
1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPDS.2015.2468716, IEEE Transactions on Parallel and Distributed Systems

D. ZONI et al.: CUTBUF: BUFFER MANAGEMENT AND ROUTER DESIGN FOR TRAFFIC MIXING IN VNET-BASED NOCS 1

CUTBUF: Buffer Management and Router
Design for Traffic Mixing in VNET-based NoCs

Davide Zoni, José Flich, Senior Member, IEEE and William Fornaciari, Senior Member, IEEE

Abstract—Router’s buffer design and management strongly influence energy, area and performance of on-chip networks, hence it

is crucial to encompass all of these aspects in the design process. At the same time, the NoC design cannot disregard preventing

network-level and protocol-level deadlocks by devoting ad-hoc buffer resources to that purpose. In Chip Multiprocessor Systems (CMPs)

the coherence protocol usually requires different virtual networks (VNETs) to avoid deadlocks. Moreover, VNET utilization is highly

unbalanced and there is no way to share buffers between them due to the need to isolate different traffic types.

This paper proposes CUTBUF, a novel NoC router architecture to dynamically assign VCs to VNETs depending on the actual VNETs

load to significantly reduce the number of physical buffers in routers, thus saving area and power without decreasing NoC performance.

Moreover, CUTBUF allows to reuse the same buffer for different traffic types while ensuring that the optimized NoC is deadlock-free

both at network and protocol level. In this perspective, all the VCs are considered spare queues not statically assigned to a specific

VNET and the coherence protocol only imposes a minimum number of queues to be implemented. Synthetic applications as well as

real benchmarks have been used to validate CUTBUF, considering architectures ranging from 16 up to 48 cores. Moreover, a complete

RTL router has been designed to explore area and power overheads.

Results highlight how CUTBUF can reduce router buffers up to 33% with 2% of performance degradation, a 5% of operating frequency

decrease and area and power saving up to 30.6% and 30.7%, respectively. Conversely, the flexibility of the proposed architecture

improves by 23.8% the performance of the baseline NoC router when the same number of buffers is used.

Index Terms—Networks-on-Chip, performance, power, router architecture, RTL, simulation

✦

1 INTRODUCTION

Networks-on-Chip (NoCs) is an accepted solution to
cope with the increasing communication requirements
in multi-core architectures. However, the huge amount
of design parameters to be considered, i.e. buffer depth,
number of VCs, pipeline organization, flit size and so
on, makes the NoC design complex. Router buffers
are recognized as those that mostly affect the overall
behavior of the on-chip network and, consequently, the
performance of the whole chip. Moreover, buffers con-
sume a significant part of the NoC router power and
storing a packet in a buffer consumes far more energy
than its transmission [1]. Besides, the area occupied by
an on-chip router is dominated by the buffers [2], [3].
Last but still important, the router buffer organization
significantly impacts on the deadlock problem, both at
network and protocol levels. This is more important
when implementing strategies for Chip Multiprocessors
(CMPs). In such systems it is typical to find a coherence
protocol running on top of the NoC. This protocol injects
messages of different types and the network needs to

• D. Zoni is with Politecnico di Milano - Dipartimento di Elettron-
ica, Informazione e Bioingegneria (DEIB), Milano, ITALY. E-mail: da-
vide.zoni@polimi.it

• José Flich is with the DISCA department, Universitat Politècnica de
València, Valencia, SPAIN. E-mail: jflich@disca.upv.es

• W. Fornaciari is with Politecnico di Milano - Dipartimento di Elet-
tronica, Informazione e Bioingegneria (DEIB), Milano, ITALY. E-mail:
william.fornaciari@polimi.it

separate them in different queues, i.e. Virtual Channels
(VCs), thus imposing a multiplicative increase in the
number of queues implemented in the NoC routers.
Typically, each message type is steered through a so-
called different virtual network (VNET), thus using only
resources reserved for the specific VNET.

Indeed, we can relate the power/performance trade-
off with the number of queues used in the NoC routers.
The number of queues has to be sized in order to achieve
a given performance, to avoid network deadlocks (provi-
sioning enough queues for the routing algorithm) and to
avoid protocol deadlocks (provisioning enough queues
for the running protocol). Conversely, the power con-
sumption of the NoC strongly depends on the number
of queues. Thus, we have conflicting goals: reducing
the queues for the power consumption without com-
promising the performance or even the correct system
behavior. CUTBUF is a novel router architecture that
efficiently manages the buffers by dynamically assigning
more queues to the demanding VNETs and reusing each
queue by packets of different types. The novelty is a
NoC router with almost the same performance of the
reference baseline NoC, but with a reduced number of
implemented queues. To the best of our knowledge, this
is the first comprehensive work addressing the reuse of
virtual channels (VCs) by mixing the traffic pertaining to
different VNETs at run-time with a per packet granular-
ity, still avoiding deadlock at both routing and protocol
levels.

The rest of this section is split in three parts. Section 1.1

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPDS.2015.2468716, IEEE Transactions on Parallel and Distributed Systems

D. ZONI et al.: CUTBUF: BUFFER MANAGEMENT AND ROUTER DESIGN FOR TRAFFIC MIXING IN VNET-BASED NOCS 2

(a) Normalized buffer depth against
the 10-flit buffer scenario.

(b) Number of VCs per VNET, from
1 to 4, normalized w.r.t. the 4 VCs
per VNET scenario.

Fig. 1: Performance impact varying both the count and depth
of the buffer. Results are from a 16-core 2D-mesh running qsort
benchmark (see Table 2 for parameters).

motivates the importance of a proper buffer design and
management to address concurrently area, power and
performance. The novel contributions of the paper are
detailed in Section 1.2, while the structure of the whole
paper is outlined in Section 1.3.

1.1 Rationale on Buffer Optimizations

The buffer design has a relevant impact on the NoC area
and power as well as on the overall system performance
[3], [4]. Aggressively reducing the number of buffers or
their size to reduce silicon area and power consumption
is not feasible, due to the impact on NoC performance.
Buffers are a key resource because:

• they allow to decouple the communication in mul-
tiple separated hops, thus enhancing flexibility;

• increasing the depth of the buffers, mitigates the
impact of the round trip time in NoCs exploiting a
credit-based control flow (which can force to insert
stalls in the communication between two routers);

• VCs allows multiple packets to share the physical
channel, reducing the Head of Line (HoL) blocking
effect, and increasing performance, even if multiple
physical buffers per input port are required;

• coherence protocols impose multiple separated
VNETs to route different types of messages avoiding
deadlock. Each VNET requires dedicated buffers.

Figure 1 reports the normalized execution time for
qsort (see MIBENCH [5]), considering a 16-core 2D-mesh
multi-core and a link width of 64 bits. Different buffer
counts per input port and buffer depths are considered
in Figure 1b and Figure 1a, respectively. Figure 1a shows
how the performance penalty is over 40% when single
flit buffers are used, while increasing the buffer depth
greatly improves the performance. On the other hand,
increasing the buffer depth can have the drawback of
low buffer utilization. In summary, a suitable (not trivial)
buffer reuse strategy should be considered to tune the
buffer depth. Results in Figure 1b are obtained consid-
ering a buffer depth of 4 flits and a buffer width of 64
bits. Figure 1b highlights a performance improvement
by increasing the number of VCs per VNETs.

Conversely, Figure 2 reports the area breakdown con-
sidering a router split in five main components: buffers,

(a) Different buffer sizes. (b) Different number of VCs.

Fig. 2: Area breakdown varying the flit width and the number
of virtual channels for three VNETs. Data have been ob-
tained from an input-buffered wormhole router synthesized
at 667GHz with 45nm technology. [6].

TABLE 1: Average buffer utilization per VNET, considering a
4 × 4 2D-mesh with MESI protocol implementing 3 VNETs.
Data are normalized to the most loaded VNET and extracted
from the router five (center of the mesh).

Benchmark VNET-0 VNET-1 VNET-2

susan 0.21 1 0.045
qsort 0.29 1 0.05

dijkstra 0.24 1 0.03

crossbar, output port logic, Virtual Channel Allocation
(VA) and Switch Allocation (SA). Different flit widths
and number of virtual channels for each input port are
considered. Again, buffers emerge as one of the first
actors in determining the overall NoC area. Both buffer
depth and buffer count reduction can satisfy the need to
shrink the NoC footprint with a positive power reduc-
tion. For all the above reasons, buffer reuse and buffer
sharing between VNETs schemes represent a suitable
research path to balance power, performance and area.

The NoC design is burst oriented, i.e. it is tailored to
support the maximum load due to the attached cores.
Typically, the traffic is low for the majority of the time,
with a poor resource utilization. Thus, a proper router
design is crucial to reduce the buffers by compacting the
traffic in few of them still ensuring similar performance.

Table 1 reports the average buffer usage between the
VNETs, for some MIBENCH applications [5], consid-
ering a 4 × 4 2D-mesh and the MESI directory-based
coherence protocol using 3 VNETs as implemented in
GEM5 [7]. Results are normalized to the most used
VNET (reference utilization of 1). It is evident the vari-
able buffer utilization, spurring the search for solutions
to exploit the unbalanced resource usage.

