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Abstract

The purpose of this paper is to discuss the scope and functionality of a versatile environ-

ment for testing small and large-scale nonlinear optimization algorithms. Although many of

these facilities were originally produced by the authors in conjunction with the software pack-

age LANCELOT, we believe that they will be useful in their own right and should be available

to researchers for their development of optimization software. The tools can be obtained by

anonymous ftp from a number of sources and may, in many cases, be installed automatically.

The scope of a major collection of test problems written in the standard input format (SIF)

used by the LANCELOT software package is described. Recognising that most software was

not written with the SIF in mind, we provide tools to assist in building an interface between

this input format and other optimization packages. These tools already provide a link between

the SIF and an number of existing packages, including MINOS and OSL. In addition, as each

problem includes a specific classification that is designed to be useful in identifying particular

classes of problems, facilities are provided to build and manage a database of this information.

There is a UNIX and C-shell bias to many of the descriptions in the paper, since, for the

sake of simplicity, we do not illustrate everything in its fullest generality. We trust that the

majority of potential users are sufficiently familar with UNIX that these examples will not

lead to undue confusion.
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1 Introduction

The purpose of this paper is to describe an environment that we have devised for testing small

and large-scale nonlinear optimization algorithms. It is inevitable that, during the process of

developing a software package, the designers concern themselves with problems of testing. Thus,

in a major project, one has to consider how to obtain and specify a suitable collection of test

problems. If the collection of test problems is to be reasonably comprehensive, it will require

careful management. In addition, one might presume that researchers would like to compare

different algorithmic approaches to a problem. All of these situations occurred during our own

researches and, indeed, many of the facilities described in this paper were originally produced

and tested in conjunction with the software package LANCELOT (see Conn et al. (1992a)).

In this paper, we discuss the scope of our constrained and unconstrained testing environment

(CUTE) for nonlinear programming algorithms. We describe in some depth a collection of test

problems that we have gathered from a variety of academic and real-life sources. Furthermore, we

discuss a number of tools that we have produced to manage the resulting test-problem database.

An additional set of Fortran tools, which are intended to facilitate the building of an interface

between the test-problem collection and potential optimization software packages (interfacing,

for short) is also described. These tools have to be rather general as there is, as yet, no consensus

in the optimization community as to what constitutes an ideal interface between problems and

algorithms.

We have tried to order the content so that it corresponds to the requirements of a potential

user who might pose the following sequence of questions:

• I want to solve a (class of) problem(s). What is available?

• My problem is not available in the current test set. I would like to construct it and include

it in my classification database. How do I proceed?

• I now know which problem(s) I want to solve. Which solvers have interfaces available in

CUTE and how do I use them?

• An interface is not available for the solver I would like to use. How can I build a suitable

Fortran interface between my specific (class of) problem(s) and my solver of choice using

the tools supplied?

The facilities offered are intended to be useful to the general optimization community —

and especially to researchers — for the development of optimization software, much in the same

spirit as those of Buckley (1992). All the test problems in our collection are written in the

standard input format (SIF) required by the LANCELOT software package. Each problem comes

with a classification that is designed to be useful in identifying particular classes of problems. We

provide an automatic facility for selecting interesting subsets of the test problems in any collection

conforming to this classification system. We also provide tools for maintaining a database of

classified problems to allow for the introduction of new members.

We provide additional tools to allow an interface between problems, specified using the SIF,

and other existing nonlinear programming packages. Since most software was not written to
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interface with this format, it is important to provide such tools. Furthermore, Fortran subroutines

are supplied to take input written in SIF and return function and derivative values in various

dense and sparse formats, thus providing a relatively easy means of building interfaces with new

algorithms. Details of both the SIF and the software package LANCELOT are provided in Conn

et al. (1992a). Of course, CUTE does not include the source, object or executable files for any

external optimization packages: to obtain these files, the user should contact the appropriate

authors (or, when available, transfer the files from the appropriate ftp site).

We conclude the paper by describing how to obtain the files that make up CUTE and how to

install the accompanying tools on a user’s machine. Further details are provided in a number of

appendices.

2 The test problem database

2.1 The scope of the collection

The provided collection of nonlinear test problems is intended to be a growing set of test problems

written in the standard input format (SIF) required by LANCELOT. This collection contains a

large number of nonlinear optimization problems of various sizes and difficulty, representing

both “academic” and “real world” applications. Both constrained and unconstrained examples

are included. On December 15, 1994 the database consisted of 738 test problems. Because

many of these problems allow various choices for the number of variables and/or the number

of constraints, many more instances can be defined by the user. More than a thousand such

instances are suggested by appropriate comments in the problem definitions.

It is clearly impossible to describe all these examples in the present paper. It will suffice to

say that the test set covers, amongst others,

• the ‘Argonne test set’ (Moré et al. (1981)), the Testpack report (Buckley (1989)), the Hock

and Schittkowski collection (Hock and Schittkowski (1981)), the Dembo network problems

(Dembo (1984)), the Moré-Toraldo quadratic problems (Moré and Toraldo (1991)), the

Boggs-Tolle problems (Boggs and Tolle (1989)), the Toint-Tuyttens network model problems

(Toint and Tuyttens (1990)), and Gould’s quadratic programming problems (Gould (1991)),

• most problems from the PSPMIN collection (Toint (1983)),

• problems inspired by the orthogonal regression report by Gulliksson (Gulliksson (1990)),

• some problems from the Minpack-2 test problem collection (Averick et al. (1991), Averick

and Moré (1991)) and from the second Schittkowski collection (Schittkowski (1987)), and

• a large number of original problems from a variety of application areas.

Moreover, not only can one assume that the collection will grow steadily, but because of the

LANCELOT licensing agreement, which requires the submission of typical problems by most users

of the package, the new problems are likely to be even more user-oriented than the present ones.

Furthermore, because the SIF format is an extension of the MPS linear programming format (see

2



IBM Corporation (1978)), access to suites of linear programming test problems (see, for example,

Gay (1985)) is possible. Tables 1 and 2 are included to indicate the scope of the applications

that are currently represented in the database. Also included are some other test problems of

interest to optimization algorithm designers.

As can be seen from these tables, many application areas are represented in the current

collection and the coverage is likely to become even wider. It can also be seen that the dimension

and number of constraints (excluding simple bounds) covers a wide range. About one third of

the problems in the present collection involve constraints more general than simple bounds. Both

large and small-scale problems are included. The collection also contains a number of problems

posed as nonlinear systems of equations. The SIF file associated with each problem contains a

reference to its statement in the literature, when appropriate.

A summary of details on the test results obtained with various of the options available with

the software package LANCELOT is given in Conn et al. (1992b). A technical report containing

the complete results (including a more detailed description of each problem’s characteristics and

the complete set of results obtained on nearly twenty thousand separate runs) is also available

(see Conn et al. (1992c)).

The current size of the total uncompressed database of test problems is almost one hundred

megabytes. Since this database is substantial, it is available in two separate compressed files,

one containing the smaller problems (mastsif.small.tar.Z) and the other the larger problems

(mastsif.large.tar.Z). Individual problems are also available. In a UNIX environment, we

assume that the directory in which these problems reside is pointed to by the environment

variable MASTSIF. We also assume that the directory where CUTE is installed (see Section 7,

below, for more details) is pointed to by the environment variable CUTEDIR.

2.2 The classification scheme

Each of the problems in our dataset comes with a simple problem classification inspired by the

scheme of Hock and Schittkowski (1981), which was itself a slight extension of a scheme adopted

by Bus (1977). The scope of such a classification could be very broad indeed and we realise that

a general scheme that encompasses much more than we have succeeded in doing could be very

useful for large databases such as ours. However, we have consciously limited the scope of our

classification as follows.

A problem is classified by the string

XXXr-XX-n-m

This string must not contain any blanks. In what follows, we state the admissible letters and

integers, together with their interpretation, for each character in the classification string. Note

that all letters must be given in upper case.

