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Abstract
We formulate and prove Cutkosky’s Theorem regarding the discontinuity of Feynman
integrals in the massive one-loop case up to the involved intersection index. This is
done by applying the techniques to treat singular integrals developed in Fotiadi et
al. (Topology 4(2):159–191, 1965) . We write one-loop integrals as an integral of a
holomorphic family of holomorphic forms over a compact cycle. Then, we determine
at which points simple pinches occur and explicitly compute a representative of the
corresponding vanishing sphere. This also yields an algorithm to compute the Landau
surface of a one-loop graph without explicitly solving the Landau equations. We also
discuss the bubble, triangle and box graph in detail.

Keywords Complex analysis · Feynman integrals · Analytic continuation ·
Monodromy · Simple pinches · Whitney stratification
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1 Introduction

One of the primary tasks in perturbative quantum field theory is the computation of
Feynman integrals. These are integrals associated with graphs, essentially given by
quadratic functions

Q1(p,m), . . . , Qn(p,m) : C
LD → C, (1)

with n the number of edges and L the number of independent cycles of the underlying
graph, which themselves depend (quadratically) on physical parameters (the external
momenta p and masses m). The integrals under consideration are then of the form

B Maximilian Mühlbauer
muelbaum@mathematik.hu-berlin.de

1 Institut für Physik, Humboldt Universität zu Berlin, Rudower Chaussee 25, 12489 Berlin, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11005-022-01612-4&domain=pdf
http://orcid.org/0000-0002-7281-0921


118 Page 2 of 73 M. Mühlbauer

(
L∏

i=1

∫
iR×RD−1

dDki

)
1∏n

i=1(Qi (p,m)(k1, . . . , kL))λi
(2)

and, if they are well-defined at all,1 define functions in the parameters p and m. Even
in simple cases, it is unfortunately very difficult (though sometimes possible, see for
example the database Loopedia [5] for a collection of available results or the articles
[2, 20] for some calculations in action) to express such an integral in terms of well-
understood mathematical functions. Therefore, there is a growing need to understand
the properties of functions defined by Feynman integrals in their own right. To this
end, the benefits of considering a Feynman integral as a function of general complex
momenta instead of just physical Minkowski momenta (living in iR × R

D−1 in our
setup) have been discovered long ago. Among many other advantages, this allows us
to apply the plethora of elegant techniques from complex analysis to the problem.
Leaving aside the problem of renormalization (which we conveniently sidestep in this
work by using analytic regulators λ1, . . . , λn ∈ C) posed by the fact that the integral
(2) might be ill-defined for every value of (p,m) even when integrating over (RD)L

instead of (iR × R
D−1)L , the expression (2) does certainly not make sense for all

possible complex values of (p,m). Leaving the massesm fixed and positive (as we do
throughout this text), we can, however, find an open neighborhood U in the complex
space of external momenta where the expression is well-defined and yields in fact a
holomorphic function onU . This immediately leads to the question along which paths
this function can be analytically continued and what the result of such a continuation
is. In other words, we seek to understand the analytic structure of functions defined
by Feynman integrals.
To answer questions of this nature, the authors of [8] developed a framework, later
expanded by Pham in [18, 19], to deal with integrals of the form

∫
�

ω(t). (3)

This is to be understood as follows: Suppose X and T are two complex analytic
manifolds. Denote by π : X × T � T the canonical projection. We assume there
is an analytic subset S ⊂ X × T such that every fiber St := π−1(t) ∩ S (naturally
viewed as a subset of X ) is a codimension 1 analytic subset of X . We take ω(t) to be
a holomorphic n-form on X\St holomorphically dependent on t ∈ T (a notion which
we define precisely in the preliminaries in Sect. 2) and � to be a compact n-cycle
in X\St0 for some fixed t0 ∈ T . The authors of [8] were able to show that in good
cases the integral (3) defines a holomorphic function in an open neighborhood of t0
which can be analytically continued along any path in T which does not meet a certain
analytic subset L ⊂ T of codimension 1. This L is called the Landau surface of the
integral (3). The discontinuity of such functions along simple loops around points

1 We refer here to the convergence of the integral in question. It should be remarked that, as it stands,
the expression (2) is generally ill-defined, even when it converges: The integral need not be absolutely
convergent so that Fubini’s Theorem does not apply. Thus, one needs to agree on the order of integration
to make sense of (2).
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t ∈ L of codimension 1 at certain t ′ ∈ T \L close to t can then be computed to be

N
∫
ẽ
ω(t ′) = (2π i)mN

∫
e
Resm ω(t ′), (4)

where ẽ (resp. e) is an n-cycle in X\St ′ (resp. (n−m)-cycle in St ′ ) called the vanishing
sphere (resp. vanishing cycle) which can be computed by means of the local geometry
of St ′ alone and Resm is the iterated Leray residue. Here, N is an integer determined
by the intersection index of the integration cycle at t ′ with a homology class in X
relative to St ′ associated with ẽ and e.
We want to apply this program to a class of simple integrals of the form (2), namely
integrals associated with one-loop Feynman graphs. The goal is to prove Cutkosky’s
Theorem, first stated in [7], in this case. It describes the discontinuity of functions
defined by Feynman integrals in terms of simpler integrals. Suppose we consider the
case λ1 = · · · = λn = 1. Then, conjecturally the discontinuity along certain loops
around a problematic point p in Minkowski space evaluated at points p′ close to p is
given by the formula

(2π i)|C|
(

L∏
i=1

∫
iR×RD−1

dDki

) ∏
e∈C δ+(Qe(p′,m)(k))∏
e∈E(G)−C Qe(p′,m)(k)

(5)

with C a certain subset of edges. Here, the integration over δ+(Qe(p′,m)(k)) means
integrating the residue of Qe(p′,m) along its positive energy part. Unfortunately, this
is not yet a mathematically precise statement and correspondingly there does not seem
to be a rigorous proof of this statement anywhere in the literature. The only attempt the
author is aware of is the paper [4] by Bloch and Kreimer which is still work in progress
and has not been published yet. The paper does not discuss the compactifiction of the
integration cycle and the ambient space which is necessary to apply the techniques
from [8]. But even in the one-loop case, where this task does not immediately lead to
substantial problems, achieving this compactification in a satisfying way is not at all a
trivial task as is extensively discussed here. It is far from obvious how this can be done
in themulti-loop case, if it can be done at all. Furthermore, the discussion in [4] chooses
a kinematic configuration of Minkowski momenta as the starting point for an analytic
continuation. While from the perspective of physics, this might be more satisfying
than starting at Euclidean momenta (as is done here), potentially severe mathematical
issues arise from the Minkowski setup: To move the poles of the propagators off the
integration domain, the iε-prescription must be employed. But “at infinity,” the iε-
term vanishes, so any naive compactification fails immediately and something more
has to be done.
It should also be mentioned that while [7] discusses the general case of discontinuities
across arbitrary branch cuts (equation (6) in the paper in question), which we aim
to prove in this work, the paper also contains a separate discussion of a special case
(equation (17) in [7]).2 This later case is predominantly used in physics and concerns
the discontinuity along so-called normal thresholds, arising from sets of edges who’s