1.2 Novel Contributions

CUTBUF is a novel NoC architecture reusing at run-
time the same buffer for different types of traffic. The
goal is to improve NoC area and power by reducing
the implemented buffers with a minimal impact on the
overall performance. Three main contributions to the
state of the art can be envisioned:

• Dynamic VC allocation to VNET - the possibility to
assign any VC to any type of traffic at run-time
depending on the actual needs of each VNET, allows
to reduce the number of implemented VCs with
minimal impact on performance.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPDS.2015.2468716, IEEE Transactions on Parallel and Distributed Systems

D. ZONI et al.: CUTBUF: BUFFER MANAGEMENT AND ROUTER DESIGN FOR TRAFFIC MIXING IN VNET-BASED NOCS 3

• Traffic Mixing and Queue Usage Minimization - dif-
ferent types of message can be mixed on the same
VC at different times still ensuring to be deadlock
free at network and protocol levels. This confines
the traffic in few buffers, increasing their utilization.
Considering low traffic, only a single queue is used
on every router port to manage all the traffic, thus
enabling large power savings for the other ones (the
power gating is not explored in this paper).

• Power and Performance trade-off - CUTBUF focuses
on area and power savings by reducing the imple-
mented buffers, with minimal impact on the overall
system performance. Synthesis results highlight an
area and power reduction up to 13.7% and 13.8%,
respectively, for the CUTBUF implementing 5 VCs
against the baseline with 6 VCs. Note that CUTBUF
offers the same bandwidth of the baseline with 6
VCs using only 5 VCs. Although CUTBUF focuses
on buffer reduction keeping the same performance,
additional results show that by using the same num-
ber of queues CUTBUF outperforms the baseline
router by up to 23.8%.

1.3 Paper Structure

The following Section 2 discusses the state of the art on
NoC buffer design and management, while the CUTBUF
architecture is detailed in Section 3. Area and power
estimates based on RTL synthesis as well as simulation
results for performance evaluation are provided in Sec-
tion 4. Finally, conclusions are drawn in Section 5.

2 RELATED WORKS

Several works in literature focused on buffer design
and management, due to their tight relation with NoC
power, performance and area. [8] investigated the buffer
sizing issues, but their solution is tailored to a specific
application class, so that it lacks of flexibility when
different traffic patterns are used.

[9], [10] proposed two buffer-less router microarchitec-
tures coupled with a deflection-based routing algorithm
([9]) and a minimal routing algorithm with packet re-
transmission capabilities ([10]). The complete absence of
buffers drastically reduces both area and power of the
router, but it confines the solution to low traffic scenarios,
thus imposing great performance penalties considering
medium and high NoC loads.

Elastic buffers [11] makes use of the buffer space
inherent in pipelined channels to reduce buffer cost.
While removing virtual-channel buffers (VCBs) prevents
efficient flow control and deadlock avoidance, elastic
buffers exploit physical channels duplications by using
them in the same way as VCs are used to prevent
deadlock and define traffic classes. In this perspective,
CUTBUF methodology relies on VCBs, although it is
totally orthogonal to elastic buffers, since it can be easily
adapted by replacing the use of buffers with the use of
physical channels.

[4] discussed an extension of Duato’s theory [12]. A
packet that is using an escape path is allowed to be
restored to an adaptive one thanks to the concept of
Whole Packet Forwarding (WPF). WPF allows to allocate
a complete packet from an escape VC to an adaptive
one, still avoiding the generation of possible network
deadlocks. CUTBUF exploits a somewhat similar scheme
called buffer reuse as one of the implemented optimiza-
tions, whose differences w.r.t. WPF are discussed in
Section 3.3. Our work is orthogonal to [4], since we
focus on buffer reduction with guaranteed performance.
Moreover, CUTBUF can be applied regardless to the NoC
topology and to the routing algorithm.

[13] presented a flit-reservation flow control strategy.
An additional network is used to send control flits before
sending the data, to reserve the buffer resources, thus
increasing the network throughput and the resource uti-
lization. This work is similar to the CUTBUF buffer reuse
strategy (see Section 3.3), but CUTBUF does not require
an additional control network. Besides, the packet that
will reuse the buffer, thus exploiting the CUTBUF buffer
reuse solution, is not required to be of the same type,
namely of the same VNET, of the previously stored one.

[14] discussed the NoC architecture exploited in the
Single Cloud Chip (SCC) from Intel. The implemented
VCs are partitioned between routing VCs and perfor-
mance. The routing VCs are fixed and are used to en-
sure network deadlock avoidance while the performance
ones are used to increase the performance. [14] focuses
on the performance improvement. Conversely, CUTBUF
focuses on buffer reduction keeping almost the same
performance with three main differences from [14]. The
SCC is a non-coherent chip, while CUTBUF expressly
focuses on coherent multi-cores. Moreover, CUTBUF
considers all the VCs freely allocable to each VNET and
clearly states conditions to do so without generating both
network and protocol level deadlocks. Last, CUTBUF can
allocate different packet types in the same physical VC
even at the same time. This is supported by the fact that
no VC is reserved to a particular VNET.

ViChar [3] implemented a buffer size regulator design
to dynamically resize buffers depending on the actual
length of the stored packet. Buffers are assigned on a per
flit basis following a daisy-chained list approach. ViChar
can reduce the buffer size up to 50% while the area
overhead due to the additional logic limits the gain up
to 30% of the area reduction with the same performance.
[15] proposed an ViChar-based scheme where dynamic
buffer allocation is performed on a per router basis
instead of on a per input port. It is worth noticing that
the additional required logic can drive to excessive area
if small flit sizes are considered, i.e. 32-bit flit width as in
commercial Tilera solutions [16]. Thus, CUTBUF tries to
obtain the same benefit in terms of area power and per-
formance of ViChaR by leveraging different properties of
the NoC traffic. Moreover, CUTBUF analyses and solves
both network and protocol-level deadlock considering
both synthetic and real traffic, while ViChaR does not

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPDS.2015.2468716, IEEE Transactions on Parallel and Distributed Systems

D. ZONI et al.: CUTBUF: BUFFER MANAGEMENT AND ROUTER DESIGN FOR TRAFFIC MIXING IN VNET-BASED NOCS 4

consider real traffic nor the protocol-level deadlock issue.
ElastiStore [17] proposed a buffer management scheme

that exploits a single shared queue between all the
VCs of a specific input port providing area and power
reduction while ensuring almost the same performance
of the original NoC. CUTBUF works in the same direc-
tion. However, it implements a totally different strategy
aiming at the one-buffer-for-all the traffic types idea.
Finally, ElastiStore requires a complex fully associative
implementation for the shared queue, since at each cycle
each flit in such a queue can be read.

3 PROPOSED METHODOLOGY

CUTBUF is a novel NoC router allowing to reuse the
same VC for different message types. Section 3.1 presents
the baseline router, while the other sections illustrate
the specific optimizations of CUTBUF. The Switch Al-
lotation Flow (SAF) strategy is presented in Section 3.2.
Sections 3.3 and 3.4 detail the buffer and VNET reuse
strategies, respectively. Section 3.5 addresses the buffer
remapping strategy.

Figure 3 depicts the CUTBUF router. Each change to
the baseline microarchitecture is highlighted, focusing on
the required and provided information from and to each
logic block. This figure is referenced multiple times and,
for the sake of clarity, additional drawings are provided
to highlight specific details of the optimizations.

3.1 Baseline NoC Router

We focus on a wormhole router which supports VCs
and VNETs, with a standard 4-stage pipeline, i.e. Buffer
Write/Route Computation (BW/RC), Virtual Channel
Allocation (VA), Switch Allocation (SA), and Switch
Traversal (ST). A single cycle for Link Traversal (LT) is
assumed. The router implements atomic VC allocation.
The proposed solution considers the VNET implementa-
tion to enable coherence protocol support at NoC level,
preventing the traffic from one VNET to be routed on a
different one. A packet is considered split in multiple
atomic transmission units called flits. The first flit of
each packet is the head flit. A body flit represents an
intermediate flit of the original packet while the tail flit
is unique for each packet and closes the packet. When a
head flit arrives to the input port of the router it has to
pass through the four pipeline stages before traversing
the link. First, it is stored in the VC buffer (BW) which
has been reserved by the upstream router, and the output
port is computed (RC). Then, it competes in the VA
stage to reserve an idle virtual channel in the selected
output port. Note that assigned VCs belong to the set of
VCs associated to the VNET of the packet. Once the VA
succeeds, head, body and tail, competes in packet order
for a crossbar switch path (SA). Finally, each winning flit
in the SA has to pass the ST and link traversal LT before
reaching the next router. Tail and body flits pass through
fewer stages, since they reuse resources and information
reserved by the head flit (i.e., VC and RC).

vc1-buf vc1-state

V
N

E
T

ID

re
c

v
 t

a
il

re
u

s
a

b
le

re
u

s
e

d

vcV-buf vcV-state

.

.

.

In
p
u
t

D
a
ta

 1

InVC RmapVC Valid

Remapping Vcs
+ Reuse VCs

InVC

RmapVC

Swicth Allocation
(SA)+Reuse VCs

.

.

.

#
 V

C
s

2 x log2(#VCs) +1

vc-id

vc-id
(for credit)

Credit out
(InVC id)

.

.

.

Out-vc1-state

Out-vc2-state

Out-vcV-state

Packet Switching
+ Release Blocked

Paths Logic

Credit Cnt

.

.

.

Input Port 1

Output Port
State 1

XBAR

Output Port
State N

.