The first character in the string defines the type of the problem objective function. Its possible

values are

N no objective function is defined,
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Problem variables constraints SIF file name

Aircraft stability 9 9 AIRCRFTA

Clamped-plate problem 4970 0 CLPLATEA

Elastic-plastic torsion problem 15625 0 TORSION1

Heat exchanger design 8 1 HS106

Journal-bearing problem 15625 0 JNLBRNGA

Membrane separation 13 15 HS116

Nonlinear network gas flow problem 2734 2727 BRIDGEND

Optimization of electrical network 6 4 HS87

Oscillation problem in structural mechanics 5041 0 SVANBERG

Static power scheduling 9 6 HS107

Time-optimal heat conduction 2 1 HS88

Transformer design 6 2 HS93

Three-stage launch vehicle design 25 28 LAUNCH

Minimal-weight rotating-disc design 905 1081 ROTDISC

Aircraft design 49 32 AVION2

1-D variational problem from ODEs 1001 0 BRATU1D

2-D variational problem from PDEs 5184 0 BRATU2D

3-D variational problem from PDEs 4913 0 BRATU3D

Applied geometry 6 15 PENTAGON

Banana shaping 2 0 ROSENBR

Turning point in curve tracing 5002 0 TRIGGER

Discretized boundary value 5002 0 BDVALUE

Eigenvalue calculations 5000 0 VAREIGVL

Matrix square root 10000 0 MSQRTA

Pivot growth in Gaussian Elimination 3946 3690 GAUSSELM

Surface problem with nonlinear conditions 15625 0 NLMSURF

Nonlinear network problem on square grid 13284 6724 GRIDNETA

Nonlinear optimal-control problem 10000 5000 HAGER4

Number theory 6 15 LEWISPOL

Obstacle problem 15625 0 OBSTCLBU

Optimal knot placement for ODE solution 649 349 GOULDQP2

Orthogonal regression problem 8197 4096 ORTHREGA

Quadrature rule determination 18 18 NYSTROM5

Rational approximation 5 502 EXPFITC

Smallest crescent containing given points 6 2654 CRESC132

Table 1: Some typical examples (1).
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Problem variables constraints SIF file name

Physics

Quantum physics 600 1 LCH

Radiative transfer 100 100 CHANDHEQ

Seismic ray bending 246 0 RAYBENDS

Semiconductor analysis 1002 1000 SEMICON2

Thermistor modeling 3 0 MEYER3

Tide modeling 5000 10000 READING3

Vibrating beam modeling 8 60 VIBRBEAM

Chemistry and Biology

Alkylation 10 11 HS114

Chemical equilibrium 43 14 HIMMELBJ

Chemical kinetics 8 0 PALMER1C

Chemical reaction problem 5000 5000 CHEMRCTA

Distillation column modeling 99 99 HYDCAR20

Enzyme reaction modeling 4 0 KOWOSB

Dipole model of the heart 8 8 HEART8

Fluid catalytic cracker modeling 19 8 FCCU

Economy and Operations Research

Cattle feeding 4 3 HS73

Computer production planning 500 0 PRODPL1

Cost optimal inspection plan 4 2 HS68

Economic equilibrium 1825 730 MANNE

Economic model from Thailand 2230 1112 BIGBANK

Electric power generation 194 120 SSEBNLN

Hydro-electric reservoir management 2017 1008 HYDROELL

Optimal sample sizing 4 2 HS72

Nonlinear blending 24 14 HIMMELBK

Traffic equilibrium 540 126 STEENBRE

Transportation demand estimation 11276 0 ODNAMUR

Water distribution 906 666 DALLASL

Weapon assignment 100 12 HIMMELBI

Table 2: Some typical examples (2).
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C the objective function is constant,

L the objective function is linear,

Q the objective function is quadratic,

S the objective function is a sum of squares, and

O the objective function is none of the above.

The second character in the string defines the type of constraints of the problem. Its possible

values are

U the problem is unconstrained,

X the problem’s only constraints are fixed variables,

B the problem’s only constraints are bounds on the variables,

N the problem’s constraints represent the adjacency matrix of a (linear) network,

L the problem’s constraints are linear,

Q the problem’s constraints are quadratic, and

O the problem’s constraints are more general than any of the above alone.

The third character in the string indicates the smoothness of the problem. There are two

choices:

R the problem is regular, that is its first and second derivatives exist and are continuous every-

where, or

I the problem is irregular.

The integer (r) which corresponds to the fourth character of the string is the degree of the

highest derivatives provided analytically within the problem description. It is restricted to being

one of the single characters 0, 1 or 2.

The character immediately following the first hyphen indicates the primary origin and/or

interest of the problem. Its possible values are

A the problem is academic, that is, has been constructed specifically by researchers to test one

or more algorithms,

M the problem is part of a modeling exercise where the actual value of the solution is not used

in a genuine practical application, and

R the problem’s solution is (or has been) actually used in a real application for purposes other

than testing algorithms.
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The next character in the string indicates whether or not the problem description contains

explicit internal variables (see the description of group partial separability in Conn et al. (1990)

or section 8.2.2.2 of Conn et al. (1992a)). There are two possible values, namely

Y the problem description contains explicit internal variables, or

N the problem description does not contain any explicit internal variables.

The symbol(s) between the second and third hyphen indicate the number of variables in the

problem. Possible values are

V the number of variables in the problem can be chosen by the user, or

n a positive integer giving the actual (fixed) number of problem variables.

The symbol(s) after the third hyphen indicate the number of constraints (other than fixed

variables and bounds) in the problem. Note that fixed variables are not considered as general

constraints here. The two possible values are

V the number of constraints in the problem can be chosen by the user, or

m a nonnegative integer giving the actual (fixed) number of problem constraints.

In the future, we intend to expand the scope of the classification to include, amongst other

things, a more thorough subdivision of constraint information, structural considerations, and

solution characteristics. We have refrained from extending the classification system at the present

time as we wish to benefit from feedback from CUTE users. It is, of course, essential that any

such extensions be compatible with the present system.

2.3 The select tool

The purpose of this tool is to interrogate a file containing a list of problem classifications. In the

distributed version of CUTE, the file CLASSF.DB contains all the current classification details for

the test problem database. The interrogation includes a facility for choosing the file that is to

be probed. Thus one is able to maintain and query several different .DB files and obtain a list

of problems matching interactively defined characteristics. The list can be saved in a designated

file.

One might imagine having several different problem datasets in several different directories.

Suppose, for example, one had two directories called, say, academic and applications. One could

then maintain a .DB file in each directory corresponding to the SIF files they contained. For each,

there is then the possibility of setting up an interactive dialogue at the terminal to determine

such data as, for example, “Which problems are constrained and have only linear constraints?”,

or “Which problems have more than 1000 constraints and have explicit second derivatives?” By

default, the select tool assumes the .DB file resides in $MASTSIF/CLASSF.DB, but the user may

give a full pathname for the classification file and thereby probe any file in any directory. The

select tool prompts the user to specify the problem characteristics of interest, and then lists all
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problems in the classification file which satisfy these characteristics. If the save facility is used,

the listing will be saved under the filename specified by the user. By default, the listing file is

written in the current working directory. The user may, however, give a full pathname and thus

write the listing file in any directory.

The dialogue with the user is on the standard input/output. Additional information about the

select tool is given in the document file install.rdm contained in the directory $CUTEDIR/doc

(see Section 7).

Note that the upper bound on the number of variables is 99,999,999 and one is not allowed

more than 99,999,999 constraints.

The output produced when running this program is meant to be self-explanatory. A typical

session is given in Appendix C.

3 Adding new problems

Large-scale optimization problems (fortunately) typically contain a great deal of information in

their structure. Our input format was designed to satisfy a number of objectives, including

exploiting that structure. In particular, we wanted a format that would be available to anyone

using a machine that has a Fortran compiler; that was capable of exploiting the problem structure;

and that would be compatible with the MPS format of IBM Corporation (1978). When users

wish to add new problems, they will first need to write the appropriate input files. It is not our

intention to provide a manual for writing such files here. Details of the required syntax and a

primer for beginners are included in the book describing the LANCELOT software package (Conn

et al. (1992a), Chapters 7 and 2 respectively).

Although this paper does not describe how to write problems in SIF, Section 3.1 outlines how

the problem structure is exploited, and Appendix A gives a small illustrative example of a SIF

file. The user might notice the classification string in this example. In general the classification

string should occur in the SIF file before the GROUPS or VARIABLES section and must be of the

form

* classification XXXr-XX-n-m

or

* CLASSIFICATION XXXr-XX-n-m

where the first character must be a *, any number of blanks can appear before or after the

keyword classification or CLASSIFICATION as long as the entire string is no more than eighty

characters, and the characters in the string XXXr-XX-n-m must obey the classification scheme

defined in Section 2.2.

3.1 Decoding the problem-input file

A module (called the “SIF decoder”) reads the description of the problems in the standard

input format. A structure called group partial separability, that we believe has many significant

advantages, is accounted for in the input format.
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A function f(x) is said to be group partially separable if:

1. the function can be expressed in the form

f(x) =

ng∑

i=1

gi(αi(x)), (3.1)

where ng is the number of groups;

2. each of the group functions gi(α) is a twice continuously differentiable function of the single

variable α;

3. the function

αi(x) =
∑

j∈Ji

wi,jfj(x
[j]) + aTi x− bi (3.2)

is known as the i-th group;

4. each of the index sets Ji is a subset of {1, . . . , ne}, where ne is the number of different

nonlinear element functions;

5. each of the nonlinear element functions fj is a twice continuously differentiable function of

a subset x[j] of the variables x. Each function is assumed to have a large invariant subspace.