2 The author would like to thank the reviewer who pointed this out to him.
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removal results in a graph with two connected components. It is used to compute the
imaginary part of transition amplitudes and can also be derived from more physical
considerations relating to the S-matrix.
The plan of this paper is as follows: First, we modify Feynman integrals to fit the
form (3). The main obstacle is the non-compactness of the integration domain and
the complex ambient space C

LD it lives in. From this new representation of one-loop
Feynman integrals, we derive the well-known fact that the Landau surface L is given
by the Landau equations.3 We then proceed to establish that, outside of a small set of
pathological external momenta, the integral is behaved well enough for the techniques
above to apply (more precisely: all relevant pinches are simple pinches). Therefore, the
vanishing sphere and cell are defined and we compute them explicitly. Finally, putting
all these ingredients together, we prove Cutkosky’s Theorem for one-loop graphs up
to the yet undetermined intersection index. The computation of the latter is postponed
to the second part of this work as it involves an array of quite different techniques than
the ones employed here.
The paper has the following structure: In Sect. 2, we review all the necessary concepts
and techniques needed to state and proof our version of Cutkosky’s Theorem. This
includes remarks on real and complex projective space, some basics from the theory
of sheaves (Sect. 2.2) and the theory of singular integrals as developed by Pham et.
al. (Sect. 2.3). The theory of Feynman integrals is quickly reviewed in Sect. 3. The
subsequent Sect. 4 contains the main part of this paper, leading to a statement and
proof of Cutkosky’s Theorem for one-loop graphs. The proof also yields an algorithm
to compute the Landau surface without solving the Landau equations explicitly. To
the authors knowledge, this algorithm is new. After the results for general one-loop
graphs are established, we look at two advanced examples, the triangle and the box
graph, in detail in Sect. 5. In the concluding Sect. 6, we comment on the relevance of
these results and ideas for future continuation of this work.

2 Preliminaries

Before diving into the details regarding Feynman integrals and Cutkosky’s Theorem,
we introduce some amount of known theory for the convenience of the reader. In Sect.
2.1, we start with some elementary properties of real (resp. complex) projective space
viewed as a real analytic (resp. complex analytic) manifold. After that, we recap some
basics from the theory of sheaves, in particular the theory of local systems, in Sect. 2.2.
These provide a convenient language to talk about the theory of singular integrals as
initiated in [8] and developed further by Pham in [18, 19], which we review in some
detail in Sect. 2.3.

3 It should be remarked that although this is common knowledge for physicists, a mathematical proof does
not seem to be available. For an as of now unpublished attempt in the multiloop case, see [17].
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2.1 Some aspects of projective space

A considerable amount of this work’s content relies on various properties of the real
and complex projective spaces RP

n and CP
n . Therefore, in this subsection we recall

some of their properties that we make use of frequently throughout this work.
Let K ∈ {R, C}. First, recall that the n-dimensional projective space KP

n viewed as
a set can be defined as the quotient of K

n+1\{0} by the equivalence relation

x ∼ y :⇔ ∃λ ∈ K
× : x = λ · y. (6)

The equivalence class of any x = (x0, . . . , xn) ∈ K
n+1\{0} with respect to this

equivalence relation is denoted by [x] = [x0 : · · · : xn]. The quotient space comes
with a natural projection

πK : K
n+1\{0} � KP

n, (x0, . . . , xn) 
→ [x0 : · · · : xn]. (7)

As a topological spaceKP
n is equipped with the induced quotient topology. Addition-

ally, RP
n is a real analytic manifold of dimension n and CP

n is a complex analytic
manifold of (complex) dimension n. For convenience of language, we simply use the
term K-analytic to mean real analytic if K = R and complex analytic if K = C. Both
RP

n and CP
n can be covered by n + 1 charts, namely

ϕi,K : Ui,K := {[x] ∈ KP
n | xi �= 0} ∼→ K

n, [x] 
→
(
x0
xi

, . . . ,
x̂i
xi

, . . . ,
xn
xi

)
(8)

for i ∈ {0, . . . , n}. The transition maps are K-analytic, and the projection πK is K-
analyticwith respect to the inducedmanifold structure.WhileCP

n is always orientable
(as it is a complex manifold), the manifold RP

n is orientable if and only if n is odd.
We denote

H∞,K := KP
n\U0,K (9)

for K ∈ {R, C} which we call the hyperplane at infinity.4 The reason for this termi-
nology is the fact that K

n embeds into KP
n via the inclusion

i : K
n ↪→ KP

n, z 
→ [1 : z]. (10)

This defines a diffeomorphism (for K = R) or a biholomorphic map (for K = C)
K

n ∼→ KP
n\H∞ = U0,K with inverse ϕ0,K. The remaining points in H∞ not in the

image of i can be thought of as additional points added “at infinity”. If it is clear from
context if we mean K = R or K = C, we simply write ϕi := ϕi,K, H∞ := H∞,K and
so on.

4 Of course, our choice to single out the 0th coordinate here is arbitrary and simply a matter of taste. In
principal, any hyperplane could be chosen to be the one “at infinity.”
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It is often useful to work in K
n+1\{0} instead of KP

n and then, infer desired results
by passing to the quotient using the projection πK. The following useful proposition
is an example of a result which allows such an inference.

Proposition 1 Let f : K
n+1\{0} → K be a K-analytic, homogeneous function and

p ∈ K a regular value of f . Then, πK( f −1(p)) is a K-analytic submanifold of KP
n.

Proof The Lie groupK
× acts onK

n+1\{0} by sending x to λx for every x ∈ K
n+1\{0}

and λ ∈ K
×. It is not difficult to see that this action is K-analytic, free and proper.

Thus, by the Quotient Manifold Theorem, we see that the quotient of f −1(p) (which
is a K-analytic manifold by the Regular Value Theorem) by this action is a K-analytic
manifold itself. �
For our purposes, we need the pull-back of the canonical n-form dnz on C

n by ϕ0,C.
This is computed in the following

Lemma 2 We have

ϕ∗
0,Cd

nz = 1

zn+1
0

n∑
i=0

(−1)i zidz0 ∧ · · · ∧ d̂zi ∧ · · · ∧ dzn . (11)

Proof Obtained by a straightforward calculation. �
Note that (11) extends only to a meromorphic n-form on CP

n . The pullback of dnz
by ϕ0,C cannot be extended to a holomorphic form: The manifold RP

n is compact
n-cycle in CP

n , so integrating a holomorphic n-form over it yields a finite result. But
since removing the set H∞ of measure zero from RP

n and choosing inhomogeneous
coordinates yields

∫
RPn−H∞ ϕ∗

0,Cd
nz = ∫

Rn dnz = ∞, this cannot be correct.