.

.

.

.

.

Input Port N

.

.

.

Output
Link 1

Output
Link N

vc2-buf vc2-state

VC Allocator(VA)
+ VNET REUSE

.

.
.
.

VNET
id

gr/reqSA

gr/reqVA

Route
Computation (RC)

gr/reqRC

re
s

v
P

a
th

CntUsedVC
perVNET

Fig. 3: Logical view of the CUTBUF router. The focus is on the
added logic and the data/information required and provided
by each additional logic block tailored to implement CUTBUF.

3.2 Switch Allocation Flow (SAF) and Release
Blocked CrossBar Path Optimization

Traditionally, wormhole virtual channeled NoCs exploit
flit-level switching, thus each flit of the packet must com-
pete to access the crossbar. Flit-level switching coupled
with a round-robin arbitration scheme is the standard
solution to fairly arbitrate the crossbar. It allows for high
throughput since, even if a packet has its output port
blocked, a flit of another packet from the same input port
and a different VC can be granted to cross the switch.
However, multiple buffers in the same router are active,
posing serious concerns on power saving and the num-
ber of buffers to be implemented. CUTBUF implements
the switch allocation flow SAF mechanism proposed
in [18] as an alternative solution to flit switching to
significantly reduce the required number of concurrently
active buffers. At the SA stage, the flits of the packets
which in the previous cycle won the SA, have priority
over the others. This allows to keep all the flits of the
same packet as close as possible. Using SAF, an input-
output path in the crossbar is assigned to a packet when
its head flit wins the SA stage and the reserved path
is released when either the tail flit traverses the same
pipeline router stage or when the packet gets blocked
(see below). In the ideal case, SAF allows to have a
single active buffer per input port, minimizing the need
of physical buffers in the NoC router.
The baseline SAF may exhibit performance degradation
due to both the Head Induced Block (HIB) or the Tail
Induced Block (TIB) (see Figure 4). HIB occurs when a
packet having a reserved path in the crossbar is blocked
because the downstream router input buffer slots are
exhausted due to congestion. TIB happens when a packet
having a reserved path in the crossbar has no flit ready
to traverse the switch in the input buffer. The Release
Blocked Crossbar Path (RBCP) optimization checks, at each
cycle, if credits are available for each packet having a
reserved crossbar path, and if the granted packet has at

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPDS.2015.2468716, IEEE Transactions on Parallel and Distributed Systems

D. ZONI et al.: CUTBUF: BUFFER MANAGEMENT AND ROUTER DESIGN FOR TRAFFIC MIXING IN VNET-BASED NOCS 5

R1

T1 B1 B1

T
2

R2

B1 B1 B1 H1

R3

B2 B2 H2

Head Induced

Block

(a) Head Induced Block by router R2 with respect to red packet.

R1

T
2

R2

B1 B1 H1

Tail Induced

Block

(b) Tail induced block by R1 with respect to blue packet.

Fig. 4: Two types of blocks that can limit the NoC performance while using the SAF strategy for crossbar allocation.

least one flit stored in the input buffer ready to traverse
the crossbar. Both conditions must be satisfied, otherwise
RBCP releases the path for that packet which has to
compete again to access the crossbar.

Implementation - SAF and RBCP techniques affect
the SA stage and the BW/RC stage (see in Figure 3 the
green block and the red additional state bits in the input
port). The input unit has an additional bit for each VC
signaling (when set) that the VC has the path reserved in
the crossbar. This bit is set when the input VC receives
a grant from SA, and is kept while the VC is requesting
the SA. If, for any reason, the VC does not request the
SA or the grant does not arrive from the SA, in the next
cycle the reserved path bit is cleared (see resvPath bit
in Figure 3). In order to support SAF, the resvPath bit is
forwarded to the SA (via the SAF/RBCP block) together
with the request for SA. If it is set, a filter stage clears
all the requests to the SA having an input or an output
port shared with the input VC which has the resvPath
bit set. Note that two VCs (from the same or different
inputs) aiming at the same output port can not have both
resvPath bits set at the same time (SAF is enforced).

3.3 Buffer Reuse

Low buffer utilization in wormhole virtual channeled
NoCs has two motivations. First, it may be necessary to
assign a single buffer for each packet to avoid deadlock
at network level (atomic buffer allocation). Second, the
round-robin switch allocation strategy to optimize the
crossbar utilization leads to the underutilization of the
buffers, since multiple buffers are kept active storing flits
of packets waiting for the crossbar arbitration.

Thus, reassigning buffers to a new packet as soon as
possible can increase their utilization. Traditionally, in
conservative VC reallocation, a VC can be re-allocated to
a new packet only if the tail of its last allocated packet
is sent out, i.e. it is empty [19]. Buffer reuse allows to
reassign non empty buffers, if the packet that is stored
in the buffer is guaranteed to traverse the switch in a
fixed, i.e. deterministic, number of cycles. In such a way,
the newly allocated packet is guaranteed not to block
because of the previous one stored in the same buffer.
Moreover, the new packet can be of any type regardless
the type of the previous one using the same buffer. In
particular, buffer reuse requires to fulfill the following
three conditions:

Upstream Router Downstream Router

H1 RC VA SA ST LT RC VA SA ST LT

B1 RC VA SA ST LT RC VA SA ST LT

T1 RC VA SA ST LT RC VA SA ST LT

H2 RC VA SA ST LT RC VA SA ST LT

B2 RC VA SA ST LT RC VA SA ST LT

T2 RC VA SA ST LT RC VA SA ST LT

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 5: Two packets, P1 and P2 composed of three flits have
been sequenced on two routers, i.e. upstream and downstream.
A single buffer assigned to P1 can be reused by P2 at cycle 9.
The SA stage on flit B1 sets the reuse bit (yellow SA) that is
forwarded to the input unit that is storing H2 at the same cycle
(red RC).

• Switch allocation flow - the use of SAF eventually
coupled with the RBCP optimization, ensures that
a granted packet will exit the buffer in a finite
number of cycles. However, the possibility of block-
ing imposes to check the following two additional
conditions.

• Tail Received - to declare a buffer reusable, the tail
flit of the packet that is using it, has to be in the
buffer. In such a way, no other flits of the packet
will reach the buffer in the future. Note that this
check prevents the TIB effect (Section 3.2).

• Downstream buffer credits - let us consider an
upstream/downstream router pair with a packet
stored in the upstream router’s input buffer. Once
the packet has been granted by the upstream router
and the tail flit is stored in the input buffer, it is
required that the downstream router’s input buffer
has enough credits to store all the flits that are in
the input buffer of the upstream router. This check
prevents the HIB effect (Section 3.2).

Figure 5 reports a scenario where two packets, i.e. blue
and green, traverse an upstream/downstream router
pair in sequence (blue packet first), supposing infinite
buffer size for the specific case, to ease the discussion.
Cycle 9 represents the critical point where buffer reuse
takes place. The yellow box highlights the SA stage for
B1 flit of the blue packet. At this time, the buffer used
by the blue packet can be declared reusable, since the
corresponding T1 flit has been stored at cycle 8 and
the packet will not block due to the infinite buffer as-
sumption, i.e. the credit count in the downstream router
buffer is greater than the stored flits in the considered
buffer. Moreover, H1 of the green packet reaches the
downstream router at cycle 9, thus it requires a buffer. In

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPDS.2015.2468716, IEEE Transactions on Parallel and Distributed Systems

D. ZONI et al.: CUTBUF: BUFFER MANAGEMENT AND ROUTER DESIGN FOR TRAFFIC MIXING IN VNET-BASED NOCS 6

this perspective, we implemented a forwarding mecha-
nisms to guarantee that the buffer reuse decided in the
SA stage, i.e. yellow box, is propagated to the BW/RC
for the head of the green packet, i.e. red box, in the same
cycle. As a result, a single buffer is required to host two
subsequent packets.

Buffer reuse is similar to the Whole Packet Forwarding
(WPF) scheme with two main differences. First, WPF is
used in fully adaptive routing to restore a packet that
is traveling in the escape VCs to the adaptive ones.
Thus, to restore a packet from an escape VC to a fully
adaptive VC, WPF requires that the destination VC has
enough slots to completely store the packet to avoid
network level deadlock. Second, WPF focuses on single-
flit packets and both packets stored in the same buffer
have to be of the same type.

On the other hand, the proposed buffer reuse strategy
only requires that a non-idle VC can be used to store a
new packet, i.e. reused, if and only if the actual stored
packet is guaranteed to exit in a fixed amount of cycles.
Note that no assumptions on the types of the two packets
nor the need to have space in the destination buffer to
entirely store the new packet are required, thus making
our buffer reuse more general than WPF.

Implementation - Starting from the baseline router
pipeline, the buffer reuse requires changes in two dif-
ferent stages. As detailed in Figure 3, the blue box
highlights the required logic, while the red addi-
tional bits added for each buffer are used to store
the required information. Two bits are used for each
buffer. The REUSEABLE BIT signals the possibility
to reuse the buffer while the REUSED BIT indicates
if the buffer is actually being reused. When a head
flit traverses the BW/RC stage, the logic checks the
REUSEABLE BIT and it is designed to use first the
buffers with the REUSEABLE BIT set, to optimally
limit the number of active used buffers in the input
port. The REUSEABLE BIT is set by the SA stage
when the three conditions described above are met. The
REUSEABLE BIT is cleared when the tail flit passes
through the SA stage. This means that the buffer is idle
starting from the next cycle or another packet is in the
buffer, if the buffer has been reused before. In both cases,
the buffer cannot be considered reusable.
The second bit, i.e. REUSED BIT , signals if the
buffer is actually being reused, since a single reuse per
buffer is supported in the current implementation. The
REUSED BIT is set when the head flit of the packet
is stored in a non empty buffer, according to the state
of the REUSEABLE BIT , while it is cleared when the
tail of the packet on the front traverses the switch. Thus,
the bit indicates the condition when parts of two packets
coexist in the same buffer.