Usually, this is manifested by x[j] comprising a small fraction of the variables x;

6. the gradient ai of each of the linear element functions aTi x− bi is, in general, sparse;

and

7. the wi,j are known as element weights.

This structure is extremely general. Indeed, any function with a continuous, sparse Hessian

matrix may be written in this form (see Griewank and Toint (1982)). A more thorough intro-

duction to group partial separability is given by Conn et al. (1990). The SIF decoder assumes

that the objective and general constraint functions are of this form, with the proviso that each

constraint uses only a single group (that is, ng = 1 for the constraints).

Thus for each problem in the SIF test set there is a file, named for example EXAMPLE.SIF.

The SIF decoder interprets the statements found in the file and produces several Fortran sub-

routines and a data file as given below:

ELFUNS.f contains a Fortran subroutine that evaluates the numerical functions corresponding to

the nonlinear element function types occurring in the problem, as well as their derivatives;

GROUPS.f contains a Fortran subroutine that evaluates the numerical functions corresponding to

the group function types occurring in the problem, as well as their derivatives;

RANGES.f contains a Fortran subroutine that computes the transformations from elemental to

internal variables (see Conn et al. (1992a) or Conn et al. (1990)) for all element types

which use a nontrivial transformation;
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SETTYP.f contains a Fortran subroutine that assigns the correct type to the nonlinear elements

for the problem;

EXTERN.f (if present) contains any user supplied Fortran functions found at the end of the

problem SIF file; and

OUTSDIF.d contains data on the problem structure (variable and constraint names, scalings,

starting point and the like).

These files are subsequently used by the tools that interface with other optimization codes (see

Sections 5 and 6) and of course, they are required by the LANCELOT optimizer.

4 Management of classification databases

Once the problem is described in SIF, the next step is its inclusion in the problems database.

This raises the issue of database management. We now decribe the tools classify and classall

required for this management: the purpose of these tools is to create, maintain and update .DB

files that contain the classification database that the select tool interrogates. The dialogue

with the user is on the standard input/output. We now illustrate the usage of the classification

commands.

Suppose the directory pointed to by the environment variable MASTSIF (assuming one is in a

UNIX environment) contains the SIF files

BRYBND.SIF EQC.SIF LEAKNET.SIF NET3.SIF

CLUSTER.SIF FLETCHBV.SIF MINMAXBD.SIF QC.SIF

CORE1.SIF GENROSE.SIF MOREBV.SIF S268.SIF

CORE2.SIF HS25.SIF NET1.SIF S368.SIF

COSHFUN.SIF HS35.SIF NET2.SIF STANCMIN.SIF

that all contain suitable classification lines. Issuing the command

classify LEAKNET

(note that the filename is case sensitive) results in the following output at the screen

Your current classification file is : CLASSF.DB

Your current SIF filename file is : LEAKNET.SIF

If the file CLASSF.DB in the directory pointed to by the environment variable MASTSIF does not

already exist, then it is created and contains the line

LEAKNET LOR2-RN- 156- 153

Otherwise, if CLASSF.DB exists but there is no entry for problem LEAKNET, the classification

line is inserted in the file in its correct ASCII ordered position. If LEAKNET already appears

in CLASSF.DB, the user is asked if he wishes to overwrite the old entry, if it differs from the new

one.

To refer to a directory other than the directory indicated by $MASTSIF, one must issue the

command
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classify classdir probname,

where probname is the problem name with or without the .SIF appended and classdir is the

name of the directory where this problem resides. In this case, CLASSF.DB is created in the

directory classdir. Note that when the classdir argument is not given, classify assumes

that the SIF file probname.SIF is in the $MASTSIF directory. It is recommended that the user

not assign filenames with multiple .SIF endings, such as probname.SIF.SIF.

Finally, issuing the command

classall

produces the file CLASSF.DB in the appropriate directory (pointed to by the environment variable

MASTSIF in a UNIX environment), together with screen messages similar to that produced by

classify for each SIF file processed. The process is completed by a listing of the .DB file on the

screen. For our example, classall produces a CLASSF.DB file containing the following lines:

BRYBND SUR2-AN- V- V

CLUSTER NOR2-AN- 2- 2

CORE1 LQI2-RN- 65- 59

CORE2 LQI2-RN- 157- 134

COSHFUN LOR2-AN- V- V

EQC OUR2-MY- 9- 0

FLETCHBV OUR2-AN- V- V

GENROSE SUR2-AN- V- V

HS25 SUR2-AN- 3- 0

HS35 QLR2-AN- 3- 1

LEAKNET LOR2-RN- 156- 153

MINMAXBD LOR2-AN- 5- 20

MOREBV SUR2-MY- V- V

NET1 OOI2-RN- 67- 57

NET2 OOI2-RN- 181- 160

NET3 OOI2-RN- 591- 521

QC OUR2-MY- 9- 0

S268 QLR2-AN- 5- 5

S368 OBR2-MY- V- V

STANCMIN OLI2-AY- 3- 2

To override the environment variable MASTSIF, one must issue the command

classall classdir

where classdir is the name of the directory containing the SIF files to be classified. In this case,

CLASSF.DB is created in the directory classdir.

5 The interface with existing optimization packages

So far we have described what problems exist in SIF, how they are classified and how to add to a

supplied or new database. This section lists the optimization packages for which interfaces have
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been developed. The purpose of these interfaces is to deal with the situation, presumably not

uncommon amongst researchers and practitioners alike, that one wants to run a given problem

on a range of algorithms to assess which algorithm is likely to be the most suitable for solving

classes of related problems.

5.1 Scope

At the present time, we have available interfaces with the following optimization packages:

• COBYLA of Powell (1994)

This package is a direct search method for inequality constrained problems, that models

the objective and constraint function by linear interpolation and does not use derivatives.

It is available from Professor M.J.D. Powell, DAMTP, Cambridge University, Cambridge,

UK (e-mail address: mjdp@damtp.cambridge.ac.uk).

• MINOS of Murtagh and Saunders (1993)

MINOS solves problems of the form

minimize F (x) + cTx+ dT y

x∈Rn,y∈Rm

subject to f(x) +A1y = b1

A2x +A3y = b2

and lx ≤ x ≤ ux

ly ≤ y ≤ uy.

(5.3)

The nonlinear contributions to the constraints are linearized so that linear programming

technology can be exploited. MINOS allows matrices to be stored in either dense or sparse

format, and is therefore suitable for large sparse problems. Details are given in Murtagh

and Saunders (1978) and Murtagh and Saunders (1993). We currently have interfaces for

MINOS 5.3, 5.4, and 5.5. MINOS is distributed by the Office of Technology Licensing (OTL)

at Stanford University and is subject to certain license agreements. MINOS is copyrighted

by Stanford University. Readers interested in more details should contact Michael Saunders

(e-mail address: mike@sol-michael.stanford.edu, postal address: Department of Operations

Research, Stanford, CA 94305-4022, USA).

• NPSOL of Gill et al. (1986)

This package is designed to minimize smooth functions subject to constraints, which may

include simple bounds, linear constraints, and smooth nonlinear constraints. The software

uses a sequential quadratic programming algorithm, where bounds, linear constraints and

nonlinear constraints are treated separately. Unlike MINOS, NPSOL stores all matrices in

dense format, and is therefore not intended for large sparse problems. NPSOL is available

from the Office of Technology Licensing at Stanford University.

• OSL of IBM Corporation (1990)

This package obtains solutions to quadratic programming problems where the Hessian ma-

trix is assumed positive-semidefinite. It is intended to be suitable for large-scale problems.
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OSL is distributed by International Business Machines, subject to certain license agree-

ments, and is copyrighted by IBM Corporation.

• TENMIN of Schnabel and Chow (1991)

This package is intended for problems where the cost of storing one n by n matrix (where

n is the number of variables), and factoring it at each iteration, is acceptable. The soft-

ware allows the user to choose between a tensor method for unconstrained optimization,

and an analogous standard method based upon a quadratic model. The tensor method

bases each iteration upon a specially constructed fourth-order model of the objective func-

tion that is not significantly more expensive to form, store, or solve than the standard

quadratic model. TENMIN is available via anonymous ftp from ftp.cs.colorado.edu, in the

directory pub/cs/distribs/tensor. Any questions about this software should be addressed

to eskow@cs.colorado.edu

• UNCMIN of Koontz et al. (1985) that corresponds closely to the pseudocode

in Dennis and Schnabel (1983)

This package is designed for unconstrained minimization and has options that include both

line search and trust region approaches. The provided options include analytic gradients or

difference approximations with analytic Hessians or finite difference Hessians (from analytic

or finite difference gradients) or secant methods (BFGS).