2.2 Some basics on sheaves andmonodromy

The central aim of this work is to understand the multivaluedness of holomorphic
functions defined by Feynman integrals. The theory of sheaves, particularly the theory
of local systems, provides a convenient framework to formulate and investigate such
questions. We start by recalling some of the basic notions of sheaf theory together
with the theorems that are relevant to us. Everything contained in this subsection is
rather elementary and well-understood. All statements presented here can be found
in standard textbooks on the subject, and we recommend [22] or [13]. For details
on local systems in particular, the reader is referred to [28]. But since the objects of
investigation in this text are Feynman integrals which are mainly studied by physicists,
the author decided to include this material for the convenience of the reader.
First recall that a pre-ordered set or poset (X ,≺) is a set X together with a relation
≺⊂ X × X on X such that x ≺ x as well as x ≺ y ∧ y ≺ x ⇒ x = y and
x ≺ y ∧ y ≺ z ⇒ x ≺ z for all x, y, z ∈ X (i.e., ≺ is reflexive, anti-symmetric and
transitive). Now, recall that to any pre-ordered set (X ,≺) we can associate a category
by taking the objects to be the elements of X and for any x, y ∈ X taking the set of
morphisms Hom(x, y) to contain one element if x ≺ y and be empty otherwise. For
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any topological space X , the open subsets of X form a pre-ordered set with respect
to the subset-relation. The associated category of this pre-ordered set is denoted by
OuvX and can be thought of as a subcategory of Top, the category of topological
spaces and continuous maps, with objects the open subsets U of X and morphisms
the natural inclusion maps. A pre-sheaf on X with values in a category C is a functor
F : OuvopX → C, where Dop denotes the opposite category of D for any category
D. For any two open sets V ⊂ U with i : V ↪→ U the natural inclusion and any
s ∈ F(U ), it is customary to denote s|V := F(i)(s) called the restriction of s to V .
A morphism of pre-sheaves is just a natural transformation between the functors. The
stalk Fx of F at x ∈ X is

Fx := lim
U�x F(U ) (12)

where the limit is over all open neighborhoods U of x . The elements of Fx are called
germs ofF at x . Given an element s ∈ F(U ), we can thus speak of the germ of s at x .
A pre-sheaf F on X is called a sheaf on X if for every U ∈ X and every open cover
{Ui }i∈I of U the diagram

F(U )

∏
i∈I F(τi )→

∏
i∈I

F(Ui )

∏
i, j∈I F(τ ij )

⇒∏
i, j∈I F(τ

j
i )

∏
i, j∈I

F(Ui ∩Uj ) (13)

is an equaliser diagram. Here, τi : Ui ↪→ U and τ ij : Ui ∩ Uj ↪→ Ui are the natural
inclusions. Recall that this means that

∏
i∈I F(τi ) is injective and that

im

(∏
i∈I

F(τi )

)
=
⎧⎨
⎩x ∈

∏
i∈I

F(Ui ) |
∏
i, j∈I

F(τ ij )(x) =
∏
i, j∈I

F(τ
j
i )(x)

⎫⎬
⎭ . (14)

More concretely, this means two things: First, for any open covering {Ui }i∈I of an
open set U , if s, t ∈ F(U ) satisfy s|Ui = t |Ui for all i ∈ I we have s = t (Locality).
Second, if {si }i∈I are elements si ∈ F(Ui ) such that si |Ui∩Uj = s j |Ui∩Uj for all
i, j ∈ I , there exists a section s ∈ F(U ) such that s|Ui = si for all i ∈ I (Gluing).
For any open setU ⊂ X , the elements of F(U ) are called the (local) sections overU .
In particular, the elements ofF(X) are called global sections. A morphism of sheaves
is a morphism of the underlying pre-sheaves.
For every pre-sheafF on X , we can construct a sheafF+ on X called the sheafification
of F together with a morphism θ : F → F+, which satisfies the following universal
property: Given any sheaf G on X and any morphism of sheaves φ : F → G, there
exists a unique morphism ψ : F+ → G such that φ = ψ ◦ θ . One possibility to
construct F+ is to set

F+(U ) :=
{
f : U →

⋃
x∈U

Fx | ∀x∈X : f (x)∈Fx∀x∈U : ∃V ngh. of x : ∃g∈F(V ) : ∀y∈V : gy= f (y)

}
(15)
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for every open U ⊂ X . Let Y be another topological space and f : X → Y a
continuous map. Given a sheaf F on Y , the inverse image sheaf f −1F of F by f is
the sheafification of the pre-sheaf given by

U 
→ lim
V⊃ f (U )

F(V ), (16)

where the limit is taken over all open V ⊂ X containing f (U ). Let X be a topological
space and C a category. LetF be a sheaf on X with values in C. Then, for any subspace
Y ⊂ X , there is a sheafF |Y called the restriction of F to Y defined byF |Y := i−1F ,
where i : Y ↪→ X is the natural inclusionmap. For any object A inC, there is a constant
pre-sheaf associated with A defined by sending each open set to A and each morphism
to idA. The sheafification of this pre-sheaf is called the constant sheaf associated with
A. A sheafF on X is called a local system or a locally constant sheaf if for any x ∈ X
there is an open neighborhood U ⊂ X of x such that F |U is a constant sheaf. The
inverse image sheaf of any (locally) constant sheaf is (locally) constant [28].

Proposition 3 [28] Any locally constant sheaf on a contractible space is constant.

Local systems on a path-connected space X with fiber F (i.e., a local system which
is locally isomorphic to the constant sheaf associated with F) are in a bijective corre-
spondence to homomorphisms from the fundamental group of X to the automorphism
group of F . This correspondence can be established as follows: Let F be a local sys-
tem on X , let x ∈ X and let γ : [0, 1] → X be a loop based at x . Then, the inverse
image sheaf γ −1F is a local system on [0, 1] and since [0, 1] is contractible, this is a
constant sheaf by Proposition 3. Thus,

F � (γ −1F)0 � γ −1F([0, 1]) � (γ −1F)1 � F (17)

and we obtain an automorphism of F , called the monodromy along γ , by composing
the above isomorphisms. It can be shown that this automorphism depends only on the
homotopy class [γ ] ∈ π1(X , x) of γ (see [28]). The other way around, suppose we
are given a homomorphism ρ : π1(X , x) → Aut(F). Let F̃ be the constant sheaf
associated with F on the universal covering space X̃ of X . Then, the sections of F̃
invariant under deck-transformations form a local system on X . It is not difficult to
see that these two operations are inverse to each other.
We also need the notion of a multivalued section:

Definition 1 Let F be a sheaf on a topological space X and π : X̃ → X the universal
covering. Amultivalued section ofF is a section in the (constant) inverse image sheaf
π−1F .

On well-behaved topological spaces, local sections of local systems can always be
extended to multivalued global sections:

Proposition 4 [19] Let X be a locally connected topological space and F a sheaf
on X. If F is locally constant, then every local section of F can be extended to a
multi-valued global section of F .
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A class of sheaves which bares particular importance to us is given in the following

Definition 2 Let Y and T be smooth manifolds and π : Y → T a smooth map. The
homology sheaf in degree p of Y over T , denoted byF p

Y/T , is the sheafification of the
pre-sheaf

U 
→ Hp+dim T (Y , π−1(T −U )). (18)

For any section h of F p
Y/T , we denote its germ at t by h(t).

Proposition 5 [19] Let Y , T and π : Y → T as in Definition 2. Then, for every t ∈ T
and every p ∈ N, there are isomorphisms

Hp(π
−1(t)) � Hp+dim T (Y , π−1(T − {t}))

� lim
U�t Hp+dim T (Y , π−1(T −U )) = (F p

Y/T )t ,
(19)

where the limit is taken over all open neighborhoods of t .