3.4 Virtual Network Reuse

Protocol-level deadlocks are typically avoided by im-
posing the use of multiple VNETs to separate different

vc1-buf vc1-state

V
N

E
T

_
ID

vcV-buf vcV-state

.

.

.

In
p
u
t

D
a
ta

 1

.

.

.

Out-vc1-state

Out-vc2-state

Out-vcV-state

Input Port 1

Output Port
State 1

Output Port
State N

Input Port Nvc2-buf vc2-state

.

.
.
.

VNET
id

→ req_va
→ req_route
→ req_outvc
→ req_vnet_id

VA-IP-0

VA-IP-N

VA-OP-0

VA-OP-N

VA-IP-i VA-OP-i

FltrReq
byVNET

FltrReq
byVNET

FltrReq
byVNET

CntOutVC
usedVNET

For each inVC

of each IP

→ req_va_filtered
→ req_route
→ req_outvc
→ req_vnet_id

→ req_va_filtered
→ req_route
→ req_outvc
→ req_vnet_id

→ req_va_filtered
→ req_route
→ req_outvc
→ req_vnet_id

{g_vc_id, g_vnet_id}

→ blk_reqVNET-0
→ ...
→ blk_reqVNET-M

req_va_filtered=
 (

 req_va==1 &&
 f(req_route,blk_reqVNET[req_vnet_id]==0)
) ?1:0

VA

For each OP

Fig. 6: Logical view of the VNET Reuse block. The focus is on
the added logic and the data/information required.

types of message. In addition, VCs may be used to
improve performance. In this scenario, multiple buffers
(V NET × V C) are dedicated, thus exacerbating the risk
of low buffer utilization. The proposed Virtual Network
(VNET) Reuse strategy allows to relax the constraint to
restrict the use of separate VNET buffers for a specific
type of message. In particular, it allows to allocate (at
each hop) a packet on a buffer regardless the virtual net-
work it belongs to. The proposed optimization increases
the buffer utilization by mixing traffic that is originally
routed to different VNETs, in fewer virtual channels.

The VNET Reuse strategy relies on the existence of
at least one queue per VNET to avoid possible dead-
locks. Indeed, by considering q queues, and M types of
messages, at least one queue should be available for a
given VNET, regardless of the status of the other VNETs.
Thus, q should be equal or higher than V NET . Note
that VNET Reuse may introduce out-of-order issues since
packets in the same VNET may take different queues,
thus reaching the destination garbled. However, this
situation is also present in the baseline router (multiple
VCs per VNET), being this issue orthogonal to CUTBUF.
Implementation - The changes to support the Virtual

Network (VNET) Reuse affect the output ports, the virtual
channel allocation (VA) stage and the Input Unit (see red
blocks in Figure 6). The Input Unit has to store the VNET
id for each incoming head flit, and to provide it to the VC
allocator unit. The Output Unit is enhanced in two ways.
First, each output VC has an additional register to store
the used VNET id. Moreover, additional logic is used to
compute the number of used output VCs dedicated to
each VNET. Starting from these information, each output
port computes the blocking N bits, i.e. one per VNET.
Each bit, if set, means that an additional output VC can
be allocated to the port. If the bit is cleared then all the
requests to this output port, pertaining to traffic from
the VNET the bit is representing, cannot be granted.
The blocking bits, i.e. blk reqV NET , are collected by
the VA to filter the requests from the input VCs. In

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPDS.2015.2468716, IEEE Transactions on Parallel and Distributed Systems

D. ZONI et al.: CUTBUF: BUFFER MANAGEMENT AND ROUTER DESIGN FOR TRAFFIC MIXING IN VNET-BASED NOCS 7

particular, each input VC requiring for the VA has to
provide its VNET id. A filter module operates on each
input VC request by checking if it can be arbitrated or
not, depending on the blocking bits. In particular, for
each request from an input VC, the following condition
is used to update the corresponding req va filtered:

req va filtered =

(req vaf(req route, blk reqV NET (req vnet id)))?1 : 0
(1)

where req va is the request for the VA stage, while
f(reqroute, blk reqV NET (req vnet id))) is a mapping
function which returns true if the requested output port,
i.e. req route, can allocate more output VCs for the
req vnet id VNET id, otherwise it returns false. If the
condition is valid, the req va filtered bit is set for the
specific input VC, otherwise it is cleared preventing the
VA to grant it. All the req va that successfully passes
the filtering stage traverse the classic two stages VA.
Once the VA grants a request, both the notification and
the VNET id of such request packet is forwarded to the
corresponding output unit to update its state.

3.5 Buffer Remapping

Given a router pair, the Virtual Channel Allocation (VA)
stage takes place in the upstream router to select the VC
that will be used to store the packet in the downstream
router input buffers. However, the upstream router does
not know the actual state of the downstream buffers
when the first flit of a packet arrives to the downstream
one, since there are few delay cycles due to the router
pipeline between such an event and the VA. More-
over, buffer reuse takes place in the downstream router
to aggressively reuse the same buffer with different
packets regardless their types. To this extent, the buffer
remapping strategy is functional to the buffer reuse one,
since it allows a late binding between the packet and
the actual used buffer in the downstream router. The
buffer remapping strategy faces these two issues. Once
the packet’s head flit actually reaches the input port, the
buffer remapping logic properly selects the input buffer
to store the packet, regardless the assigned VC in the
upstream router. A physical buffer is selected in the
downstream router to store the flits of the packet, while
the credit flow is sent to the upstream router depending
on the state of the actual assigned buffer. The upstream
router sees the credit flow as belonging to the original
selected VC during the VA stage. In this perspective,
nothing needs to be modified in the baseline router,
since from the logical viewpoint the optimization is
transparent to the upstream router.
Implementation - The remapping logic is organized
in two main components (see blue blocks in Figure
3). First, a remapping table on a per input port basis
is implemented to store the original VC assigned by
the upstream router, and the remapped VC assigned
by the buffer remapping module. Second, a logic block

is introduced to select the buffer to be actually used
to store the incoming flits of the packet. It operates in
two phases. Initially it checks if a reusable buffer is
present by inspecting both the REUSEABLE BIT and
REUSED BIT bits; if it is not the case, then the flit is
allocated on an idle buffer. To this purpose, the following
aspects must be addressed:

• Remapping occurs when a head flit reaches the
input port. In particular, the remapping table is
updated when the head flit arrives to the input port
following a simple rule that tries to allocate first
the buffers with the REUSEABLE BIT set. The
mapping is kept until the tail flit leaves the buffer
and then the record is deleted at the same time the
backward credit is sent to the upstream router.

• The remapping table is updated when a head flit is
processed; thus if a buffer is marked as reusable, the
physical buffer identifier is associated to the new
virtual channel assigned by the upstream router,
since no more flits of the packet in the front of such
buffer are expected.

• There is always an available buffer reusable or idle
to store the flit of a new packet, since in the up-
stream router the VA succeeded and buffer remapping
only reallocates buffers.

3.6 Deadlock Analysis

CUTBUF could introduce deadlocks as it stores in the
same queue messages from different VNs. Here we
argue the deadlock-free nature of CUTBUF. A protocol-
level deadlock occurs when messages of different classes
(e.g., request-response messages) are mapped in the
same queues and messages of one type block messages
of other types: introducing message type dependencies
leads to deadlock [20]. Indeed, VNETs are used to avoid
such deadlocks, by guaranteeing that messages of one
type always reach destinations, bypassing blocked mes-
sages of different types.

Both buffer reuse and VNET reuse strategies may intro-
duce deadlocks as they reuse queues. However, consider
a baseline NoC using a deadlock-free routing algorithm
(e.g., XY routing). The buffer reuse strategy still maintains
the absence of deadlock by construction. In particular, a
buffer can be reused only when it is guaranteed by the
SA arbiter that the stored packet will leave the buffer in
a finite number of cycles. This is guaranteed as packet-
level crossbar switching is performed and the arbiter
checks the number of remaining flits and the reception
of the whole packet (tail flit received). Thus, the packet
will never block the incoming message that is reusing
the buffer. Moreover, the packet that eventually reuses
such buffer will have its head flit on the top of the
queue in a finite number of cycles. Therefore, there is
no extra blocking conditions for packets. Furthermore,
both packets belong to the same VNET and thus they
are compatible and can share the queue with no chances
of inducing protocol-level deadlocks.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPDS.2015.2468716, IEEE Transactions on Parallel and Distributed Systems

D. ZONI et al.: CUTBUF: BUFFER MANAGEMENT AND ROUTER DESIGN FOR TRAFFIC MIXING IN VNET-BASED NOCS 8

TABLE 2: Experimental setup: processor and router micro-
architectures and technology parameters.