• VA15 of Liu and Nocedal (1989)

This package solves general nonlinear unconstrained problems using a limited memory

BFGS method. It is intended for large-scale problems.

• VE09 of Gould (1991)

This package obtains local solutions to general, non-convex quadratic programming prob-

lems, using an active set method, and is intended to be suitable for large-scale problems.

• VE14 of Conn et al. (1994)

This package solves bound-constrained quadratic programming problems using a barrier

function method and is again intended to be suitable for large-scale problems.

• VF13 of Powell (1982)

This package solves general nonlinearly constrained problems using a sequential quadratic

programming technique.

VA15, VE09, VE14 and VF13 are part of the Harwell Subroutine Library (1993). They are

distributed by the United Kingdom Atomic Energy Authority, Harwell, subject to certain

license agreements. They are all copyrighted jointly by the UKAEA and SERC (Science

and Engineering Research Council).

We have also included an interface which allows the CUTE evaluation tools, described in Section 6,

to be called from MATLAB (1993). For pointers to more information, see Section 7.
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Of course, LANCELOT also solves problems in SIF, but it does not require an interface using

the CUTE tools. It is worth noting that LANCELOT exploits much more structure than that

provided by the interface tools.

The natural next question is how does one use the supplied interfaces. We begin with one of

the simplest.

5.2 Using the UNCMIN interface

After installation of CUTE (see Section 7 below), for example in a UNIX environment, there

will be an empty subdirectory named uncmin. It is the user’s responsibility to ensure that the

UNCMIN source codes are compiled into a single object file, named uncmins.o, in the uncmin

subdirectory. (Although UNCMIN is available in single precision only, the user may wish to

create a double precision version. The double precision object file should be stored as uncmind.o

in the uncmin subdirectory. To run this double precision version, the user will have to edit the

scripts sdunc and unc. These scripts include comments describing the required changes.)

For illustrative purposes, suppose one is in a UNIX environment. Assume that the environ-

ment variables CUTEDIR and MASTSIF are set appropriately, and that uncmins.o is in the directory

$CUTEDIR/uncmin. Now suppose further that one wishes to solve the problem MOREBV whose

SIF file MOREBV.SIF is in the directory $MASTSIF. The user should either set an alias to the

command sdunc using

alias sdunc ’$CUTEDIR/interfaces/sdunc’

(typically, this alias would be set automatically by the user’s shell) or add $CUTEDIR/interfaces

to his/her path. The user should then enter the directory $MASTSIF and issue the command

sdunc -s MOREBV

(The -s option is explained in Section 5.3.) This command results in the following output:

Problem name: MOREBV

Single precision version will be formed.

The objective function uses 10 nonlinear groups

There are 10 free variables

#FCN EVAL = 13

GRAD EVAL = 13

HSN EVAL = 2

ITRMCD = 1

FINAL F = 6.5557D-14

FINAL NORMG = 1.3728D-07

X G

X1 -3.5088D-02 -1.5189D-08
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X2 -6.5312D-02 -4.8354D-09

X3 -8.9785D-02 2.4506D-08

X4 -1.0742D-01 9.2885D-08

X5 -1.1686D-01 -1.4974D-09

X6 -1.1641D-01 7.4553D-08

X7 -1.0390D-01 -9.9286D-09

X8 -7.6520D-02 -4.0877D-08

X9 -3.0551D-02 1.3728D-07

X10 3.9023D-02 1.2241D-07

Set up time = 0.05

Solve time = 0.02

Total time = 0.07 seconds

Further details for both this interface and the others provided with the package are given in

the document file install.rdm contained in the directory $CUTEDIR/doc and in Section 5.3.

A summary of the available packages and the corresponding commands is given in Table 3.

LANCELOT uses the commands sdlan and lan, which perform the same functions and have the

same syntax (described in Section 5.3) as the commands listed in Table 3. The sdlan and lan

scripts are distributed as part of LANCELOT, and not as part of CUTE.

Package Decode and optimize Optimize only

COBYLA sdcob cob

MINOS sdmns mns

NPSOL sdnps nps

OSL sdosl osl

TENMIN sdten ten

UNCMIN sdunc unc

VA15 sdlmq lmq

VE09 sdqp qp

VE14 sdbqp bqp

VF13 sdcns cns

Table 3: Currently available interfaces.

A few SIF files, as indicated in Table 4, are provided in the directory $CUTEDIR/problems.

These are sufficient to verify that the packages are correctly installed.

5.3 The generic interface

All of the shell scripts for the interfaces listed in Table 3 execute the same general steps and

have the same syntax. Thus, we now give details on the usage of these scripts by describing the

sdgen and gen commands for a generic interface. The characters gen in sdgen and gen may be

replaced by mns, unc, or any of the other interface names given in the third column in Table 3.

Besides offering a convenient means to describe details on the usage of the current interfaces,

the sdgen and gen shell scripts serve another important purpose: they provide a template for the
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Package Appropriate SIF file

COBYLA HS11

MINOS HS11

NPSOL HS11

OSL HS21

TENMIN ROSENBR

UNCMIN ROSENBR

VA15 ROSENBR

VE09 HS21

VE14 HS3

VF13 HS11

Table 4: Interface and appropriate sample SIF file

shell scripts required for new interfaces with optimization packages other than those listed in Ta-

ble 3. Details on the construction of a new interface are given in the document file interface.rdm

contained in the directory $CUTEDIR/doc.

5.3.1 The sdgen and gen commands

Suppose the scripts sdgen and gen, residing in the directory $CUTEDIR/interfaces, provide an

interface with the optimization package GEN (for GENeric). The object module(s) for the GEN

package reside in the directory $CUTEDIR/gen. The single precision object is named gens.o,

while the double precision object is named gend.o. (Because some optimization packages consist

of only one precision source code, the user may wish to modify this source code to create an

appropriate precision version.) Besides the shell scripts, the interface also includes a Fortran

driver genma.f which interleaves calls to the optimization subroutines in GEN with calls to the

appropriate CUTE evaluation tools (described in Section 6 and Appendix B). The Fortran source

file genma.f resides in $CUTEDIR/tools/sources, while the compiled object modules reside in

$CUTEDIR/tools/objects/single/genma.o and $CUTEDIR/tools/objects/double/genma.o, for

the single and double precision versions, respectively.

The main steps executed by the sdgen command are as follows:

1. Check the argument of the command for inconsistencies and interpret them. Also check

that the problem specified has an associated SIF file.

2. Apply the SIF decoder to the problem SIF file, in order to produce the OUTSDIF.d file and

the problem dependent Fortran subroutines. Stop the process if any error is uncovered in

the SIF file.

3. Call the gen command (described next) in order to continue the process.

The main steps executed by the gen command are as follows:

1. Check the arguments of the command for inconsistencies and interpret them.
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2. If a new executable module is to be built, compile the problem dependent Fortran subrou-

tines.

3. Load together the compiled problem dependent subroutines, the appropriate evaluation

tool objects, the Fortran driver object genma.o, and the appropriate GEN object module

(gens.o or gend.o, depending on whether the single or double precision version is selected)

to produce the executable file genmin.

4. Execute genmin in order to solve the problem.

5.3.2 Syntax and options for the sdgen command

The format of the command is

sdgen [-s] [-h] [-k] [-o j] [-l secs] probname

where optional arguments are within square brackets. The command arguments have the follow-

ing meaning:

-s runs the single precision version (default: run the double precision version),

-h prints a simple description of the possible options for the sdgen command,

-k does not delete the executable module after execution (default: the module is deleted),

-o j if j=0, the tool runs in silent mode, while brief descriptions of the stages executed are

printed if j = 1 (default: silent mode),

-l secs an upper limit of secs seconds is set on the CPU time used by GEN in the numerical

solution of the problem (default: 99,999,999 seconds),

probname is the name (without extension) of the file containing the SIF description of the problem

to solve.

5.3.3 Syntax and options for the gen command

The format of the command is

gen [-n] [-h] [-s] [-k] [-o i] [-l secs]

where optional arguments are within square brackets. The command arguments have the follow-

ing meaning:

-n reconstructs the executable module genmin from the files output at the SIF decoding stage

(default: run the current executable module without reconstructing it),

-h prints a simple description of the possible options for the gen command,

-s runs the single precision version (default: run the double precision version),

-k does not delete the executable module after execution (default: the module is deleted),

17



-o j if j=0, the tool runs in silent mode, while brief descriptions of the stages executed are

printed if j = 1 (default: silent mode),

-l secs an upper limit of secs seconds is set on the CPU time used by GEN in the numerical

solution of the problem (default: 99,999,999 seconds).

