
CUTE and jCUTE: Concolic Unit Testing and
Explicit Path Model-Checking Tools

(Tool Paper)

Koushik Sen and Gul Agha

University of Illinois at Urbana-Champaign, USA
{ksen, agha}@cs.uiuc.edu

Abstract. CUTE, a Concolic Unit Testing Engine for C and Java, is a
tool to systematically and automatically test sequential C programs (in-
cluding pointers) and concurrent Java programs. CUTE combines con-
crete and symbolic execution in a way that avoids redundant test cases
as well as false warnings. The tool also introduces a race-flipping tech-
nique to efficiently test and model check concurrent programs with data
inputs.

1 Introduction

Software testing is the primary technique used in the software industry to im-
prove reliability, safety, security, and robustness of software. Our research on
concolic testing [1,6,4] shows that we can combine random testing and symbolic
testing of a program to provide a scalable tool for automatically generating test
cases, which improves test coverage and avoids redundant test cases as well as
false warnings. Concolic testing involves explicit path model-checking in which
our goal is to generate data inputs and schedules that would exercise all feasi-
ble execution paths of a program. We have developed two automated concolic
testing tools: CUTE for C and jCUTE for Java programs.

We have used CUTE and jCUTE to find bugs in several real-world software
systems including SGLIB, a popular C data structure library used in a com-
mercial tool, implementations of the Needham-Schroeder protocol and the TMN
protocol, the scheduler of Honeywell’s DEOS real-time operating system, and
the Sun Microsystems’ JDK 1.4 collection framework.

2 Concolic Testing

We briefly describe the algorithm for concolic testing; details can be found
in [6,5,4]. The algorithm executes a program both concretely and symbolically.
The symbolic execution differs from traditional symbolic execution, in that the
algorithm follows the path that the concrete execution takes. During the exe-
cution, the algorithm collects the constraints over the symbolic values at each
branch point (i.e., the symbolic constraints). At the end of the execution, the al-
gorithm has computed a sequence of symbolic constraints corresponding to each

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 419–423, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



420 K. Sen and G. Agha

branch point. We call the conjunction of these constraints a path constraint. Ob-
serve that all input values that satisfy a given path constraint will explore the
same execution path, provided that we follow the same thread schedule.

Apart from collecting symbolic constraints, the algorithm also computes the
race condition (both data race and lock race) between various events in the
execution of a program, where, informally, an event represents the execution of
a statement in the program by a thread.

The algorithm first generates a random input and a schedule, which specifies
the order of execution of threads. Then the algorithm does the following in a
loop: it executes the code with the generated input and the schedule. At the same
time the algorithm computes the race conditions between various events as well
as the symbolic constraints. It backtracks and generates a new schedule or a new
input, either by re-ordering the events involved in a race or by solving symbolic
constraints, respectively, to explore all possible distinct execution paths using
a depth first search strategy. Note that because the algorithm does concrete
executions, it is sound, i.e. all bugs it finds are real.

There is one complication: for some symbolic constraints, our constraint solver
may not be powerful enough to compute concrete values that satisfy the con-
straints. To address this difficulty, such symbolic constraints are simplified by
replacing some of the symbolic values with concrete values. Because of this, our
algorithm is complete only if given an oracle that can solve the constraints in a
program, and the length and the number of paths is finite.

3 Tool Details

The tools, CUTE and jCUTE, consist of two main modules: an instrumentation
module and a library to perform symbolic execution, to solve constraints, and
to control thread schedules. The instrumentation module inserts code in the
program under test so that the instrumented program calls the library at runtime
for performing symbolic execution. jCUTE comes with a graphical user interface
(a snapshot can be found in Figure 1).

CUTE and jCUTE uses CIL [3] and the SOOT compiler framework [8] to
instrument C and Java programs, respectively. Instrumentation of jCUTE asso-
ciates a semaphore with each thread and adds operations on these semaphores
before each shared-memory access. These semaphores are used to control the
schedule of the threads at runtime. To solve arithmetic inequalities, the con-
straint solver of CUTE uses lpsolve [2], a library for integer linear programming.
CUTE and jCUTE save all the generated inputs and the schedules (in case of
jCUTE) in the file-system. As such the users of CUTE and jCUTE can replay
the program to reproduce the bugs. The replay can also be performed with the
aid of a debugger. For sequential programs, jCUTE can generate JUnit test
cases, which can be used by the user for regression testing as well as for debug-
ging. jCUTE also allows the users to graphically visualize the multi-threaded
execution.

CUTE provides a macro CUTE input(x), which allows the user to specify that
the variable x (of any type, including a pointer) is an input to the program. This



CUTE and jCUTE 421

Fig. 1. Snapshot of jCUTE

comes in handy to replace any external user input, e.g., scanf(‘‘%d’’,&v) by
CUTE input(v) (which also assigns a value to &v). Note that this macro can be
used anywhere in the program. jCUTE also provides a similar function to obtain
input from the external environment.