Processor core 667MHz, out-of-order core
Int-ALU 4 integer ALU functional units

Int-Mult/Div 4 integer multiply/divide functional units
FP-Mult/Div 4 floating-point multiply/divide functional units

L1 cache 64kB 2-way set assoc. split I/D, 2 cycles latency
L2 cache 512KB per bank, 8-way associative

Coherence Prot. MESI , 3 virtual networks
Router 4-stage wormhole with virtual channels

with 64bit link width 4fl/VC
2 VCs per VNET (1 VC per VNET for the ctbf-full)

Topology 2D-mesh, 4x4 NoC @ 667MHz,1 or 3 core per tile
Technology 45nm at 1.1V

Similar to buffer reuse, VNET reuse optimization relies
on the possibility to reuse the same buffer at the input
port. However, in this case, VNET reuse may lead to
protocol-level deadlock as it can share the same queue
to messages of different types, i.e. from different VNETs.
In this perspective, VNET reuse implemented on the top
of the baseline NoC, allows to use each buffer for any
type of traffic, but ensuring that at least one VC can
be reserved or is already reserved for the remaining
VNETs. Indeed, an incoming packet will have always
a queue guaranteed at the next hop for its own VNET;
note that we keep at least one queue per VNET, hence
two packets from the same VNET will never block
two queues in a given input port. Thus, such packet
cannot experience protocol-level deadlock nor network-
level deadlock, since the routing algorithm is deadlock-
free.

It has to be underlined that VNET reuse does not im-
prove performance but reshapes traffic on few physical
buffers, when possible. Moreover, the use of VNET reuse
and buffer reuse cannot lead to deadlock, since once a
buffer is reused, the VNET is checked by the VNET reuse
optimization to see if it is the packet that is reusing the
buffer, and not the one in front of the queue, since the
packet in front will leave the queue in a finite number
of cycles. As a conclusion, protocol-level deadlock is
avoided by guaranteeing that: i) buffers are reused only
when the message leaving the router will not block, and
ii) for blocked messages in an input port, at least one
queue is reserved for each different VNET.

4 EVALUATION

This section discusses the evaluation of CUTBUF from
different viewpoints. The experimental setup is de-
scribed in Section 4.1. Results with real and synthetic
traffic patterns are discussed in Sections 4.2 and 4.3,
respectively. The scalability analysis using PARSEC ap-
plications up to 48-cores is detailed in Section 4.4.
Section 4.5 discusses area, power and timing numbers
extracted from the RTL Verilog implementations for
the baseline and the CUTBUF routers varying different
parameters, namely buffer depth, flit size and number
of queues. Last, Section 4.6 presents the impact CUTBUF
has on buffer utilization.

4.1 Experimental Setup

Although the CUTBUF methodology proposed in Sec-
tion 3 is generally applicable, the assessment has been

TABLE 3: Evaluated NoC microarchitectures.

NameID Details

baseline
Baseline NoC without

CUTBUF optimizations (2VCxVNET, 3VNETS).

ctbf
CUTBUF with all the optimizations using

1 VC per VNET. No additional VC for performance
is present. This is the most power and area saving
CUTBUF implementation (1VCxVNET, 3VNETS).

ctbf-(3+i)
It is ctbf where i ∈ 1..3 identifies

the number of spare VCs implemented to improve
performance. Note that ctbf-(3+3) has the same number of

VCs of the NoC-base (1VCxVNET, 3VNETS + (1..3) spare VCs)

performed on 16-core and 48-core 2D-mesh tiled ar-
chitectures, whose detailed parameters are reported in
Table 2. For the 16-core platform the tile is composed of
an out-of-order core running at 1GHz, with private L1
cache and a shared L2 cache composed of 16 physically
distributed banks, each connected to a different router.
The 48-core has the same 4x4 2D-mesh structure of
the 16-core, but each tile has three cores. The rationale
behind the platform selection is threefold. First of all,
16 and 48 cores are two reasonable architectures to
show a realistic scalability of the proposed methodology.
Moreover, the choice to add multiple cores per tile
instead of increasing the NoC size is motivated by the
design choices followed by Intel in the SCC platform,
where multiple (two) cores per tile are inserted [21]. Last,
the variable number of cores on the same tile allows
to validate CUTBUF considering different traffic loads,
since the 48-core configuration leads to higher traffic.

Different scenarios are simulated using the GEM5 full
system simulator [7], properly enhanced with CUTBUF.
In particular, both MIBENCH [5] and PARSEC [22]
benchmark suites are exploited to provide a comprehen-
sive validation on single- and multi-threaded scenarios.
The time to completion, i.e. the time to run the bench-
mark up to termination, is used as the performance met-
ric in all the analyzed scenarios with real applications.

Table 3 reports different router microarchitecture ver-
sions derived from both the baseline and the CUTBUF
pipeline. In particular, baseline identifies baseline NoC
router pipeline, with 3 VNETs and 2 VCs per VNET. Ctbf
represents the CUTBUF implementation with the mini-
mum number of VCs required by the coherence protocol,
i.e. 3 VCs for 3 VNETs in the considered MESI-based
directory based protocol. Last, ctbf-(3+i) identifies the
CUTBUF pipeline implementing i additional VCs used
to increase performance. Since i ∈ (1..3), the validation
has been carried out considering CUTBUF implementing
from 3 to 6 VCs, i.e. from the minimum number of
VCs required by the coherence protocol up to the same
number of VCs implemented in the baseline. Note that
the CUTBUF proposal mainly aims to reduce both area
and power, while keeping almost the same performance
of the baseline system.

4.2 Performance Evaluation: Real Applications

This section discusses the performance of the CUTBUF
architecture compared to the baseline NoC, considering
a 16-core 2D-mesh architecture and MIBENCH appli-
cations: all the other parameters are kept constant as

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPDS.2015.2468716, IEEE Transactions on Parallel and Distributed Systems

D. ZONI et al.: CUTBUF: BUFFER MANAGEMENT AND ROUTER DESIGN FOR TRAFFIC MIXING IN VNET-BASED NOCS 9

TABLE 4: Performance overheads expressed in percentage of ctbf and ctbf-(3+i) i ∈ (1..3) against the baseline for different buffer
depths. Only CUTBUF-based microarchitectures are reported since the baseline NoC is the reference.

(a) Buffer depth 4 flits.

Benchname ctbf ctbf(3+1) ctbf-(3+2) ctbf-(3+3)

susan 5.03 0.58 0.14 0.13
qsort 20.07 4.19 2.93 1.89
sha 0.24 0.07 0.13 0.02
fft 10.18 0.96 -0.41 -0.60

search 10.53 0.03 -0.61 -0.59
dijkstra 4.62 -0.95 -2.17 -0.89
bitcnts 0.12 0.02 0.01 0.01

basicmath 2.74 0.51 0.41 0.47

AVERAGE 6.69 0.68 0.054 0.055

(b) Buffer depth 8 flits.

Benchname ctbf ctbf(3+1) ctbf-(3+2) ctbf-(3+3)

susan 3.05 0.11 -0.14 -0.15
qsort 11.11 2.27 -0.17 -0.11
sha 0.19 0.05 0.14 0.05
fft 7.23 0.33 0.11 -0.14

search 5.89 -1.21 -0.79 -1.64
dijkstra 3.56 -1.49 0.41 -2.48
bitcnts 0.09 0.01 0.01 0.00

basicmath 1.54 0.39 0.06 0.14

AVERAGE 4.08 0.058 -0.046 -0.54

(a) Random. (b) Bit-complement. (c) Transpose ((i, j)− > (j, i)).

Fig. 7: Baseline and CUTBUF pipelines performance considering different synthetic traffic patterns. The baseline pipeline has 3
VNETs and 2 VCs per VNET, while CUTBUF is evaluated considering a different number of spare VCs. Moreover, we consider
single flit packets, following the validation path of other research papers [4], [3].

described in Table 2. The results are displayed in Table 4a
and Table 4b considering a buffer depth of 4 and 8 flits,
respectively. It is evident how 4 flits is a reasonable
buffer depth to reduce power and area with minimal
impact on performance for the majority of the analyzed
benchmarks (see Figure 1 for the analysis of a specific
benchmark, namely qsort). On the other hand, a buffer
depth of 8 guarantees no bubble insertion due to round
trip time credit in the considered pipeline, thus allowing
to clearly evaluate the performance of the proposed
solution reducing possible constraining factors.

The two tables share the same format. Different bench-
marks listed, whereas each column reports the consid-
ered CUTBUF architecture as detailed in Table 3. All the
results are expressed in percentage with respect to the
baseline pipeline (that is not explicitly reported) as:

overheadi = (Tuarchi
/Tuarchbaseline

) ∗ 100− 100 (2)

where uarchi is the analyzed microarchitecture, i.e.
one of the four microarchitectures reported in Table 3.
Tuarchi

, Tuarchbaseline
represent the times to completion

for the specific architecture to run the benchmark.

CUTBUF without additional VCs (i.e., ctbf in the ta-
bles) performs worse than the baseline in all the bench-
marks considering both 4 and 8 flit buffer depth. For
example, ctbf shows a performance penalty of 5.0% and
3.0% considering the susan benchmark with 4 and 8 flit

buffer depth. However, it is an expected result, since ctbf
only implements 3 VCs, one VC per VNET.