5.3.4 Running GEN on a problem in standard input format

In order to be able to run sdgen and gen from any directory, the user should add the lines

alias sdgen ’$CUTEDIR/interfaces/sdgen’

alias gen ’$CUTEDIR/interfaces/gen’

to his/her .cshrc file if running the C shell under AIX, HP-UX, SunOS, Ultrix or UNICOS

systems. Alternatively, the user could add $CUTEDIR/interfaces to his/her PATH.

To run GEN on a problem in SIF, the user should move into the directory in which the SIF

file for the problem, probname.SIF, resides and issue the command

sdgen probname

This command will decode the SIF file, print a short summary of the problem characteristics,

and attempt to solve the problem using GEN.

If the SIF file has already been decoded but the executable module genmin has been deleted,

the appropriate command is

gen -n

while it is

gen

if the SIF file has already been decoded and the executable module genmin still exists. (To keep

the executable module after solving the problem, the -k option should be used with either the

sdgen or gen command.)

6 Evaluation tools

6.1 Overview

We also provide a collection of tools that enable one to manipulate data once it has been decoded

from a SIF file. This is important for two main reasons. Firstly, the data structure is able to

represent structure that is more general than sparsity (see Section 3.1 above). Naturally this

capability imposes some overhead with respect to the complexity of the data. The evaluation

tools enable one to reverse the process — in other words, the tools take a group partially separable

format (that one might think of as a ‘scatter’ operation) and ‘gather’ the information to produce

the function value, the gradient or the second derivatives for the entire function. The second

derivatives are available in three formats: as a dense matrix, as a sparse matrix whose non-zeros
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are stored in “co-ordinate” form, and as a sparse matrix stored in “finite-element” format (see,

for example, Duff, Erisman and Reid, 1986, Chapter 2). In addition we include a routine that

forms the matrix vector product with the Hessian matrix and we provide utilities to obtain the

names of a problem, its variables and possibly its constraints. Secondly, our testing of LANCELOT

required the collection of a substantial number of large and non-trivial optimization problems

(see Section 2.1 above). With the aid of the supplied tools one can use the same input files to

interface with other optimization software that is not designed to accept SIF (see below). As a

corollary, we are hoping that practitioners will be encouraged to write test problems in the SIF.

Of course, although not strictly speaking essential, (see Chapter 8 of Conn et al. (1992a)), we

would assume that most users of LANCELOT will write their input using the SIF.

Several parameters have values that may be changed by the user to suit a particular problem

or system configuration. If any of these are too small, an error message is produced telling which

parameter(s) to increase. Typically they concern the size of the workspace for what we consider

the default values for big, medium and small problems. Details on how to change the parameters

are given in the document file install.rdm contained in the directory $CUTEDIR/doc.

The next two sections indicate the problem classes for which tools are available for users to

manipulate the decoded data.

6.2 The unconstrained and bound constrained problem

We provide tools that specifically relate to the bound constrained problem:

optimize f(x) (6.4)

subject to the simple bounds

li ≤ xi ≤ ui, (i = 1, . . . , n), (6.5)

where x ∈ Rn, f is assumed to be a smooth function from Rn into R and is group partially

separable. Of course, if all the bounds are infinite, then the problem is unconstrained.

A summary of the available subroutines and their purpose is given in Table 5. A more detailed

description is given in Appendix B.

6.3 The general constrained problem

We also provide tools that specifically relate to the general constrained problem

optimize f(x) (6.6)

subject to the general equations

ci(x) = 0, i ∈ E, (6.7)

the general inequality constraints

(cl)i ≤ ci(x) ≤ (cu)i, i ∈ I, (6.8)
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Purpose Tool Hessian format

(if applicable)

Set up the correct data structure USETUP

Evaluate objective function value UFN

Evaluate objective function and possibly its gradient UOFG

Evaluate objective function gradient UGR Dense

Evaluate objective function Hessian UDH Dense

Evaluate objective function gradient and Hessian UGRDH Dense

Evaluate objective function Hessian USH Co-ordinate

Evaluate objective function gradient and Hessian UGRSH Co-ordinate

Evaluate objective function Hessian UEH Finite-element

Evaluate objective function gradient and Hessian UGREH Finite-element

Matrix-vector product of vector with Hessian UPROD

Obtain the elements of Hessian matrix which lie UBANDH

within a band of given semi-bandwidth

Obtain the names of the problem and its variables UNAMES

Table 5: Available tools — unconstrained problems.

and the simple bounds

li ≤ xi ≤ ui, (i = 1, . . . , n). (6.9)

Here x ∈ Rn, f, ci are assumed to be smooth functions from Rn into R and are group partially

separable. Furthermore I ∪ E = 1, 2, ....,m, with I and E disjoint.

Associated with the above problem is the so-called Lagrangian function

L(x, λ) = f(x) + λT c(x), (6.10)

where c(x) is the vector whose i-th component is ci(x) and the components of the vector λ are

known as Lagrange multipliers.

The various subroutines, many of which are similar to those supplied for the problem with

simple bounds above, are now summarized in Table 6. A more detailed description is given in

Appendix B.

7 Installing CUTE on your system

The CUTE distribution consists of a set of files. All these files should be placed in a single

directory, from which the installation will be performed. This directory will henceforth be called

the ‘CUTE directory’ and we assume that in a UNIX environment this is pointed to by the

CUTEDIR environment variable. The installation will, amongst other things, create a subdirectory

structure suitable for the machine on which the package is being installed. This structure is

shown in Figure 1.

In addition, there are directories created at the same level as the tools which are meant to

contain the single and double precision object modules required for the various interfaces. Since

these depend upon the user having the right to use these particular modules they are not, of
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Purpose Tool Hessian format

(if applicable)

Set up the correct data structure CSETUP

Evaluate objective function and general constraints CFN

Evaluate objective function and possibly its gradient COFG

Evaluate the general constraint functions CCFG Dense

and possibly their gradients

Evaluate an individual general constraint function CCIFG Dense

and possibly its gradient

Evaluate the general constraint functions CSCFG Co-ordinate

and possibly their gradients

Evaluate an individual general constraint function CSCIFG Co-ordinate

and possibly its gradient

Evaluate the general constraint gradients and CGR Dense

the gradient of either the objective function or

the Lagrangian function

Evaluate the general constraint gradients and CSGR Co-ordinate

the gradient of either the objective function or

the Lagrangian function

Evaluate the Lagrangian function Hessian CDH Dense

Evaluate the gradient of the objective or Lagrangian CGRDH Dense

function, the general constraint gradients, and

the Lagrangian Hessian

Evaluate the Lagrangian function Hessian CSH Co-ordinate

Evaluate the gradient of the objective or Lagrangian CSGRSH Co-ordinate

function, the general constraint gradients, and

the Lagrangian Hessian

Evaluate the Lagrangian function Hessian CEH Finite-element

Evaluate the gradient of the objective or Lagrangian CSGREH Finite-element

function, the general constraint gradients, and

the Lagrangian Hessian

Evaluate matrix-vector product of vector with Hessian CPROD Dense

Obtain the names of the problem, its variables CNAMES

and general constraints

Table 6: Available tools — constrained problems.

21



CUTE directory ($CUTEDIR)

? ? ? ? ? ? ? ?

select sifdec pre tools interfaces problems gen doc
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���

H
H
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H
HHj

sources objects

�
�

�
�+

Q
Q

Q
Qs

single double

Figure 1: Organization of the CUTE directories

course, included in the distribution. Currently the directories are cobyla, mex, minos, npsol,

tenmin, uncmin, va15, ve09, ve14, and vf13.

The directory mex contains a README.mex which explains the organization of the MATLAB-

CUTE interface and how to use it. The directories cobyla, minos and npsol contain default speci-

fications files for COBYLA, MINOS and NPSOL, named COBYLA.SPC, MINOS.SPC and NPSOL.SPC,

respectively. Each of the directories minos, npsol, and tenmin contains a README to explain how

to create the required object module. The README file in the minos directory also contains some

information on using the MINOS.SPC file with CUTE.

The CUTE package is available with automated installation procedures for the following range

of operating systems:

• CRAY: UNICOS,

• DEC: Ultrix, VMS (using “G-floating” double precision) and OSF/1,

• HP: HP-UX,

• IBM: AIX,

• PC: DOS using WATCOM Fortran compiler,

• SUN: SunOS.

If your system is different from those listed above and if you nevertheless wish to install CUTE,

we include some details that should be useful in the document file install.rdm contained in the

directory $CUTEDIR/doc. Further details, including installation on several preassigned systems,

preparation of the environment, running of scripts and individual tailoring and installation of

unsupported systems are given in the document files install.rdm and interface.rdm in the

directory $CUTEDIR/doc.
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8 Obtaining the CUTE distribution

CUTE is written is standard ANSI Fortran 77. Single and double precision versions are available.

