Amaya et al., 2007;
Kaga et al., 2011). However, one study reported that AD patients

yielded exclusivelyM. sympodialis isolates (Sandstrom Falk et al.,

2005; Jagielski et al., 2014). One possible explanation why

Malassezia may be in lower abundance on AD skin is the

reduced lipid content associated with the dry skin phenotype

(Pilgram et al., 2001; Chng et al., 2016; Theelen et al., 2018). In
AD the susceptibility of host to Malassezia infection has also

been associated with a cytokine gene polymorphism and clinical

outcome (Jain et al., 2017).

Malassezia are even more strongly implicated in development

and persistence of a specific subset of adult head and neck

eczema, proposed to be caused by Malassezia allergens (Saunte

et al., 2020). This subset of patients responds to oral or topical
antifungal therapy and have circulating antibodies to multiple

Malassezia antigens (Scheynius et al., 2002). While the subgroup

and antigens were initially found with M. sympodialis antigens

(Mala S1-9), antigens to other species have also come to light

(Andersson et al., 2003). Malassezia antigens MGL 1304 (M.

globosa), Mala s 8, Mala s 13 (M. sympodialis), and Mala r 8 (M.
restricta) have now been shown to be released through

Malassezia nanovesicles due to the increased skin pH in AD

(Selander et al., 2006; Gehrmann et al., 2011; Kohsaka et al.,

2018). The antigenic protein MGL-1304 is involved in histamine

release and implicated as a component of the AD pathogenesis

(Kohsaka et al., 2018). These antigenic proteins are found in

sweat, and can cause sweat allergy and an IgE specific AD skin
immune response (Hiragun et al., 2013). It is also known that the

IgE sensitization profile to skin commensal M. sympodialis and

specific allergens from the bacterial pathogen S. aureus differ

between moderate and severe AD patients (Mittermann et al.,

2016). One other AD subject sub-group has a CD4+ T cell
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population specifically reacting to Malassezia thioredoxin

antigen (Mala s 13). Mala S 13 is a homolog of human

thioredoxin, and the CD4+ T cells cross react with human

thioredoxin, leading to AD skin inflammation. A similar

triggering mechanism is attributed to Mala S 11, manganese

dependent superoxide dismutase (Vilhelmsson et al., 2007; Balaji
et al., 2011).

The disrupted skin barrier can provide a constant source for

Malassezia and its allergens to enter the skin and interact with

TLR2 receptors on DCs and keratinocytes. Specific pro-

inflammatory cytokines and Malassezia specific IgE antibodies

are produced through T cell response and B cell activation. The
mast cells and DCs also contribute to skin inflammation

sustained by cross reacting auto reactive T cells. In AD

patients the increased levels of cytokines IL-4, IL-10 and IL-13

suggest inflammatory response and these cytokines are known to

reduce the levels of antimicrobial peptides such as Cathelicidin

(LL-37) and Human beta-defensins 2 and 3, as well as and skin
barrier proteins filaggrin, loricrin and involucrin produced by

keratinocytes (Figure 2; (Mcgirt and Beck, 2006; Howell et al.,

2007; Kim et al., 2008). The growth of pathogens such as

Staphylococcus aureus and their biofilms in AD skin is

probably favored due to lack of abundance of Malassezia and

reduction of human defensins (Glatz et al., 2015; Chng et al.,

2016).Malassezia is also known to inhibit the growth of S. aureus
biofilms through secretion of specific proteases, suggesting its

possible role in healthy and AD skin (Li et al., 2018). Malassezia

antigens are also responsible for activation of NLRP3

inflammasome in DCs and can trigger production of IL-1b, IL-
4, IL-5, IL-13 and IL-18 cytokines in vitro (Kistowska et al.,

2014). A number of these cytokines contribute to inflammation
in AD skin as well as other allergic diseases, however, it is not

clear whether Malassezia antigens are specifically expressed in

AD skin or healthy subjects. Additionally, a specific subset of

Th17 memory T cells is elicited to Malassezia in AD patients

aggravating inflammation directly dependent on IL-17 (Sparber

et al., 2019). Taken together, there is mounting evidence that

Malassezia have a role in AD. The specific Malassezia
contribution to the AD phenotype is not clear and interactions

could occur via cell wall, cell membrane or lipid metabolite

components that stimulate an immune response. However, what

has been shown is that antifungals are effective in reducing AD

severity, and this should be further explored (Kolmer et al., 1996;

Nikkels and Pierard, 2003).