When we consider germs of sections ofF p
Y/T , we usually apply the isomorphism from

Proposition 5 above implicitly without mention as long as no confusion can arise.
The sheaves from Definition 2 play an important role for the analytical continuation
of functions defined by integrals in our setup. In fact, the extension of local sections
to larger domains in these sheaves corresponds directly to analytic continuations as
we will see in the next Subsection.

2.3 Singularities of integrals

We want to understand Feynman integrals, revisited in some detail in the following
Sect. 3, as holomorphic functions in the external momenta (and possibly the masses of
the virtual particles). To do so, we employ the framework from [8]which deals with the
analytic properties of functions defined by integrals in a sufficiently general manner.
We begin by revisiting the basic ideas of this framework. Let Y and T be two complex
analytic manifolds of dimension n + m and m, respectively, and let π : Y → T be
a smooth submersion. We denote the fibers by Yt := π−1(t) for all t ∈ T . By the
Implicit Function Theorem, there exists for every y ∈ Y a coordinate neighborhood
U ⊂ Y of y with coordinates

ϕ := (x1, . . . , xn, t1, . . . , tm) : U → C
n+m (20)

such that there is a chart (V , ψ) of T around π(y) with ψ ◦ π = (t1, . . . , tm). In
particular, the fibers Yt are smooth manifolds for all t ∈ T . This can be used to define
families of differential forms on the fibers Yt which depend holomorphically on t . We
use the common multi-index notation for wedge products: For any

I = {i1, . . . , i p} ⊂ {1, . . . , n} (21)
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118 Page 10 of 73 M. Mühlbauer

with i1 < · · · < i p, we write

dx I := dxi1 ∧ · · · ∧ dxi p . (22)

The following definition and notation is adapted from [19]:

Definition 3 We say that a differential p-formω on Y is a holomorphic p-form relative
to T if it can be expressed in the local coordinates (20) as

ω =
∑

I⊂{1,...,n}
|I |=p

f I (x, t)dx
I , (23)

with holomorphic functions f I . We denote the space of all holomorphic p-forms
relative to T by �p(Y/T ). The germ of ω at t ∈ T is denoted by ω(t).

It makes sense to define a codifferential which acts only on the x-part of a differential
form relative to T . Thus, we define linear maps

dY/T ,p : �p(Y/T ) → �p+1(Y/T ) (24)

for all p ∈ N whose action on ω ∈ �p(Y/T ) in local coordinates reads

dY/T ,p ω =
∑

I⊂{1,...,n}
|I |=p

n∑
i=1

∂ f I
∂xi

(x, t)dxi ∧ dx I . (25)

As usual, we simply write dY/T for the corresponding endomorphism of⊕
p∈N

�p(Y/T ). It is easy to check that dY/T ◦ dY/T = 0 and thus,

0 → �0(Y/T )
dY/T ,0→ �1(Y/T )

dY/T ,1→ · · · dY/T ,p−1→ �p(Y/T )
dY/T ,p→ · · · (26)

is a cochain complex. Correspondingly, just as in the regular de Rham complex of
differential forms,we say thatω is a closed differential p-form relative to T if dY/Tω =
0.
Note that if h is a section of F p

Y/T , then according to Proposition 5 we have

h(t) ∈ lim
U�t Hp+dim T (Y , π−1(T −U )) � Hp(Yt ). (27)

Thus, ifω ∈ �p(Y/T ), it makes sense to integrateω(t) over h(t). The next proposition
shows why this is a good idea.

Proposition 6 [19] Let ω ∈ �p(Y/T ) and h ∈ F p
Y/T (T ). If ω is closed then

T → C, t 
→
∫
h(t)

ω(t) (28)
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defines a holomorphic function on T .

This proposition is the basis for our investigation of holomorphic functions defined
by integrals. In practice, however, the situation is scarcely as nice as in Proposition 6.
Usually, we are not providedwith a global section h but only with a local section.More
specifically, often times (in particular for one-loop Feynman integrals) the situation
is as follows: The manifold Y has a product structure minus some analytic subset of
problematic points, i.e., there is a compact complex analytic manifold X of dimension
n and an analytic subset S ⊂ X × T such that Y = (X × T )\S. In this case, the map
π : Y � T is taken to be the canonical projection. We denote the fiber of S at t by
St := Yt ∩ S for all t ∈ T . Suppose we are only provided with a fixed p-cycle � in
the fiber Yt0 for some given t0 ∈ T . This is already sufficient to define at least a local
section:

Lemma 7 There is a dim T -simplex σ in T such that t0 ∈ ◦
σ and � × σ defines an

element in F p
Y/T (

◦
σ) (where

◦
σ denotes the interior of σ ).

Proof Since Y is a T4-space (every metric space is a T4-space [23]) and � as well
as St0 are closed sets, there exists open neighborhoods V1 ⊂ X of � and V2 ⊂ X
of St0 such that V1 ∩ V2 = ∅. Due to continuity and the compactness of the fibers,
there exists an open neighborhood U ⊂ T of t0 such that St ⊂ V2 for all t ∈ U .
Then, � ∩ St ⊂ V1 ∩ V2 = ∅ for all t ∈ U . Thus, � × U is a subset of Y . We may
assume that there exists a dim T -simplex σ ⊂ U in T . Hence, viewing � × σ as a
(p + dim T )-chain in X × T , we compute

∂(� × σ) = ∂�︸︷︷︸
=0

×U + (−1)p · � × ∂σ. (29)

Now, � × ∂σ = 0 in Hp+dim T (Y , π−1(T − ◦
σ)) (this is already true on the level of

chains) since it is contained within π−1(T − ◦
σ). Thus, we indeed have ∂(� × σ) = 0

in Hp+dim T (Y , π−1(T − ◦
σ)) as claimed. We conclude that � × σ defines a local

section in the homology sheaf in degree p of Y relative to T . �
The situation described above applies for example to one-loop Feynman integrals
(defined further below, see for example Eq. (96)), where t0 corresponds to a Euclidean
(i.e., real) configuration of momenta. Now, the question is if this local section can
be extended to a (possibly multivalued) global section, generally relative to a slightly
smaller base space T ∗ ⊂ T . A central result by Pham in this direction is the following

Proposition 8 [19] Let T ∗ ⊂ T be an open subset. If π |π−1(T ∗) : π−1(T ∗) → T ∗
defines a locally trivial C∞-fibration, then

∫
h(t0)

ω(t0) defines a multi-valued holo-
morphic function on T ∗.

The idea for the proof of Proposition 8 is rather simple: By Lemma 7, the initial
integration domain � defines a local section of F p

Y/T ∗ . If π |π−1(T ∗) : π−1(T ∗) →
T ∗ defines a locally trivial C∞-fibration, then the sheaf F p

Y/T ∗ is locally constant.
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Hence, every local section can be extended to a multivalued global section according
to Proposition 4.
As it stands, this is a little bit too abstract for our purposes. Much more useful to us
is a more detailed discussion of the situation where Y has a product structure minus
an analytic set and π is the canonical projection as described above. For this purpose,
we recall the following notions:

Definition 4 [8] A fiber bundle of pairs is a tuple (E, S, B, π, F) consisting of topo-
logical spaces E , B, F , a subset S ⊂ E and a continuous surjection π : E � B such
that (E, B, π, F) is a fiber bundle which has local trivializations at every point b ∈ B
whose restriction to S are local trivializations of (S, B, π |S, π−1({pt.}) ∩ S) (where
pt. denotes any point in B).
Furthermore, we shall say that (E, S, B, π, F) is smooth as a fiber bundle of pairs if
the following conditions are satisfied:

• E , B and F are smooth manifolds.
• π is a smooth map.
• For any local trivialization g, the inverse g−1 is differentiable with respect to t .
• For any local trivialization g, the inverse g−1 lifts smooth vector fields on B to
locally Lipschitzian vector fields on E .