Machine dependencies are carefully isolated and easily adaptable. Automatic installation proce-

dures are available for CRAY UNICOS; DEC Ultrix, VMS, and OSF/1; HP HP-UX; IBM AIX;

DOS using the WATCOM Fortran compiler; and SUN SunOS (see Section 7).

The package may be obtained in one of two ways. Firstly, the reader can obtain CUTE

electronically via an anonymous ftp call to the account on joyous-gard.cc.rl.ac.uk (Internet i.d.

130.246.9.91, in directory pub/cute), at Rutherford Appleton Laboratory, or that on

thales.math.fundp.ac.be (Internet i.d. 138.48.4.14, in directory cute) at Facultés Universitaires

Notre-Dame de la Paix (Namur). We request that the userid be given as the password. This will

serve to identify those who have obtained a copy via ftp. For those with access to the World-Wide-

Web, a call can be made to the URLs ftp://130.246.8.61/pub/cute or ftp://138.48.4.14/cute.

Secondly, the package can be obtained at minimal cost on floppy disk or magnetic tape. The

price covers the costs of media, packaging, preparation and courier delivery. To get a magnetic

media order form, the reader should contact Ph. L. Toint (see title page for addresses).

Updates to the test problem set, since the initial release of the package, are given in the file

mastsif.updates. Corrections and additions to the tools are documented in the file updates.rdm

in the directory $CUTEDIR/doc.

9 Conclusions

We have presented in this paper the scope of the Constrained and Unconstrained Testing Envi-

ronment (CUTE), and the variety of tools to maintain it, as well as the facility to interface with

existing and future optimization packages. The main purpose of CUTE is to

• provide a way to explore an extensive collection of problems,

• provide a way to compare existing packages,

• provide a way to use a large test problem collection with new packages,

• provide motivation for building a meaningful set of new interesting test problems,

• provide ways to manage and update the system efficiently, and

• do all the above on a variety of popular platforms.

The only way to really judge the effectiveness of the environment is for the reader to use it.

We are most interested in learning of others’ experiences as this will undoubtedly be helpful in

making improvements.
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Appendix

A Illustrative SIF file

A SIF file for the simple problem

min
x,y∈ℜ

e(x−3y) (A.11)

subject to the constraint

sin(y − x− 1) = 0 (A.12)

and the bounds

− 2 ≤ x ≤ 2 and − 1.5 ≤ y ≤ 1.5. (A.13)

could be specified as follows:

NAME EXAMPLE

* A simple constrained problem

* classification OOR2-AN-2-1

VARIABLES

x

y

GROUPS

* Linear terms for the objective function

XN Object x 1.0 y -3.0

* Linear terms for the general constraint

XE Constr y 1.0 x -1.0

CONSTANTS

* Constant term for the linear part of the general constraint

X EXAMPLE Constr 1.0

BOUNDS

* Lower and upper bounds on the variable x

LO EXAMPLE x -2.0

UP EXAMPLE x 2.0

* Lower and upper bounds on the variable y

LO EXAMPLE y -1.5

UP EXAMPLE y 1.5

GROUP TYPE

* Create an ‘exponential’ group type for the objective function

GV EXPN ALPHA

* Create an ‘sine’ group type for the constraint function

GV SINE ALPHA

GROUP USES

* Ensure that the exponential group is associated with the objective function

XT Object EXPN

* Ensure that the sine group is associated with the constraint function

XT Constr SINE

ENDATA
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GROUPS EXAMPLE

TEMPORARIES

* Define temporary variables

R EXPA

R SINA

* Declare the machine dependent functions that are used

M EXP

M SIN

M COS

INDIVIDUALS

* Exponential group type

T EXPN

A EXPA EXP( ALPHA )

F EXPA

G EXPA

H EXPA

* Sine group type

T SINE

A SINA SIN( ALPHA )

F SINA

G COS( ALPHA )

H - SINA

ENDATA

B Details on the provided evaluation tools

We now give the complete argument lists for the subroutines summarized in Tables 5 and 6.

There are two sets of tools: one set for unconstrained and bound constrained problems, and one

set for generally constrained problems. Note that these two sets of tools cannot be mixed.

The superscript i on an argument means that the argument must be set on input. A super-

script o means that the argument is set by the subroutine.

B.1 Unconstrained and bound constrained problems

• Set up the correct data structures for subsequent computations:

CALL USETUP ( INPUTi, IOUTi, No, Xo, BLo, BUo, NMAXi )

Note that a call to USETUP must precede calls to other evaluation tools for unconstrained

and bound constrained problems.

• Obtain the names of the problem and its variables:

CALL UNAMES ( Ni, PNAMEo, XNAMESo )

• Evaluate the objective function:

CALL UFN ( Ni, Xi, Fo )
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• Evaluate the gradient of the objective function:

CALL UGR ( Ni, Xi, Go )

• Evaluate the objective function and possibly its gradient:

CALL UOFG ( Ni, Xi, Fo, Go, GRADi )

Note that calling UOFG is more efficient than separate calls to UFN and UGR.

• Evaluate the Hessian matrix of the objective function (when stored as a dense matrix):

CALL UDH ( Ni, Xi, LH1i, Ho )

• Evaluate both the gradient and Hessian matrix of the objective function (when stored as a

dense matrix):

CALL UGRDH ( Ni, Xi, Go, LH1i, Ho )

Note that calling UGRDH is more efficient than separate calls to UGR and UDH.

• Evaluate the Hessian matrix of the objective function (when stored as a sparse matrix in

co-ordinate format):

CALL USH ( Ni, Xi, NNZSHo, LSHi, SHo, IRNSHo, ICNSHo )

• Evaluate both the gradient and Hessian matrix (when stored as a sparse matrix in co-

ordinate format) of the objective function:

CALL UGRSH ( Ni, Xi, Go, NNZSHo, LSHi, SHo, IRNSHo, ICNSHo )

Note that calling UGRSH is more efficient than separate calls to UGR and USH.

• Evaluate the Hessian matrix of the objective function (when stored as a sparse matrix in

finite-element format):

CALL UEH ( Ni, Xi, NEo, IRNHIo, LRNHIi, LEi, IPRNHIo, HIo, LHIi, IPRHIo, BYROWSi )

• Evaluate both the gradient and Hessian matrix (when stored as a sparse matrix in finite-

element format) of the objective function:

CALL UGREH ( Ni, Xi, Go, NEo, IRNHIo, LIRNHIi, LEi, IPRNHIo, HIo, LHIi, IPRHIo,

BYROWSi )

Note that calling UGREH is more efficient than separate calls to UGR and UEH.

• Form the product of a vector with the Hessian matrix:

CALL UPROD ( Ni, GOTHi, Xi, Pi, Qo )

• Obtain the elements of the Hessian that lie within a given semi-bandwidth of its diagonal:

CALL UBANDH ( Ni, GOTHi, Xi, NSEMIBi, BANDHo, LBANDHi )

B.2 Generally constrained problems

• Set up the correct data structures for subsequent computations:

CALL CSETUP ( INPUTi, IOUTi, No, Mo, Xo, BLo, BUo, NMAXi, EQUATNo, LINEARo,

Vo, CLo, CUo, MMAXi, EFIRSTi, LFIRSTi, NVFRSTi )
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Note that a call to CSETUP must precede calls to other evaluation tools for generally con-

strained problems.

• Obtain the names of the problem, its variables and general constraints:

CALL CNAMES ( Ni, Mi, PNAMEo, XNAMESo, GNAMESo )

• Evaluate the objective and general constraint function values:

CALL CFN ( Ni, Mi, Xi, Fo, LCi, Co )

• Evaluate the gradients of the general constraint functions:

CALL CGR ( Ni, Mi, Xi, GRLAGFi, LVi, Vi, Go, JTRANSi, LCJAC1i, LCJAC2i, CJACo )

• Evaluate the objective function and possibly its gradient:

CALL COFG ( Ni, Xi, Fo, Go, GRADi )

Note that calling COFG is more efficient than separate calls to CFN and CGR.