In general, the increase of the buffer depth for the
CUTBUF router reduces the gap with the baseline, due
to a better usage of the additional slots. For example,
considering the qsort application and ctbf, the perfor-
mance penalty drops from 20.1% to 11.1% moving from
4 to 8 flit buffer depth. This behavior is justified by the
SAF technique implemented in CUTBUF that reduces
the contention on VC allocation, since once a packet
is granted all the packet traverses the router unless it
blocks. If the block is due to buffer fullness, increas-
ing the buffer depth reduces the chances for blocking
and then improves the performance of CUTBUF-based
pipelines.

Although ctbf behaves worse than the baseline, the
performance penalties can be quickly restored by adding
spare VCs. In particular, most of the applications show
ctbf-(3+1) behaving almost as good as the baseline, thus
reducing the performance penalty to less than 1%. For
example, fft shows a performance penalty of 10.18 and
0.96 considering ctbf and ctbf-(3+1) with 4-flit buffers
(Table 4a). This behavior is mainly due to CUTBUF
ability to dynamically allocate spare VCs to the most
loaded VNET.

A last consideration concerns the variability on the
application’s load. For example, qsort suffers the scarcity

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPDS.2015.2468716, IEEE Transactions on Parallel and Distributed Systems

D. ZONI et al.: CUTBUF: BUFFER MANAGEMENT AND ROUTER DESIGN FOR TRAFFIC MIXING IN VNET-BASED NOCS 10

of VCs in the ctbf, highlighting a 20.0% performance
penalty considering 4-flit slot buffers, that is reduced to
11.1% if the buffer depth is 8. At the same time qsort
greatly benefits from an additional VC, i.e. ctbf-(3+1),
obtaining a 4.2% and 2.3% degradation for 4 and 8 buffer
depth. In this perspective, it is of paramount importance
to provide a flexible architecture capable to dynamically
allocate spare VCs to the most demanding type of traffic,
balancing also power and performance.

4.3 Performance Evaluation: Synthetic Traffic

This section explores the performance of the CUTBUF
architecture (described in Table 3) considering three syn-
thetic traffic patterns [19].

Considering synthetic traffic, we provide the worst
case analysis for the CUTBUF proposal from the per-
formance viewpoint. The traffic unbalance at the VNET
injection point is totally removed, thus CUTBUF can not
take advantage over it anymore. Moreover, the use of
different injection rates, namely from low traffic up to
network saturation, demonstrates the CUTBUF effectiv-
ness with different network loads.

Figure 7 reports results for random, bit-complement
and transpose ((i, j)− > (j, i)) synthetic traffics, consid-
ering the baseline pipeline and CUTBUF with a variable
number of spare VCs. As expected, the ctbf, i.e. the
CUTBUF with 3 VCs one per VNET, behaves worse in
all the scenarios due to higher contention on the virtual
channels. In particular, the saturation point is roughly
one third of the saturation point of the baseline pipeline
that implements 6 VCs. However, the ctbf is intended for
power and area savings, thus fitting low traffic scenarios.

Conversely, CUTBUF greatly improves its saturation
limit by adding spare queues. For example, Figure 7a
shows how ctbf-(3+2) provides roughly the same satura-
tion threshold of the baseline pipeline even using 5 VCs
instead of 6. Note that such results are not only due to
the possibility to reuse the VCs for different traffic types,
but it is the result of the whole CUTBUF methodology.

Moreover, ctbf-(3+3) implements the same number of
VCs of the baseline pipeline, i.e. 6, while it provides a
saturation improvement in between 5% and 12% consid-
ering bit-complement and random traffic, respectively.
Note that the possibility to dynamically allocate the
additional VCs to the most loaded VNET allows quite
unbalanced configurations. For example it is possible to
have configurations where a single VC is allocated to
VNET-0 and VNET-1 while VNET-3 has four allocated
VCs. This allows for greater throughput improvement
especially when the traffic distribution is not known a
priori. Moreover, all the simulations consider equally
distributed traffic in all the three VNETs. This is the
worst scenario for the presented methodology, neverthe-
less we are still better than the baseline NoC.

4.4 Scalability Analysis

This section explores the scalability of ctbf-(3+1) from
the performance viewpoint against the baseline NoC,

TABLE 5: Performance with 16- and 48-core using PARSEC
with sim-small input set. Results normalized against baseline.

16-core 4x4 2D-mesh 48-core 4x4 2D-mesh
(1 core per tile) (3 cores per tile)

Benchname
overhead overhead

[(ctbft/baselinet)*100-100] [(ctbft/baselinet)*100-100)]

blackscholes +0.43 -1.19
dedup +0.98 -1.16
canneal -1.30 -2.16
ferret +2.74 -1.59

rtview -0.15 +0.31
x264 -0.55 -2.13

bodytrack -0.18 -1.45
fluidanimate -2.19 +0.63
streamcluster +1.12 +1.27

AVERAGE 0.10 -0.83

considering the 16- and 48-core platforms described in
Section 4.1. Table 5 details for each simulated PARSEC
benchmark the timing overhead of the two considered
architectures defined as:

overheadt = (ctbft/baselinet) ∗ 100− 100 (3)

where ctbft and baselinet are the times to complete the
benchmark execution considering the CUTBUF NoC and
the baseline NoC, respectively. Equation (3) measures the
performance degradation of ctbf-(3+1) with respect to the
baseline NoC. In particular, a positive overhead means
that ctbf-(3+1) introduces a performance degradation,
while a negative overhead means that ctbf-(3+1) improves
performance with respect to the baseline NoC.

Starting from the described scenarios, two different
aspects can be underlined. First, the ctbf-(3+1) method-
ology shows performance overheads within 2% both
considering 16- and 48-core architectures even in full sys-
tem simulation using multi-threaded applications. This
is achieved even if ctbf-(3+1) implements less buffers
with respect to the baseline NoC. Second, ctbf-(3+1)
provides the same performance degradation within few
percentage points, while increasing the number of cores.

4.5 Area, Power and Timing Analysis

Both the CUTBUF and the baseline NoC routers have
been implemented and simulated in RTL Verilog, and
then synthesized using Synopsys Design Compiler using
the standard 45nm NAND Gate cell library. Synthesis
results are collected considering an operating voltage
of 1.1 V and a clock frequency of 667 MHz, choosing
a router with 5 inputs and 3 VNETs to resemble the
architecture simulated using GEM5. Area and power
results explore three parameters: the buffer depth, the
total number of VCs and the flit width. Moreover, Ta-
ble 6 reports the critical path in picoseconds for each
pipeline stage for both the baseline and the CUTBUF
routers. The CUTBUF architecture critical path is in the
VA stage due to the additional complexity to arbitrate
the implemented buffers considering the VNET reuse
optimization, i.e. considering the buffers as a shared
resource pool. Moreover, the critical path of the base-
line router is in the SA stage. It is worth noticing the
baseline router has three VA arbiters, one per VNET,
each of them managing a subset of VCs dedicated to

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPDS.2015.2468716, IEEE Transactions on Parallel and Distributed Systems

D. ZONI et al.: CUTBUF: BUFFER MANAGEMENT AND ROUTER DESIGN FOR TRAFFIC MIXING IN VNET-BASED NOCS 11

(a) Area. (b) Total Power.

Fig. 8: Area and power exploration for baseline and ctbf-(3+1) pipelines with 3 VCs and 3 VNETs. Buffer depth of 4 and 8.

(a) Area. (b) Total Power.

Fig. 9: Area and power exploration for baseline and ctbf-(3+1) pipelines with 3-6-9 VCs, 3 VNETs. Buffer depth of 8.

TABLE 6: Timing of the CUTBUF architecture against the base-
line one for each stage in picoseconds. CUTBUF and baseline
implement 4 and 6 buffers, respectively.

BW VA SA XBAR
baseline 1054 1117 1333 238
CUTBUF 1022 1486 1194 228

the specific VNET. On the other hand, the SA stage
has to arbitrate all the buffers for each input port. The
SA in the CUTBUF architecture is faster since only 4
buffers are implemented out of 6 while keeping the same
performance level as demonstrated in Section 4.4. In this
perspective, Table 6 highlights how CUTBUF introduces
a timing overhead of 11.4% with respect to the baseline
(CUTBUFV A

baselineSA
= 1486

1333
). However, CUTBUF reduces the

timing overhead up to 5% exploiting the time steal-
ing technique discussed in [23] for a NoC router. The
baseline critical path for the baseline with time stealing
becomes 935.5ps(= 1054+1117+1333+238

4
) while CUTBUF

obtains a 982.5ps(= 1022+1486+1194+228

4
). Moreover, [23]

demonstrated as time stealing introduced a negligible
power and area overheads.

Figure 8 reports power and area for both CUTBUF
and baseline considering 3 VCs and 3 VNETs, i.e. 1 per
VNET. This is the most constrained configuration, since
the MESI coherence protocol uses three VNETs. Results
are provided considering 4 and 8 buffer depth, where the
X axis reports the flit size. Area and power overheads
are reported for CUTBUF with respect to the baseline.
CUTBUF introduces both area and power overheads, but
they decrease by increasing the buffer flit size, since all
the changes that CUTBUF introduces are not influenced
by the flit width. Moreover, using a deeper buffer, i.e.
8 flits instead of 4, contributes to reduce the area and
power overheads. For example, CUTBUF has a power
overhead of 14.4% considering 64-bit flit size and 4

slots per buffer. However, such overhead decreases to
2.7% when 192-bit flit size and 8 slots per buffer are
considered.