To simplify the notation, we denote a smooth fiber bundle of pairs (E, S, B, π, F) by
π : (E, S) → B.

Definition 5 [11] Let V and X be smooth manifolds. An isotopy from V to X is a
continuousmap σ : V×[0, 1] → X such that σ(·, t) is an embedding for all t ∈ [0, 1].
If V ⊂ X and σ(·, 0) is the natural inclusion, we say that σ is an isotopy of V in X .
If V = X , σ(·, 0) = idX and σ(·, t) is a diffeomorphism for all t ∈ [0, 1], we say that
σ is an ambient isotopy.

For an isotopy σ : V × [0, 1] → X , we denote its track by

σ̂ : V × [0, 1] → X × [0, 1], (x, t) 
→ (σ (x, t), t) (30)

and its support by

Supp σ := cl{x ∈ X | ∃t ∈ [0, 1] : σ(x, t) �= σ(x, 0)}, (31)

where cl denotes the topological closure. Under reasonable circumstances, isotopies
in X can be extended to ambient isotopies of X .

Theorem 9 [11] Let X be a manifold, A ⊂ X a compact subset and U ⊂ X an
open neighborhood of A. If σ : U × [0, 1] → X is an isotopy of U in X such that
σ̂ (U × [0, 1]) is open in X × I , then there exists an ambient isotopy σ̃ of X with
compact support such that σ̃ agrees with σ in a neighborhood of A × [0, 1].
Suppose again thatwe are in the situation abovewhereY = (X×T )\Swith an analytic
subset S ⊂ X × T and suppose that π : (X × T , S) → T is a (locally trivial) smooth
fiber bundle of pairs, i.e., π : X → T is a fiber bundle which has local trivializations
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which also locally trivialize π |S : S → T . Then, in particular π : Y → T defines
a locally trivial C∞-fibration and Proposition 8 applies. This can be thought of quite
intuitively: If γ : [0, 1] → T is any path from t0 ∈ T to t1 ∈ T , then the pull-back
bundle of pairs of π : (X × T , S) → T by γ has a contractible base space and is thus
globally trivial. A trivialization of this pull-back bundle of pairs is an ambient isotopy

σ : X × [0, 1] → X (32)

such that σ(�, s) ∩ Sγ (s) = ∅ for all s ∈ [0, 1]. In the context of our problem, this
can be viewed as a continuous deformation of the integration cycle � away from the
points where the differential form is singular. Phrased differently, the ambient isotopy
σ allows us to extend the local section defined by � along γ :

Proposition 10 Let γ : [0, 1] → T be a path, � ⊂ X\Sγ (0) a p-cycle and σ :
X × [0, 1] → X an ambient isotopy such that

σ(�, s) ∩ Sγ (s) = ∅ (33)

for all s ∈ [0, 1]. Then, there is an open neighborhood U of γ ([0, 1]) such that �

defines a section of FY/T (U ).

Proof We know from Lemma 7 that for every s ∈ [0, 1] there exists a dim T -simplex

αs in T such that γ (s) ∈ ◦
αs and such that σ(�, s)×αs defines an element inF p

Y/T (
◦
αs).

We want to show that these can be glued together to yield a local section of F p
Y/T on

U :=⋃s∈[0,1]
◦
αs . By the sheaf axioms, it suffices to show that for any s1, s2 ∈ [0, 1]

such that
◦
αs1 ∩ ◦

αs2 �= ∅, the two sets σ(�, s1)× (αs1 ∩αs2) and σ(�, s2)× (αs1 ∩αs2)

define the same element in F p
Y/T (

◦
αs1 ∩ ◦

αs2). We can assume s1 < s2 without loss of
generality. Now, let

τ := σ ∗(� × [s1, s2]) × (αs1 ∩ αs2) (34)

where σ ∗ denotes the map on the level of cycles induced by σ . Then, the boundary of
τ is

∂τ =(∂σ ∗(� × [s1, s2]))×(αs1 ∩ αs2) + (−1)p+1σ ∗(� × [s1, s2]) × ∂(αs1 ∩ αs2).

(35)

The second term σ ∗(� × [s1, s2]) × ∂(αs1 ∩ αs2) is 0 in FY/T (
◦
αs1 ∩ ◦

αs2), and we
compute the first factor of the first term to be

∂σ ∗(� × [s1, s2]) = σ ∗(∂(� × [s1, s2]))
= σ ∗( ∂�︸︷︷︸

=0

×[s1, s2] + (−1)p(� × s2 − � × s1))

= (−1)p(σ ∗(�, s2) − σ ∗(�, s1)).

(36)
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Thus, we conclude that

σ(�, s2)×(αs1∩αs2)−σ(�, s1)×(αs1 ∩ αs2)=(σ (�, s2) − σ(�, s1)) × (αs1 ∩ αs2)

(37)

is the boundary of (−1)p · τ which completes the proof. �
Corollary 11 In the same situation as inProposition 10, the integral

∫
�

ω(γ (0)) defines
a holomorphic function on some open neighborhood of γ (0)which can be analytically
continued along γ by

∫
σ(�,s)

ω(γ (s)). (38)

Proof Follows directly from Propositions 6 and 10. �
Due to this result, we make the following definition:

Definition 6 Let γ : [0, 1] → T be a path,� ⊂ X a submanifold and σ : X×[0, 1] →
X an ambient isotopy of � in X . We say that σ is adapted to γ if

σ(�, s) ∩ Sγ (s) = ∅ (39)

for all s ∈ [0, 1].
With this definition in place, Corollary 11 can be rephrased as

Proposition 12 Let γ : [0, 1] → T be a path from t0 ∈ T to some t ∈ T and
σ : X ×[0, 1] → X an ambient isotopy adapted to γ . Then, the integral

∫
�

ω(t0) can
be analytically continued along γ via

∫
σ(�,s)

ω(γ (s)). (40)

We need some criteria to determine if an appropriate ambient isotopy for such an
analytic continuation exists. Above, we discussed how it is sufficient for π : (X ×
T , S) → T to be a fiber bundle of pairs. A special case that is of particular interest
to us is the case where the fibers St are finite unions of complex analytic manifolds
in general position. Recall that for smooth submanifolds S1, . . . , Sk ⊂ X of a smooth
manifold X , we say that S1, . . . , Sk are ingeneral position if the normal vectors at every
intersection point are linearly independent. More concretely, for every x ∈ ⋃k

i=1 Si
set

Ix := {i ∈ {1, . . . , k} | x ∈ Si } (41)

and let s1,x , . . . , sk,x : X → R be local equations for the manifolds S1, . . . , Sk
around x ∈ ⋃k

i=1 Si . Then, S1, . . . , Sk are in general position if and only if for every
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x ∈ ⋃k
i=1 Si there are coordinates φ around x such that the gradients of {si,x ◦

ϕ−1}i∈Ix at φ(x) are linearly independent.We have the following result on the analytic
continuation in this case:

Proposition 13 [8] Suppose that for all t ∈ T the fiber St = ⋃k
i=1(Si )t is the union

of finitely many complex analytic manifolds (Si )t , depending smoothly on t. If the
(S1)t , . . . , (Sk)t are in general position for all t ∈ T , then π : (X × T , S) → T is
a smooth fiber bundle of pairs. In particular,

∫
�

ω(t0) can be analytically continued
along any path in T . Furthermore, the analytic continuation to t ∈ T can be written
as ∫

�′
ω(t) (42)

for an appropriate cycle �′.