• Evaluate the gradients of the general constraint functions (when these are stored in a sparse

format):

CALL CSGR ( Ni, Mi, GRLAGFi, LVi, Vi, Xi, NNZSCJo, LSCJACi, SCJACo, INDVARo,

INDFUNo )

• Evaluate the constraints functions and possibly their gradients:

CALL CCFG ( Ni, Mi, Xi, LCi, Co, JTRANSi, LCJAC1i, LCJAC2i, CJACo, GRADi )

• Evaluate an individual constraint function and possibly its gradient:

CALL CCIFG ( Ni, Ii, Xi, CIo, GCIo, GRADi )

• Evaluate the constraint functions and possibly their gradients (when these are stored in a

sparse format):

CALL CSCFG ( Ni, Mi, Xi, LCi, Co, NNZSCJo, LSCJACi, SCJACo, INDVARo, INDFUNo,

GRADi )

• Evaluate an individual constraint function and possibly its gradient (when this in stored in

a sparse format):

CALL CSCIFG ( Ni, Ii, Xi, CIo, NNZSGCo, LSGCIi, SGCIo, IVSGCIo, GRADi )

• Evaluate the Hessian matrix of the Lagrangian (when stored as a dense matrix):

CALL CDH ( Ni, Mi, Xi, LVi, Vi, LH1i, Ho )

• Evaluate both the gradients of the general constraint functions and the Hessian matrix of

the Lagrangian:

CALL CGRDH ( Ni, Mi, Xi, GRLAGFi, LVi, Vi, Go, JTRANSi, LCJAC1i, LCJAC2i,

CJACo, LH1i, Ho )

Note that calling CGRDH is more efficient than separate calls to CGR and CDH.

• Evaluate the Hessian matrix of the Lagrangian (when stored as a sparse matrix):

CALL CSH ( Ni, Mi, Xi, LVi, Vi, NNZSHo, LSHi, SHo, IRNSHo, ICNSHo )
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• Evaluate both the gradients of the general constraint functions and the Hessian matrix of

the Lagrangian:

CALL CSGRSH ( Ni, Mi, Xi, GRLAGFi, LVi, Vi, NNZSCJo, LSCJACi, SCJACo, INDVARo,

INDFUNo, NNZSHo, LSHi, SHo, IRNSHo, ICNSHo )

Note that calling CSGRSH is more efficient than separate calls to CSGR and CSH.

• Evaluate the Hessian matrix of the Lagrangian function (when stored as a sparse matrix in

finite-element format):

CALL CEH ( Ni, Mi, Xi, LVi, Vi, NEo, IRNHIo, LIRNHIi, LEi, IPRNHIo, HIo, LHIi,

IPRHIo, BYROWSi )

• Evaluate both the gradient and Hessian matrix (when stored as a sparse matrix in finite-

element format) of the Lagrangian function:

CALL CSGREH ( Ni, Mi, Xi, GRLAGFi, LVi, Vi, NNZSCJo, LSCJACi, SCJACo, INDVARo,

INDFUNo, NEo, IRNHIo, LIRNHIi, LEi, IPRNHIo, HIo, LHIi, IPRHIo,

BYROWSi )

Note that calling CSGREH is more efficient than separate calls to CGR and CEH.

• Form the product of a vector with the Hessian matrix of the Lagrangian:

CALL CPROD ( Ni, Mi, GOTHi, Xi, LVi, Vi, Pi, Qo )

B.3 Meaning of the arguments

The arguments in the above calling sequences have the following meanings:

BANDH is a two-dimensional array of dimension (0:LBANDH,N) which gives the lower triangular

part of the band segment of the Hessian of the objective function. The diagonal entry

in column i is returned in location BANDH(0, i), while the entry j places below the

diagonal in column i may be found in location BANDH(j, i).

BL is an array which gives lower bounds on the variables.

BU is an array which gives upper bounds on the variables.

BYROWS is a logical variable which should be set .TRUE. if the upper-trianglular portions of

the finite-element Hessians are required to be stored by rows and to .FALSE. if they

are to be stored by columns.

C is an array which gives the values of the general constraint functions evaluated at X.

The i-th component of C will contain the value of ci(x).

CI is the value of the general constraint function I evaluated at X.

CJAC is a two-dimensional array of dimension (LCJAC1, LCJAC2) which gives the value of

the Jacobian matrix of the constraint functions, or its transpose, evaluated at X. If

JTRANS is .TRUE., the i, j-th component of the array will contain the i-th derivative of

the j-th constraint function. Otherwise, if JTRANS is .FALSE., the i, j-th component

of the array will contain the j-th derivative of the i-th constraint function.

CL is an array which gives lower bounds on the general constraints.

CU is an array which gives upper bounds on the general constraints.
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EFIRST is a logical variable which should be set .TRUE. if the user wishes the general equa-

tions to occur before the general inequalities in the list of constraints. If the order is

unimportant, EFIRST should be set .FALSE..

EQUATN is a logical array whose i-th component is .TRUE. if the i-th constraint is an equation

(i ∈ E), and .FALSE. if the constraint is an inequality (i ∈ I).

F gives the value of the objective function evaluated at X.

G is an array which gives the value of the gradient of the objective function (for uncon-

strained problems, or for constrained problems when GRLAGF = .FALSE.) or of the

Lagrangian (for constrained problems when GRLAGF = .TRUE.), evaluated at X.

GCI is an array which gives the value of the gradient of the general constraint function I

evaluated at X.
GNAMES is an array of 10-character names which gives the names of the general constraints.

GOTH is a logical variable which specifies whether the second derivatives of the groups

and elements have already been set (GOTH = .TRUE.) or if they should be computed

(GOTH = .FALSE.). GOTH should be set to .TRUE. whenever either a call has been

made either to UDH, USH, UGRDH or UGRSH or to CDH, CSH, CGRDH or CSGRSH at the

current point, or whenever a previous call, with GOTH = .FALSE., has been made to

UPROD, UBANDH or CPROD at the current point. Otherwise, it should be set .FALSE.

GRAD is a logical variable which should be set .TRUE. if the gradient of the objective

function is required from UOFG or COFG, or if the gradients of the constraint function(s)

are required from CCFG, CCIFG, CSCFG, or CSCIFG. Otherwise, it should be set .FALSE.

GRLAGF is a logical variable which should be set .TRUE. if the gradient of the Lagrangian is

required and .FALSE. if the gradient of the objective function is sought.

H is a two-dimensional array which contains the value of the Hessian matrix of the

objective function (unconstrained problems) or of the Lagrangian (constrained prob-

lems) evaluated at X (and V, for constrained problems).

HI is an array of the nonzeros in the upper triangle of each finite-element Hessian,

evaluated at X (and V for constrained problems) and stored by rows, or by columns.

Those for element i directly proceed those for element, i+ 1, i = 1, ..., NE−1.

I is the index of the general constraint function to be evaluated by CCIFG or CSCIFG.

ICNSH is an array which gives the column indices of the nonzeros of the Hessian matrix SH.

INDFUN is an array whose i-th component is the index of the problem function of which

SCJAC(i) is the derivative. INDFUN(i) = 0 indicates the objective function whenever

GRLAGF is .FALSE. or the Lagrangian when GRLAGF is .TRUE., while INDFUN(i) =

j > 0 indicates the jth general constraint function.

INDVAR is an array whose i-th component is the index of the variable with respect to which

SCJAC(i) is the derivative.

INPUT is the unit number for the decoded data, i.e., the unit from which OUTSDIF.d is read.

IOUT is the unit number for any error messages.

IPRHI is an array of pointers to the position in HI of the first nonzero in each finite-element

Hessian. IPRHI(NE+1) points to the first empty location in HI.

IPRNHI is an array of pointers to the position in IRNHI of the first row index in each element.

IPRNHI(NE+1) points to the first empty location in IRPNHI.
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IRNHI is an array which holds a list of the row indices involved with each finite-element.

Those for element i directly preceed those for element i+ 1, i = 1, ..., NE−1.

IRNSH is an array which gives the row indices of the nonzeros of the Hessian matrix SH.

IVSGCI is an array whose i-th component is the index of the variable with respect to which

SGCI(i) is the derivative.

JTRANS is a logical variable which should be set .TRUE. if the transpose of the constraint

Jacobian is required and .FALSE. if the Jacobian itself is wanted. The Jacobian

matrix is the matrix whose i-th row is the gradient of the i-th constraint function.

LBANDH is the actual declared size of the leading dimension of BANDH (with LBANDH no smaller

than NSEMIB). Note that the leading component of BANDH includes the index 0 so

strictly, the size of the leading dimension is LBANDH+ 1.

LC is the actual declared dimension of C, with LC no smaller than M.

LCJAC1 is the actual declared size of the leading dimension of CJAC, with LCJAC1 no smaller

than N if JTRANS is .TRUE. or M if JTRANS is .FALSE..
LCJAC2 is the actual declared size of the second dimension of CJAC, with LCJAC2 no smaller

than M if JTRANS is .TRUE. or N if JTRANS is .FALSE..
LE is the actual declared dimension of IPRNHI and IPRHI.

LFIRST is a logical variable which should be set .TRUE. if the user wishes the general linear (or

affine) constraints to occur before the general nonlinear ones in the list of constraints.

If the order is unimportant, LFIRST should be set .FALSE. If both EFIRST and

LFIRST are set .TRUE., the linear constraints will occur before the nonlinear ones.