4 Case Studies

We briefly describe our experience with two of the case-studies we have done,
one is a data structure library in C and the other is the thread-safe Collection
framework provided with Sun Microsystems’ Java 1.4.

SGLIB Library. We applied CUTE to unit test SGLIB [7] version 1.0.1, a
popular, open source C library for generic data structures, such as lists, hash
tables, red-black trees, and so on. The library has been extensively used to
implement the commercial tool Xrefactory.

We found two bugs in SGLIB using CUTE within 3 seconds of testing. The
first bug is a segmentation fault that occurs in the doubly-linked-list library
when a non-zero length list is concatenated with another zero-length list. The
second bug is an infinite loop, which CUTE discovered in the hash table library.
We reported these bugs to the SGLIB developers, who confirmed that these are
indeed bugs. Further details about this case study along with branch coverage,
runtime for testing, number of inputs generated, etc., can be found in [6].

Sun Microsystems’ Java Collection Framework. We tested the thread-
safe Collection framework implemented as part of the java.util package of



422 K. Sen and G. Agha

Table 1. Results for testing synchronized Collection classes of JDK 1.4. R/D/L/E
stands for data race/deadlock/infinite loop/uncaught exceptions

Name Run time # of # of % Branch # of Funs # of Bugs
in seconds Paths Threads Coverage Tested R/D/L/E

Vector 5519 20000 5 76.38 16 1/9/0/2
ArrayList 6811 20000 5 75 16 3/9/0/3
LinkedList 4401 11523 5 82.05 15 3/3/1/1
LinkedHashSet 7303 20000 5 67.39 20 3/9/0/2
TreeSet 7333 20000 5 54.93 26 4/9/0/2
HashSet 7449 20000 5 69.56 20 19/9/0/2

the standard Java library provided by Sun Microsystems. A number of data
structures provided by the package java.util are claimed as thread-safe in the
Java API documentation. This implies that multiple invocation of methods on
the objects of these data structures by multiple threads must be equivalent to
a sequence of serial invocation of the same methods on the same objects by a
single thread.

We chose this library as a case study primarily to evaluate the effective-
ness of our jCUTE tool. As Sun Microsystems’ Java is widely used, we did not
expect to find potential bugs. Much to our surprise, we found several previ-
ously undocumented data races, deadlocks, uncaught exceptions, and an infinite
loop in the library. Note that, although the number of potential bugs is high,
these bugs are all caused by a couple of problematic design patterns used in
the implementation. The details of this case study can be found in [5]. Here
we briefly describe an infinite loop that jCUTE discovered in the synchronized
LinkedList class. We present a simple scenario under which the infinite loop
happens. We first create two synchronized linked lists l1 and l2 by calling
Collections.synchronizedList(new LinkedList()) and add null to both
of them. Then we concurrently allow a new thread to invoke l1.clear() and
another new thread to invoke l2.containsAll(l1). jCUTE discovered an in-
terleaving of the two threads that resulted in an infinite loop. However, the
program never goes into an infinite loop if the methods are invoked in any order
by a single thread. jCUTE also provided a trace of the buggy execution. This
helped us to detect the cause of the bug. A summary of the results of testing
various Java synchronized Collection classes is provided in Table 1.

Acknowledgment. This work is supported in part by the ONR Grant N00014-
02-1-0715, the NSF Grant NSF CNS 05-09321, and the Motorola Grant RPF
#23.

References

1. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random testing.
In Proc. of the ACM SIGPLAN 2005 Conference on Programming Language Design
and Implementation (PLDI), 2005.



CUTE and jCUTE 423

2. lp solve. http://groups.yahoo.com/group/lp solve/.
3. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate Lan-

guage and Tools for Analysis and transformation of C Programs. In Proceedings of
Conference on compiler Construction, pages 213–228, 2002.

4. K. Sen and G. Agha. Automated systematic testing of open distributed programs.
In Fundamental Approaches to Software Engineering (FASE’06), volume 3922 of
LNCS, pages 339–356. Springer, 2006.

5. K. Sen and G. Agha. Concolic testing of multithreaded programs and its application
to testing security protocols. Technical Report UIUCDCS-R-2006-2676, UIUC, 2006.

6. K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C. In
5th meeting of the European Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM, 2005.

7. SGLIB. http://xref-tech.com/sglib/main.html.
8. R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot - a

Java optimization framework. In Proceedings of CASCON 1999, pages 125–135.

http://xref-tech.com/sglib/main.html

	Introduction
	Concolic Testing
	Tool Details
	Case Studies