For our purposes, this is unfortunately not enough. It turns out that after compactifica-
tion, the relevant (S1)t , . . . , (Sk)t in the case of Feynman integrals are generally not in
general position at any t ∈ T . A more refined criterion can be obtained by equipping
S with a Whitney stratification and we introduce the necessary theory here.

Definition 7 [10] Let X be a topological space and (S,≺) a partially ordered set.
An S-decomposition of X is a locally finite collection of disjoint locally closed sets
Ai ⊂ X such that the following hold:

1. X =⋃i∈S Ai .
2. For all i, j ∈ S, we have

Ai ∩ Ā j �= ∅ ⇔ Ai ⊂ Ā j ⇔ i ≺ j . (43)

The Ai are called the pieces, their connected components the strata of the S-
decomposition.

To apply techniques from differential topology, it is useful to require that the pieces
Ai fit together nicely.

Definition 8 [10] Let M be a smooth manifold and X ,Y ⊂ M two smooth subman-
ifolds. We say that the pair (X ,Y ) satisfies Whitney’s condition B if the following
holds: Let y ∈ Y and suppose xn is a sequence in X converging to y and yn is a
sequence in Y converging to y. Then, if the sequence of secants xn yn converges to
some line l and the sequence of tangent planes Txn X converges to some plane T ,5 we
have l ⊂ T .

A few remarks are in order: First, note that if X and Y are submanifolds of M such
that X̄ ∩Y = ∅, the above condition is vacuous. If Y ⊂ X̄ and X̄ is a smooth manifold,
it is also evident that Whitney’s condition B is satisfied for the pair (X ,Y ) (simply
check the condition in coordinates on X̄ ).

5 This is to be understood as convergence in the relevant Graßmannians.
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Definition 9 [10] Let Y be a smooth manifold, S ⊂ Y a closed subset and S a partially
ordered set. A Whitney stratification of S is an S-decomposition such that all pairs
of strata satisfy Whitney’s condition B. We call the set S together with a Whitney
stratification of S a stratified set.

Suppose that S ⊂ Y is a closed subset which decomposes into a finite union of
smoothmanifolds S1, . . . , Sn ⊂ Y in general position. Then, there is a naturalWhitney
stratification of S with strata given by the connected components of

Si −
⋃
i< j

Si ∩ S j , Si ∩ S j −
⋃

i< j<k

Si ∩ S j ∩ Sk, · · · (44)

The pieces are the union of all strata with equal codimension (i.e., equally many
manifolds involved in the intersection), and the underlying partial order is given by
the dimension of the pieces.

Definition 10 [19] Let Y be a smoothmanifold equippedwith aWhitney stratification.
We say that Y is a stratified bundle if there exists a Whitney stratified set X such that
Y is locally homeomorphic to X × T by homeomorphisms which map every stratum
in Y to the product of a stratum in X with T .

Now, we can formulate the following criterion:

Theorem 14 (Thom’s Isotopy Theorem, [19]) Let Y and T be two differentiable man-
ifolds with T connected and let π : Y → T be a proper differential map. Suppose
that Y is a stratified set and the restriction of π to each stratum is a submersion. Then,
π : Y → T is a stratified bundle.

Suppose S ⊂ Y is a closed subset equipped with a Whitney stratification. Then, the
stratification of S together with the connected components of Y\S yield a Whitney
stratification of Y [19]. If this makes π : Y → T a stratified bundle then in particular
π : (Y , S) → T is a fiber bundle of pairs.
Supposing again that we are in the situation where Y = (X × T )\S as above, we can
equip S with a Whitney stratification (every analytic set admits such a stratification,
see [27]). Denote by {Ai }i∈I the collection of strata and for every i ∈ I denote by
cAi ⊂ Ai the set of all points atwhich the restriction ofπ to Ai fails to be a submersion.
Then, we can conclude that the integral of interest defines a (multivalued) holomorphic
function outside of the following set:

Definition 11 In the same situation as above, we call the set

L := π(
⋃
i∈I

cAi ) (45)

the Landau surface of the integral
∫
�

ω(t0).

It should be remarked that it can be shown that the Landau surface is an analytic set
[19] (a consequence of Remmert’s Proper Mapping Theorem). Thus, if we assume T
to be connected, L is either all of T or T \L is a non-empty open subset. We conclude
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that
∫
�

ω(t0) defines a holomorphic function on T ∗ := T \L . Furthermore, it is well-
known among physicists that in the case of Feynman integrals, the Landau surface is
given by the solutions to a set of algebraic equations (see Eqs. (105) and (106) for
the one-loop case). These equations are famously known as the Landau equations and
informally detect points at which the singular loci of the integrand are in non-general
position at finite distance.
The fact that a given local section may only be extended to a global section in the
multivalued sense immediately gives rise to the question of the discontinuity of the
function defined by a given integral. This can be easily expressed in terms of the
monodromy of the section h in question. Let t0 ∈ T ∗ and let γ : [0, 1] → T ∗ be a loop
based at t0. Then, continuing the germ h(t0) along γ yields a class γ ∗h(t0) ∈ Hp(Yt0),
which can be shown to only depend on the homotopy class of γ [19]. Then, analytically
continuing the integral along γ yields∫

γ ∗h(t0)
ω(t0). (46)

We define the variation of h(t0) along γ by

Var[γ ]h(t0) = γ ∗h(t0) − h(t0) = (γ ∗ − 1)h(t0) (47)

and the discontinuity of
∫
h(t0)

ω(t0) along γ by

Disc[γ ]
∫
h(t0)

ω(t0) =
∫
Var[γ ]h(t0)

ω(t0). (48)

The variation can be understood as a homomorphism

Var : π1(T
∗, t0) → Aut(H•(Yt0)). (49)

The task is now to compute Var[γ ]h(t0). This is generally a difficult problem. A rather
simple casewhich can be applied in particular to one-loopFeynman integrals, however,
is extensively studied in [19]. These are the so-called simple pincheswe discuss further
below.
The idea to understand these simple pinches is to localize the problem such that the
variation yields a homology class which has a representative with support contained in
an arbitrarily small neighborhood of a pinch point. We cannot expect that the problem
can be localized like this for any arbitrary loop. But there is a class of loops whose
homotopy classes span the fundamental group of T \L if T is simply connected which
allow for such a localization:
Let u ∈ L be a point of codimension 1. Then, there are coordinates (t1, . . . , tm) of T
defined in a neighborhood U ⊂ T of u such that L locally looks like the set {t1 = 0}.
Let θ : [0, 1] → T \L be a path from some basepoint u0 ∈ T \L to some u1 ∈ U − L .
Let ω : [0, 1] → U − L be a loop based at u1 that traces a circle in the coordinate
t1 with t2, . . . , tm fixed. Then, γ := θωθ−1 is a loop in T \L based at u0. A loop
constructed like this is called a simple loop. In an abuse of language, we shall call
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elements of the fundamental group which can be represented by a simple loop also
simple loops. In the cases we study here, it is always possible to restrict our attention
to simple loops without sacrificing any amount of generality due to the following

Proposition 15 [19]The fundamental groupπ1(T \L, u0) of T \L is spanned by simple
loops if and only if T is simply connected.