The linear constraints will be ordered so that the linear equations occur before the

linear inequalities. Likewise, the nonlinear equations will appear before the nonlinear

inequalities in the list of nonlinear constraints.

LH1 is the actual declared size of the leading dimension of H, with LH1 no smaller than N.

LHI is the actual declared dimension of HI.

LINEAR is a logical array whose i-th component is .TRUE. if the i-th constraint is linear or

affine and .FALSE. otherwise.
LIRHI is the actual declared dimension of IRNHI.

LSH is the actual declared dimension of SH, IRNSH and ICNSH.

LSCJAC is the actual declared dimension of SCJAC, INDVAR and INDFUN.

LSGCI is the actual declared dimension of SGCI.

LV is the actual declared dimension of V.

M gives the total number of general constraints.

MMAX is the actual declared dimension of EQUATN, LINEAR, CL and CU.

N is the number of variables for the problem.

NE gives the number of elements in a finite-element representation of the Hessian for the

problem.

NMAX is the actual declared dimension of BL, BU, and X.

NNZSCJ is the number of nonzeros in SCJAC.

NNZSGC is the number of nonzeros in SGCI.

NNZSH is the number of nonzeros in SH.
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NSEMIB is the required semi-bandwidth of the matrix BANDH, i.e., the number of bands directly

below the diagonal of the Hessian.

NVFRST is a logical variable which should be set .TRUE. if the user wishes the nonlinear vari-

ables to occur before the linear variables. (Any variable which belongs to a nontrivial

group or to a nonlinear element in a trivial group is treated as a nonlinear variable.)

If the number of variables which appear nonlinearly in the objective function (say n1)

is different from the number of variables which appear nonlinearly in the constraints

(say m1), then the nonlinear variables are ordered so that the smaller set occurs first.

For example, if n1 < m1, the n1 nonlinear objective variables occur first, followed by

the nonlinear Jacobian variables not belonging to the first n1 variables, followed by

the linear variables.
P is an array which contains the vector whose product with the Hessian of the objective

(unconstrained problems) or of the Lagrangian (constrained problems) is required.

PNAME is a 10-character name for the problem.

Q is an array which gives the result of multiplying the Hessian of the objective (uncon-

strained problems) or of the Lagrangian (constrained problems) by P.

SCJAC is an array which gives the values of the nonzeros of the gradients of the objective, or

Lagrangian, and general constraint functions evaluated at X and V. The i-th entry of

SCJAC gives the value of the derivative with respect to variable INDVAR(i) of function

INDFUN(i).

SGCI is an array which gives the values of the nonzeros of the gradient of the general

constraint function I evaluated at X. The i-th entry of SGCI gives the value of the

derivative with respect to variable IVSGCI(i) of function I.

SH is an array which gives the value of the Hessian matrix of the objective function

(unconstrained problems) or of the Lagrangian (constrained problems) evaluated at

X. The i-th entry of SH gives the value of the nonzero in row IRNSH(i) and column

ICNSH(i). Only the upper triangular part of the Hessian is stored.

V is an array which gives the current estimate of the Lagrange multipliers. V is not

used if GRLAGF = .FALSE. or if GOTH = .TRUE..
X is an array which gives the current estimate of the solution of the problem. X is not

used by UPROD, UBANDH and CPROD if GOTH = .TRUE..

XNAMES is an array of 10-character names which gives the names of the variables.
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C A typical select session

Suppose the user is interested in finding all problems in the database for which the objective

function is omitted or the objective function is a sum of squares. This is not an unrealistic

situation since this may correspond either to a system of equations that the user wants to solve

or to a system of equalities/inequalities for which a feasible point is desired. In addition, least

squares problems frequently arise in solving systems of equations. Suppose further that the

user has a particular collection of test problems in mind that contain five, ninety-nine or one

hundred and fifty constraints, and that the environment variable MASTSIF points to the directory

/data/mastsif. This motivates the following session (note that input can be in upper or lower

case):

select

*************************************************

* *

* CONSTRAINED AND UNCONSTRAINED *

* TESTING ENVIRONMENT *

* *

* ( CUTE ) *

* *

* INTERACTIVE PROBLEM SELECTION *

* *

* CGT PRODUCTIONS *

* *

*************************************************

Your current classification file is : /data/mastsif/CLASSF.DB

Do you wish to change this [<CR> = N] ? (N/Y)

<CR>

Your current problem selection key is:

( * = anything goes )

Objective function type : *

Constraints type : *

Regularity : *

Degree of available derivatives : *

Problem interest : *

Explicit internal variables : *

Number of variables : *

Number of constraints : *

CHOOSE A PROBLEM CHARACTERISTIC THAT YOU WANT TO SPECIFY :

----------------------------------------------------------
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O : Objective type C : Constraint type

R : Regularity I : Problem interest

N : Number of variables M : Number of constraints

D : Degree of available analytic derivatives

S : Presence of explicit internal variables

<CR> : No further characteristic, perform selection

Your choice :

o

OBJECTIVE FUNCTION TYPE :

-------------------------

C : Constant L : Linear

Q : Quadratic S : Sum of squares

N : No objective

O : Other (that is none of the above)

<CR> : Any of the above (*)

Your choice :

s

C : Constant L : Linear

Q : Quadratic S : Sum of squares

N : No objective

O : Other (that is none of the above)

<CR> : No further type

Your choice :

N

C : Constant L : Linear

Q : Quadratic S : Sum of squares

N : No objective

O : Other (that is none of the above)

<CR> : No further type

Your choice :

<CR>

You have specified objective of type(s): S N

Do you wish to reconsider your choice [<CR> = N] ? (N/Y)

N

Your current problem selection key is:

( * = anything goes )
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Objective function type : S N

Constraints type : *

Regularity : *

Degree of available derivatives : *

Problem interest : *

Explicit internal variables : *

Number of variables : *

Number of constraints : *

CHOOSE A PROBLEM CHARACTERISTIC THAT YOU WANT TO SPECIFY :

----------------------------------------------------------

O : Objective type C : Constraint type

R : Regularity I : Problem interest

N : Number of variables M : Number of constraints

D : Degree of available analytic derivatives

S : Presence of explicit internal variables

<CR> : No further characteristic, perform selection

Your choice :

m

NUMBER OF CONSTRAINTS :

-----------------------

F : Fixed V : Variable

I : In an interval

<CR> : Any number of constraints (*)

Your choice :

f

You have specified a fixed number of constraints.

Do you wish to reconsider your choice [<CR> = N] ? (N/Y)

<CR>

SELECT A NUMBER OF CONSTRAINTS:

-------------------------------

(INT) : Select only problems with (INT) constraints

(minimum 0, maximum 99999999, multiple choices are allowed)

<CR> : Any fixed number of variables (*)

Your choice :

5

SELECT A NUMBER OF CONSTRAINTS:
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-------------------------------

(INT) : Select only problems with (INT) constraints

(minimum 0, maximum 99999999, multiple choices are allowed)

* : Any fixed number of variables

<CR> : No further selection

Your choice :

99

SELECT A NUMBER OF CONSTRAINTS:

-------------------------------

(INT) : Select only problems with (INT) constraints

(minimum 0, maximum 99999999, multiple choices are allowed)

* : Any fixed number of variables

<CR> : No further selection

Your choice :

150

SELECT A NUMBER OF CONSTRAINTS:

-------------------------------

(INT) : Select only problems with (INT) constraints

(minimum 0, maximum 99999999, multiple choices are allowed)

* : Any fixed number of variables

<CR> : No further selection

Your choice :

<CR>

You have specified a number of constraints in the set:

5 99 150

Do you wish to reconsider your choice [<CR> = N] ? (N/Y)

<CR>

Your current problem selection key is:

( * = anything goes )

Objective function type : S N

Constraints type : *

Regularity : *

Degree of available derivatives : *

Problem interest : *

Explicit internal variables : *

Number of variables : *
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Number of constraints : 5 99 150

CHOOSE A PROBLEM CHARACTERISTIC THAT YOU WANT TO SPECIFY :

----------------------------------------------------------

O : Objective type C : Constraint type

R : Regularity I : Problem interest

N : Number of variables M : Number of constraints

D : Degree of available analytic derivatives

S : Presence of explicit internal variables

<CR> : No further characteristic, perform selection

Your choice :

<CR>

MATCHING PROBLEMS :

-------------------

AIRCRFTA AIRCRFTB BINSTAR2 DIXCHLNG HYDC20LS

HYDCAR20

6 Problem(s) match(es) the specification.

Do you wish to save the problem names to a file [<CR> = N] ? (N/Y)

y

Input the filename you want (up to 32 characters):

listing

Do you wish to make another selection [<CR> = N] ? (N/Y)

<CR>
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