Figure 9 depicts the power and area overheads for
CUTBUF with respect to the baseline pipeline consid-
ering different amounts of VCs, while keeping fixed
the number of VNETs to 3 and a buffer depth of 8
flits per buffer. All the results are obtained comparing
CUTBUF and the baseline with the same number of VCs.
Section 4.3 demonstrates that CUTBUF can provide the
same performance with less VCs. In particular 3, 6 and 9
VCs per input port are evaluated, organized in 1, 2 and
3 VCs per VNET for the baseline pipeline, respectively.
Moreover, CUTBUF has one VCs per VNET for all the
cases whereas 3 and 6 spare VCs are used in 6 VCs and
9 VCs configurations, respectively.

Since the major changes for the CUTBUF pipeline are
in the input buffer, i.e. more complex VCs, increasing
the number of VCs rises both power and area overheads.
Considering as an example a flit size of 64 bits, Figure 9b
reports a power overhead of 5.9%, 8.7% and 13.4% when
3, 6 and 9 VCs are implemented. However, the overhead
decreases with the flit size (as well as with buffer depth,
not shown in the figure). In particular, the power over-
head is lower than 5% with 3, 6 and 9 VCs using 192-
bit flit size, with an area overhead which is less than
2.5%. The changes introduced by CUTBUF negatively
affect both area and power estimates. However, they
highly depend on the buffer depth and flit width, thus
considering a buffer depth of 8 flits per VC and a
flit width of at least 64 bits, the overheads are almost
lower than 10%. Moreover, the overheads are loosely
coupled with the number of implemented VCs, allowing
to introduce multiple spare VCs to increase the perfor-

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPDS.2015.2468716, IEEE Transactions on Parallel and Distributed Systems

D. ZONI et al.: CUTBUF: BUFFER MANAGEMENT AND ROUTER DESIGN FOR TRAFFIC MIXING IN VNET-BASED NOCS 12

(a) Area. (b) Total Power.

Fig. 10: Area and power for baseline with 6 VCs and 3 VNET, i.e. 2 VCs per VNET, and CUTBUF with 5 VCs and 3 VNETs.

(a) Area. (b) Total Power.

Fig. 11: Area and power for baseline with 6 VCs and 3 VNET, i.e. 2 VCs per VNET, and CUTBUF with 4 VCs and 3 VNETs.

(a) Area. (b) Total Power.

Fig. 12: CUTBUF area and power overhead normalized to the baseline considering four main router blocks: VC allocation, switch
allocator, input buffers and crossbar. 6 VCs, 3 VNET, i.e. 2 VCs per VNET, and the link width is 128 bits with 8 slots per buffer.
The impact of each component with respect to the router is considered as the last column of each bar group.

mance without affecting area and power overheads or
to support different coherence protocols.

Until now, the analysis compared CUTBUF with the
baseline pipeline considering always the same amount
of VCs for each microarchitecture. However, CUTBUF
focuses on buffer reduction still ensuring limited per-
formance degradation. In this perspective, Figure 10
details area and power results comparing CUTBUF with
5 VCs and the baseline router with 6 VCs. First, the
additional logic to support the CUTBUF methodology
dominates if the flit size is very small, i.e. 64 bits, thus
highlighting a small power overhead for CUTBUF, while
the reduction to 5 buffers provides a limited area saving.
However, starting from a flit size of 96 bits CUTBUF
always provides lower area and better power figures
with respect to the baseline. Note that by removing 1
buffer out of 6, the best theoretical saving is 1/6 (16.67%).
In the light of such a bound, Figure 10 shows good
scalability for the proposed methodology, since it obtains
up to 13.70% and 13.78% respectively, considering a 192-
bit flit size.

Figure 11 compares CUTBUF with 4 VCs against the

baseline router using 6 VCs. The theoretical throughput
obtainable by CUTBUF using 4 VCs is limited with
respect to the baseline, as shown in Section 4.3. However,
in almost all the experiments with real benchmarks, the
performance overhead of CUTBUF using 4 VCs is within
5% (see Section 4.2 and Section 4.4). In this scenario, the
reduction of 2 out of 6 buffers allows to save up to 33%
of both power and area, provided that buffers dominate
the router design. Synthesis data results show an area
and power savings of 30.6% and 30.7%, respectively,
compared to a baseline with 6 VCs.

Figure 12 depicts the area and the power impact
introduced by CUTBUF for each main block in the
router. We consider a router with 128-bit flit width and
8 slots per buffer. Synthesis results with 1, 2 and 3
VCs per VNET are reported. Four main components
are considered in the analysis: the crossbar, the input
buffers and the virtual channel and switch allocation
stages. Additionally, the Global Impact bar reports the
contribution each component has with respect to the
entire router. As expected, the buffers dominate the
router area, whereas the area overhead due to CUTBUF

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPDS.2015.2468716, IEEE Transactions on Parallel and Distributed Systems

D. ZONI et al.: CUTBUF: BUFFER MANAGEMENT AND ROUTER DESIGN FOR TRAFFIC MIXING IN VNET-BASED NOCS 13

| | | | |

|
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
routers

01| 01| 01| 01| 01| 01| 01| 01| 01| 01| 01| 01| 01| 01| 01| 01| 01| 01|

0

0.01

0.02

0.03

0.04

0.05

0.06

21
InPort

021
InPort

021
InPort

021
InPort

021
InPort

021
InPort

0

VC
VNET

A
ve

ra
ge

 U
til

iz
at

io
n

(P
er

ce
nt

ag
e) ||

(a) Baseline NoC.

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

routers

0 |01| 01| 01| 01| 01| 01| 01| 01| 01| 01| 01| 01| 01| 01| 01| 01| 01|

0

0.02

0.04

0.06

0.08

21
InPort

021
InPort

021
InPort

021
InPort

021
InPort

021
InPort

0
VC

VNET

A
ve

ra
ge

 U
til

iz
at

io
n

(P
er

ce
nt

ag
e)

|
1

| | | | |

| |

(b) CUTBUF+SAF+VC reuse.

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

routers

0 0 0

| 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

0.02

0.04

0.06

0.08

0.1

2InPort

02InPort

1
InPort

0

VC

A
ve

ra
ge

 U
til

iz
at

io
n

(P
er

ce
nt

ag
e)

VNET
2

2
2

2

1 1
1 1

1

0 0
0

0

0| | | | | |
|

(c) CUTBUF-FULL (VC reuse and VNET reuse).

Fig. 13: Averaged traffic distribution across the NoC, i.e. each vc of each router, considering the baseline NoC and the CUTBUF
methodology. The CUTBUF is presented in two different versions where the CUTBUF-full is the final proposal of this paper
and uses half the number of buffers. Note that VC 2 is seldom used because of the traffic, while we need to implement it to
being deadlock free.

for the buffers is limited to 3.3%. Conversely, CUTBUF
mainly affects the SA stage imposing an area overhead
of 112%, 164% and 161% using 1 2 and 3 VCs per VNET.
This overhead is due to the size of the SA which only
accounts for the 1.4% of the entire router area. Thus, even
if the overhead is not negligible on the SA component
the total router area is only marginally affected by the
CUTBUF overhead.

The same considerations are still valid for the power
analysis. Again, buffers dominate the power consump-
tion of the router, but CUTBUF only adds a modest
overhead within 6% for all the examined configurations.
Nevertheless, CUTBUF greatly impacts the SA power
consumption, but a negligible overhead is observed in
the whole router, since the SA accounts only affects 2%
of the router power.

4.6 Buffer Utilization

This section details how CUTBUF reshapes the buffer
utilization, thus allowing to physically reduce the num-
ber of implemented buffers.

Figure 13 shows the average buffer load for a 16-core
2D-mesh topology, running the susan MIBENCH and
considering the three different microarchitectures de-
scribed in Table 3: buffer depth is 4-flit and all the other
parameters are kept constant as reported in Table 2. All
the results share the same format. The average load for
each VC in the NoC is reported on the z axis. All the 16
routers, i.e. from 0 to 15, are reported on the y axis. The
x axis reports the virtual channels organized per virtual
networks and input ports with an extended label on such
x axis. Each VC is reported as well as the corresponding
VNET and an input port groups multiple VNETs. For
example, Figure 13a reports 2 VCs per VNET, i.e. vc0
and vc1, where each input port groups 3 VNETs, i.e. 0, 1
and 2, thus 6 virtual channels are present for each input
port. Note that, input ports are not numbered, since the
input port numbering depends on each specific router
and its position in the NoC topology. This result provides
a qualitative idea on the CUTBUF impact. Moreover,
Figure 13c reports ctbf buffer utilization implementing
1 VC per VNET, thus each input port groups 3 VNETs,
but 3 VCs only instead of 6 VCs.

NoC-base, i.e. the results in Figure 13a, shows the
different utilization of the VCs in different VNETs.
Moreover, due to the flit-switching, all the VCs in the
same VNET are almost equally used, thus reducing
the chances to remove some buffers. Figure 13b details
buffer utilization when both buffer reuse and SAF are
implemented. The utilization of the buffers in the same
VNET is now unbalanced, while the traffic of different
types is still isolated in a VC subset. Moreover, it is
still visible the unbalanced utilization of resources across
different VNETs. Figure 13c shows results using the
complete CUTBUF and implementing 3 VCs per input
port instead of 6. All the traffic can use each VC, while
the ability to compress the traffic in few VCs opens up
the possibility for further power savings, namely using
power gating actuators.