2.3.1 Leray’s calculus of residues

In the preceding subsubsection, we have seen how to compute the discontinuity of a
function defined by an integral of the form (3) by extending a local section ofFn

Y/T to
a multivalued global section. To obtain Cutkosky’s Theorem in Sect. 4, we also need
to employ the multi-variant version of the Residue Theorem, going back to Leray [15],
as already eluded to in the introduction.
First, recall the regular Residue Theorem from complex analysis: Let U ⊂ C be a
simply connected open set and let a ∈ U be a point. Then, the theorem states that for a
holomorphic function f : U\{a} → C and a positively oriented simple closed curve
γ : [0, 1] → U\{a} we have∮

γ

f (z)dz = 2π i · Res( f , a), (50)

where Res( f , a) is the residue of f at a.6 To generalize this to multiple dimensions,
we essentially have to answer two questions: What is the multi-dimensional analog
for the curve γ along which we integrate and what is the multi-dimensional analog of
the residue?
First, we attend to the first question. We follow [19]. Recall that for a smooth manifold
M and a smooth submanifold S ⊂ M a tubular neighborhood of S in M is a vector
bundle π : E → S (with S the base space, E the total space and π the bundle
projection of the bundle) together with a smooth map J : E → M such that:

• If i : S ↪→ M is the natural embedding and 0E is the zero section, we have
J ◦ 0E = i .

• There existU ⊂ E and V ⊂ M with 0E [S] ⊂ U and S ⊂ V such that J |U : U ∼→
V is a diffeomorphism.

We are mainly interested in V and in an abuse of language call this a tubular neighbor-
hood of S as well. Note that there is an associated retraction μ : V → S by applying
(J |U )−1, retracting to the zero section 0E and going back to M via J |U . Now, suppose
X is a complex analytic manifold and S ⊂ X a closed analytic submanifold of codi-
mension 1. Fix a closed tubular neighborhood V ⊂ X of S. The associated retraction
μ : V → S induces a disk bundle structure over S. Then, if σ is a simplex in S, its
preimage μ−1(σ ) is homeomorphic to σ × D, where D is the unit disk. On the level
of chains, we obtain

μ∗σ = D ⊗ σ. (51)

6 Of course, there are more general formulations of the Residue Theorem (e.g., for a finite list of points
(a1, . . . , an)). But this version suffices here for the illustration of the concept.
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The boundary of μ∗σ is thus

∂μ∗σ = ∂D ⊗ σ + D ⊗ ∂σ. (52)

Using this result, we define a homomorphism δμ : Cp(S) → Cp+1(X − S) by setting
δμ(σ ) := ∂D ⊗ σ for each simplex σ and extending by linearity. Note that δμ anti-
commutes with the boundary ∂:

∂δμσ = ∂(∂D ⊗ σ) = −∂D ⊗ ∂σ = −δμ∂σ (53)

Hence, δμ descends to a homomorphism

δ∗ : Hp(S) → Hp+1(X\S) (54)

which we call the Leray coboundary. It can be shown that this map does not depend
on the choice of μ which is why we dropped the subscript. Note that this construction
gives a simple closed curve γ if we consider the one-dimensional case where S is just
a point.
Now, we turn to the second question. To answer it, let us consider a closed differential
p-form ω on X\S. For all x ∈ S, let sx be a local equation for S near x . If for all x ∈ S
the form sx · ω can be extended to a differential p-form on a neighborhood of x , we
say that ω has a polar singularity of order 1 along S.

Proposition 16 [19] If ω has a polar singularity of order 1 along S then for every
x ∈ X there exist differential forms ψx and θx defined on a neighborhood of x such
that

ω = dsx
sx

∧ ψx + θx . (55)

Furthermore, ψx |S is closed and depends only on ω. We call ψx |S the residue of ω.
In the situation of Proposition 16, we denote

res[ω] := sxω

dsx

∣∣∣∣
S

:= ψx |S ∈ �p−1(S). (56)

The (p− 1)-form res[ω] is called the residue form of ω. Now, if ω is any closed form
on X\S, then ω is cohomologous to a closed form ω̃ on X\S with a simple pole along
S [19]. Thus, it makes sense to define a homology class

Res[ω] := [res[ω̃]] ∈ H p−1(S) (57)

and it can be shown that it only depends on the cohomology class of ω̃ in X\S [19].
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Theorem 17 (Residue Theorem, [19]) Let γ be a (p − 1)-cycle in S and ω a closed
differential p-form on X\S. Then, the following identity holds:

∫
δγ

ω = 2π i
∫

γ

Res[ω] (58)

We also have to deal with situations in which S is not a submanifold but a union of
N closed submanifolds S1, . . . , SN ⊂ X in general position. To achieve this, we can
iterate the construction above. For each k ∈ {1, . . . , N } the manifold S1 ∩ · · · ∩ Sk is
a closed submanifold in which Sk+1, . . . , SN intersect in general position. Thus, we
obtain sequences of maps

H p(X\(S1 ∪ · · · ∪ SN ))
Res1→ H p−1(S1 − S2 ∪ · · · ∪ SN )

Res2→ H p−2(S1 ∩ S2 − S3 ∪ · · · SN )
Res3→ · · ·

(59)

and

Hp(X\(S1 ∪ · · · ∪ SN ))
δ1← Hp−1(S1 − S2 ∪ · · · ∪ SN )

δ2← Hp−2(S1 ∩ S2 − S3 ∪ · · · SN )
δ3← · · ·

(60)

This allows us to define the composite maps

Resm := Resm ◦ · · · ◦ Res1 and δm := δ1 ◦ · · · ◦ δm . (61)

Similarly to the case of one manifold S, we obtain the following

Theorem 18 (Iterated Residue Theorem, [19]) Let γ be a (p−m)-cycle in S and ω a
closed differential p-form on X\S. Then, the following identity holds:

∫
δmγ

ω = (2π i)m
∫

γ

Resm[ω] (62)

The (iterated) Leray residue has the following nice property that we employ later on:

Proposition 19 The Leray residue commutes with pullbacks, i.e., for any differential
map f : Y → X between two smooth manifolds X and Y , any submanifold S ⊂ X of
codimension 1 and any differential form ω on X\S we have

f ∗Resm[ω] = Resm[ f ∗ω]. (63)

Proof It suffices to show the casem = 1 since the case for generalm follows by induc-
tion. We can assume without loss of generality that ω has a polar singularity of order 1
along S (otherwise, we replace ω by a cohomologous form with this property). First,
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note that f ∗ω is a closed differential form on Y\ f −1(S). According to Proposition
16, we can write ω = dsx

sx
∧ ψx + θx . We compute

f ∗ω= f ∗
(
dsx
sx

∧ ψx+θx

)
= f ∗ dsx

sx
∧ f ∗ψx+ f ∗θx = d(sx ◦ f )

sx ◦ f
∧ f ∗ψx + f ∗θx .