Malassezia in Psoriasis: Evolving to a
Pathogenic Relationship in Susceptible
Individuals?
Psoriasis affects skin, nails, and joints and is characterized by

epidermal hyperproliferation and hyperkeratinisation (Perera

et al., 2012; Hugh and Weinberg, 2018). Psoriasis is a T cell

mediated autoimmune disease and primarily the result of a
combination of genetic and environmental factors (Barker, 1998).

Psoriasis (aswithAD) has a strongmicrobial component that could

drive or exacerbate the disease phenotype (Fyhrquist et al., 2019;

Hurabielle et al., 2020). Certain Malassezia species have been

associated with particular subtypes of psoriasis such as M.

japonica and M. furfur with psoriasis vulgaris and Malassezia

yeasts with guttate and scalp psoriasis (Aydogan et al., 2013;

Gomez-Moyano et al., 2014; Honnavar et al., 2015). Malassezia

globosa is the predominant yeast found in scalp psoriatic lesions,
followed byM. furfur andM. sympodialis, but as these are also the

same species found on normal scalp there is little evidence they are

causal in pathogenesis. However, serum analysis from psoriatic

individuals has indicated antibodies against Malassezia and its

antigens (Squiquera et al., 1994; Gemmer et al., 2002; Jagielski

et al., 2014). In Psoriasis, interleukin 23 (IL‐23)/Th17 immune axis
has been identified as amajor pathway (Blauvelt, 2008; Girolomoni

et al., 2017; Li et al., 2020).Malassezia can also induce Th1-related

cytokines in peripheral blood mononuclear cells in vitro (Kanda

et al., 2002; Valli et al., 2010) and induce keratinocyte

proliferation and proinflammatory cytokine production which

could potentially enhance inflammation (Baroni et al., 2004).
Topical and systemic antifungal treatments show marked efficacy

of improvement in psoriatic lesions (Rosenberg and Belew, 1982;

Farr et al., 1985; Amichai, 2004; Armstrong et al., 2016; Beck et al.,

2018). In an epicutaneous psoriasis mouse model involving pre-

exposure to Malassezia followed by Imiquimod (IMQ) there is

induction of skin inflammation in a Th17-dependent manner with

a transcriptome similar in profile to human psoriatic lesions.
Taken together Malassezia is likely an exacerbating factor in

psoriasis where antifungal treatment can lead to symptomatic

improvement but is not the initiating event (Hurabielle et al.,

2020). This necessitates attempting more controlled antifungal

treatment strategies in psoriasis (Stehlikova et al., 2019). Further

work is required to fully understand the role of Malassezia
in psoriasis.

The strongest evidence thatMalassezia can directly cause skin

disease remains their role in D and SD, where it is clear they play

a causal role (Grice and Dawson, 2017; Theelen et al., 2018).

They are also very likely to be the causative agent in several less

common disorders, including PV and Malassezia folliculitis

(Gupta et al., 2004). It still remains less clear as to what
specific role Malassezia may have in inflammatory skin disease

pathogenesis. To fully elucidate the role of Malassezia in

inflammatory skin disease more longitudinal treatment-based

studies are needed to elucidate the protective or pathogenic role

in susceptible individuals. It is likely that strain level analysis will

also aid in defining the molecular mechanisms by which
Malassezia contextually interact with our skin and how to

strategize fungal targeted therapy toward improving

clinical outcomes.

MALASSEZIA AS A PROTECTOR AGAINST
SKIN PATHOGENS: MUTUALISM?