5 CONCLUSIONS

Buffers dominate the NoC router area and power con-
sumption and, due to their complex relationship with
performance, a design concurrently optimizing these
three metrics is not trivial. In addition, the need of
VNETs to support coherence protocols leads to an un-
balanced buffer utilization.

CUTBUF is a novel router architecture for virtual
channeled NoCs that allows to dynamically allocate
VCs to VNETs depending on their actual loads. The
same buffer can be used to store messages of different
types at different points in time, thus allowing resource
reuse. The final goal is to reduce the NoC router area
and power consumption, while minimizing the nega-
tive impact on the performance. CUTBUF is validated
against synthetic and real applications and a complete
RTL Verilog router model has been developed to collect
area and power estimates. In a nutshell, CUTBUF uses
less buffers providing up to 30.6% and 30.7% area and
power reduction with an operating frequency decrease
of 5% and no more than 5% of performance penalty
considering real benchmarks, though most of the time
the performance penalty is confined below 2%. On a
different perspective, CUTBUF is flexible enough to pay
less than 5% of area and power overheads to improve the

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPDS.2015.2468716, IEEE Transactions on Parallel and Distributed Systems

D. ZONI et al.: CUTBUF: BUFFER MANAGEMENT AND ROUTER DESIGN FOR TRAFFIC MIXING IN VNET-BASED NOCS 14

throughput up to 23.8%, compared to a baseline router
with the same number of buffers.

REFERENCES

[1] T. Ye, L. Benini, and G. De Micheli, “Analysis of power consump-
tion on switch fabrics in network routers,” in Design Automation
Conference, 2002. Proceedings. 39th, 2002, pp. 524–529.

[2] G. Varatkar and R. Marculescu, “Traffic analysis for on-chip net-
works design of multimedia applications,” in Design Automation
Conference, 2002. Proceedings. 39th, 2002, pp. 795–800.

[3] C. A. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M. S. Yousif,
and C. R. Das, “Vichar: A dynamic virtual channel regulator
for network-on-chip routers,” in Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture. Wash-
ington, DC, USA: IEEE Computer Society, 2006, pp. 333–346.

[4] S. Ma, Z. Wang, N. E. Jerger, L. Shen, and N. Xiao, “Novel
flow control for fully adaptive routing in cache-coherent nocs,”
IEEE Transactions on Parallel and Distributed Systems, vol. 99, no.
PrePrints, p. 1, 2013.

[5] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the Workload Char-
acterization, 2001. WWC-4. 2001 IEEE International Workshop, ser.
WWC ’01. Washington, DC, USA: IEEE Computer Society, 2001,
pp. 3–14.

[6] A. Kahng, B. Li, L.-S. Peh, and K. Samadi, “Orion 2.0: A fast
and accurate noc power and area model for early-stage design
space exploration,” in Design, Automation Test in Europe Conference
Exhibition, 2009. DATE ’09., April 2009, pp. 423–428.

[7] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2,
pp. 1–7, Aug. 2011.

[8] J. Hu and R. Marculescu, “Application-specific buffer space allo-
cation for networks-on-chip router design,” in IEEE/ACM ICCAD,
Nov 2004, pp. 354–361.

[9] T. Moscibroda and O. Mutlu, “A case for bufferless routing in
on-chip networks,” in Proceedings of the 36th Annual International
Symposium on Computer Architecture, ser. ISCA ’09. New York,
NY, USA: ACM, 2009, pp. 196–207.

[10] M. Hayenga, N. Jerger, and M. Lipasti, “Scarab: A single cycle
adaptive routing and bufferless network,” in Microarchitecture,
2009. MICRO-42. 42nd Annual IEEE/ACM International Symposium
on, Dec 2009, pp. 244–254.

[11] G. Michelogiannakis, J. Balfour, and W. Dally, “Elastic-buffer
flow control for on-chip networks,” in High Performance Computer
Architecture, 2009. HPCA 2009. IEEE 15th International Symposium
on, Feb 2009, pp. 151–162.

[12] J. Duato, “A new theory of deadlock-free adaptive routing in
wormhole networks,” Parallel and Distributed Systems, IEEE Trans-
actions on, vol. 4, no. 12, pp. 1320–1331, Dec 1993.

[13] L.-S. Peh and W. Dally, “Flit-reservation flow control,” in High-
Performance Computer Architecture, 2000. HPCA-6. Proceedings. Sixth
International Symposium on, 2000, pp. 73–84.

[14] D. Azimi, D. Dai, A. Kumar, A. Mejia, D. Park, S. Saharoy, and
A. Vaidya, “Flexible and adaptive on-chip interconnect for tera-
scale architectures,” in Intel Techn. J. 13(4), 2009, pp. 62–79.

[15] C. Concatto, A. Kologeski, L. Carro, F. Kastensmidt, G. Palermo,
and C. Silvano, “Two-levels of adaptive buffer for virtual channel
router in nocs,” in VLSI and System-on-Chip (VLSI-SoC), 2011
IEEE/IFIP 19th International Conference on, Oct 2011, pp. 302–307.

[16] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards,
C. Ramey, M. Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal,
“On-chip interconnection architecture of the tile processor,” IEEE
Micro, vol. 27, no. 5, pp. 15–31, Sep. 2007.

[17] I. Seitanidis, A. Psarras, G. Dimitrakopoulos, and C. Nicopoulos,
“Elastistore: An elastic buffer architecture for network-on-chip
routers,” in Proceedings of the Conference on Design, Automation &
Test in Europe, 2014, pp. 240:1–240:6.

[18] A. Kumar, P. Kundu, A. Singhx, L.-S. Peh, and N. Jha, “A
4.6tbits/s 3.6ghz single-cycle noc router with a novel switch
allocator in 65nm cmos,” in Computer Design, 2007. ICCD 2007.
25th International Conference on, Oct 2007, pp. 63–70.

[19] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2003.

[20] A. Hansson, K. Goossens, and A. Radulescu, “Avoiding message-
dependent deadlock in network-based systems on chip.” VLSI
Design, 2007.

[21] J. Howard, S. Dighe, S. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Er-
raguntla, M. Konow, M. Riepen, M. Gries, G. Droege, T. Lund-
Larsen, S. Steibl, S. Borkar, V. De, and R. Van Der Wijngaart,
“A 48-core ia-32 processor in 45 nm cmos using on-die message-
passing and dvfs for performance and power scaling,” Solid-State
Circuits, IEEE Journal of, vol. 46, no. 1, pp. 173–183, Jan 2011.

[22] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” ser. PACT.
New York, NY, USA: ACM, 2008, pp. 72–81.

[23] A. K. Mishra, A. Yanamandra, R. Das, S. Eachempati, R. Iyer,
N. Vijaykrishnan, and C. R. Das, “Raft: A router architecture with
frequency tuning for on-chip networks,” Journal of Parallel and
Distributed Computing, vol. 71, no. 5, pp. 625 – 640, 2011, networks-
on-Chip.

Davide Zoni received the Master in Computer
Engineering in 2010 and the Ph.D. in Information
Technology in 2014, both from Politecnico di
Milano where he holds a Post-Doc position at
DEIB - Dipartimento di Elettronica Informazione
e Bioingegneria. His research interests include
networks-on-chip, computer architecture as well
as the application of control theory methodolo-
gies for power, performance and reliability op-
timizations in multi-cores. He received a best
paper award in 2012, two HiPEAC Collaboration

Grants in 2013 and 2014 and an HiPEAC Industrial Grant in 2015.

José Flich is Associate Professor at UPV where
he leads the research activities on NoCs. He
published over 100 papers and served in many
committees (ISCA, PACT, HPCA, NOCS, ICPP,
IPDPS, HiPC, CAC,CASS, ICPADS, ISCC), as
program chair (INA-OCMC, CAC) and track co-
chair (EUROPAR). He collaborated with several
Institutions (Ferrara, Naples, Catania, Jonkop-
ing, USC) and companies (AMD, Intel, Sun). His
research focuses on routing, coherency proto-
cols and congestion management within NoCs,

with high recognition (RECN and LBDR for on-chip networks). He is
member of the Hipeac-2 NoE. He is co-editor of the book ”Designing
Network-on-Chip Architectures in the Nanoscale Era”, he coordinated
the FP7 NaNoC project and leads the H2020 MANGO project.

William Fornaciari is Associate Professor at
Politecnico di Milano - DEIB. He published six
books and over 200 papers, collecting 5 best
paper awards, one certification of appreciation
from IEEE and holds 3 international patents on
low power design. Since 1997 he has been
involved in 16 EU-funded international projects.
In FP7 he has been WP leader for the COM-
PLEX and CONTREX IP projects, Project Tech-
nical Manager of 2PARMA (ranked as success
story by the EU) and Project Coordinator of the

HARPA project. He cooperated for around 20 years with the Technology
Transfer Center of POLIMI and in 2013 he created a startup company.
His main research interests cover multi-many core architectures, NoCs,
low power design, software power estimation, run time resource man-
agement, wireless sensor networks, thermal management, and EDA-
based design methodologies. He is member of the HiPEAC NoE.