Skin barrier homeostasis is maintained in part due to multi-

kingdom microbial communities’ protective roles against
pathogens (Byrd et al., 2018). A number of bacterial species

have now been shown to provide a protective and synergistic
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relationship that maintains skin homeostasis (Nakatsuji

et al., 2017). It has been hypothesized that the skin

fungal mycobiome, primarily Malassezia, can protect human

skin through its large biomass and spatial-temporal

expansion. Malassezia metabolize sebum and produce short

chain fatty acids (SCFA), such as azelaic acid, which are
known to have dual antibacterial and anti-mycotic properties

(Brasch and Christophers, 1993). Moreover, Malassezia

mediated esterification of medium-chain fatty acids generate

ethyl ester derivatives with in vitro antimycotic activity

(Mayser, 2015). M. globosa secreted aspartyl protease 1

(MgSAP1) has been shown in vitro to disrupt biofilm
formation of Staphylococcus aureus via hydrolysis of S. aureus

protein-A (Li et al., 2018). In AD associated microbiomes, there

is significant reduction of Malassezia as a genus and specifically

M. globosa resulting in a potentially decreased protective

function which could otherwise be restricting S. aureus

pathogenicity (Chng et al., 2016).

CONCLUSION

Malassezia are now known to cause skin and scalp disorders, but

there remain numerous gaps in the mechanistic understanding

of how body site microenvironments affect multi-kingdom skin

microbiota composition and function in both healthy

homeostasis and disease states. To reach this end goal of

defining the role of Malassezia as commensal, pathogen, or

mutualist we still need to rationalize differences between
detection methodologies. Although there is ongoing, rapid

advancement in sequencing technologies and metagenomics

analysis, it is not yet clear why there is such a large

discrepancy between results obtained with cultures, ITS, and

metagenomics. It is imperative that future microbiome studies,

including any Malassezia mediated skin or systemic disease,
needs appropriately controlled, robust, and reproducible

detection methods which consider and balance both new,

cutting edge sequencing techniques and established, well vetted

technologies. Also, Malassezia have had multiple confusing

changes in nomenclature and continuing expansion of the

known species, making tracking of the primary literature

challenging and assignment of pre-1998 activities to current
strains nearly impossible (Theelen et al., 2018). As recent work

has shown divergent function between even closely related

species and strains, care must be taken in strain identification

and assignment of function (Chng et al., 2016; Li et al., 2018).

Additionally, many current studies investigating the

relationships between microbe and host are limited to parallel
group studies of specific pathways in target diseases, limiting

understanding of molecular mechanisms that initiate or

exacerbate disease progression. Mode of disease onset, function

of the skin microbiota, and their role in healthy homeostasis will

need to be investigated by implicit longitudinal study design,

with appropriate comparison of severity and treatment stages

(Grice and Dawson, 2017). These multiple factors have limited

our current understanding of the role of mycobiota in healthy

skin homeostasis.

In conclusion, the relationship between Malassezia and their

human host is complex, varies with body site, age, and host

susceptibility, and can be in any given circumstance a

commensal, pathogenic, or mutualistic relationship. It is
important for future clinical studies to account for

intrapersonal anatomical variations in the skin microbiota,

individual susceptibility, gender, age, seasonality, and ethnicity.

Detailed information should also be included to capture the

various stressors and perception of skin health or disease, which

may promote endocrine and metabolic host changes within the
cutaneous microenvironments. Full analysis of these variations

will help to delineate the direct influence of microbial alterations

in homeostasis of healthy skin and to develop understanding of

solid causal relationships.

An improved understanding of the host-Malassezia

relationship offers tremendous potential for development of
treatments to improve skin health outcomes. There are

opportunities to develop mycobiome targeted solutions using

prebiotic or post-biotic metabolites with the potential to restore

healthy skin microbiome and functional attributes such as

barrier, dryness, inflammation, and reverse dysbiosis. While

most studies to date describe bacterial interactions, it is crucial

for future endeavors to address the mechanistic processes
between fungal-fungal, inter-kingdom communities, and

microbe-host for skin health and disease (Arvanitis and

Mylonakis, 2015; Tipton et al., 2018; Zhang et al., 2018).

Although there are now an increasing number of detailed

studies that demonstrate the mycobiota’s role in commensal

and disease states, a substantial knowledge gap remains in
understanding fungal virulence determinants and requires

further attention.
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