(64)

Now, sx ◦ f is a local equation for f −1(S) around any point in f −1(x). Thus, we
conclude

Res[ f ∗ω] = [( f ∗ψx )|S] = f ∗[ψx |S] = f ∗Res[ω] (65)

as claimed. �
Asmentioned in the introduction, Cutkosky’s Theorem involves the use of δ-functions
(which are of course not functions in the conventional sense). These are usually defined
in the language of functional analysis. But in the context of singular integrals, we can
define the δ-function and its derivatives evaluated at a test function by integrating the
residue of a differential form induced by the given test function.

Definition 12 [19] For any test function f set ω := f dx1 ∧ · · · dxn . Then, we define

δ(a)(S)[ f ] :=
∫
S
δ(a)( f ) :=

∫
S

dαω

dsα+1

∣∣∣∣
S
. (66)

2.3.2 Simple pinches

Now,wewant to compute thevariationof homologyclasses for a rather simple situation
in which the singular points of the differential form is a finite union ofmanifolds which
are in general position except at isolated points. Again, we follow [19].

Definition 13 Let Y and T be two complex analytic manifolds, π : Y → T a smooth
map and S1, . . . , SN ⊂ Y complex analytic submanifolds of codimension 1. Denote
by (Si )t := π−1(t)∩ Si the fiber of Si over t for all i ∈ {1, . . . , N } and t ∈ T . We say
that the system S1, . . . , SN has a simple pinch at y ∈ Y if there is a coordinate chart
(ϕ = (x1, . . . , xn, t1, . . . , tm),U ) in a neighborhood U ⊂ Y of y such that there are
local equations

s1 = x1, . . . sN−1 = xN−1 (67)

and

sN = t1 − x1 − · · · − xN−1 − x2N − · · · − x2n . (68)

for S1, . . . , SN around y.
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In should be remarked that the case N = n + 1 is a little different from the remaining
cases N ≤ n. The first one is called a linear pinchwhile the remaining cases are called
quadratic pinches.
Suppose S1, . . . , SN has a simple pinch at y ∈ Y and let (ϕ,U ) be the coordinate
chart from Definition 13. Then, t := π(y) must necessarily be a point of codimension
1 in the Landau surface. Suppose we fix t ∈ T such that t1 is real and positive and
denote Ut := Yt ∩U . Then,

Ut ∩ (S1)t ∩ · · · ∩ (SN )t

� {(0, . . . , 0, xN , . . . , xn) ∈ ϕ(U ) | x2N + · · · + x2n = t1}
� Sn−N

C
,

(69)

where Sk
C
denotes the complex unit sphere of dimension k ∈ N.7 It is well-known

that the complex k-sphere deformation retracts to the real k-sphere Sk . Thus, in case
n > N , we obtain

Hk(Ut ∩ (S1)t ∩ · · · ∩ (SN )t ) � Hk(S
n−N ) �

{
Z if k = 0, n − N

0 otherwise
(70)

for the homology groups ofUt ∩ (S1)t ∩ · · · ∩ (SN )t and the generator of Hn−N (Ut ∩
(S1)t ∩ · · · ∩ (SN )t ) is represented by a real (n − N )-sphere contained within Ut ∩
(S1)t ∩ · · · ∩ (SN )t . On the level of cycles, this is called the vanishing sphere denoted
by

e := {(x1, . . . , xn) ∈ C
n | x1, . . . , xn ∈ R, s1(x, t) = · · · = sN (x, t) = 0}. (71)

It is the iterated boundary of the vanishing cell

e := {(x1, . . . , xn) ∈ C
n | x1, . . . , xn ∈ R, s1(x, t), . . . , sN (x, t) ≥ 0}. (72)

This means that e = (∂1 ◦ · · · ◦ ∂N )(e), where ∂i is the operator taking the boundary
within (Si )t for all i ∈ {1, . . . , N }. Furthermore, we define the vanishing cycle

ẽ := (δ1 ◦ · · · ◦ δN )(e) (73)

by taking the iterated Leray coboundary of the vanishing sphere. These define homol-
ogy classes

[e] ∈ Hn−N (Ut ∩ (S1)t ∩ · · · ∩ (SN )t ),

[e] ∈ Hn(Ut , (S1)t ∪ · · · ∪ (SN )t ),

[ẽ] ∈ Hn(Ut − (S1)t ∪ · · · ∪ (SN )t ).

(74)

7 Equation (69) also holds in the linear case N = n+1 if we agree on the convention that the -1 dimensional
sphere is empty.
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These three classes are the protagonists in the calculation of the variation in the sit-
uation of a simple pinch. Due to the following proposition, it suffices in principle to
know one of the three.

Proposition 20 [8] In the situation above, the maps ∂i and δi are isomorphisms
on the level of homology. In particular, [e] generates the relative homology group
Hn(Ut , (S1)t ∩ · · · ∩ (SN )t ) and [ẽ] generates the homology group Hn(Ut − (S1)t ∩
· · · ∩ (SN )t ) of the complement.

In fact, we can use this generating property as the definition of the three classes in
question.8

Definition 14 The vanishing cell [e], vanishing sphere [e] and vanishing cycle [ẽ]
is a generator of Hn−N (Ut ∩ (S1)t ∩ · · · ∩ (SN )t ), Hn(Ut , (S1)t ∪ · · · ∪ (SN )t ) and
Hn(Ut − (S1)t ∪ · · · ∪ (SN )t ), respectively.

Note that this definition does only determine [e], [e] and [ẽ] up to orientation (Z has
two generators: 1 and -1). In what follows, it will become evident that this choice of
orientation does not matter as all calculation in which these three classes appear are
independent of the chosen orientation.
There are twomarginal cases that we also need to cover: In case n = N , we are dealing
with the 0-sphere which consists of two points. Thus,

Hk(Ut ∩ (S1)t ∩ · · · ∩ (SN )t ) � Hk(S
n−N ) �

{
Z
2 if k = 0

0 otherwise
(75)

and the 0th homology group is generated by the two points p1, p2 of the 0-sphere. In
this case, we set [e] := [p2] − [p1]. In case linear case n = N + 1, the intersection
Ut ∩(S1)t ∩· · ·∩(SN )t is empty and the vanishing sphere does not exist. In accordance
with [19], we agree on the convention that all associated vanishing classes are 0 in this
case.

2.3.3 The Picard–Lefschetz formula for simple pinches

We have seen that an element [γ ] ∈ π1(T \L, t0) gives rise to an automorphism [γ ]∗
of H•(Yt0\St0). In the situation of a simple pinch, the problem can be localized in the
sense that the variation ([γ ]∗ − id)[h] of a class [h] ∈ Hn(Yt0\St0) can be represented
by a cycle with support entirely contained within U , the domain of the coordinate
chart (ϕ,U ) appearing in the definition of a simple pinch. Since the homology group
Hn(Ut0 − (S1)t0 ∩ · · · ∩ (SN )t0) is spanned by a single element (the vanishing cycle),
it is clear that the variation must thus be some integer multiple N · [ẽ] of the vanishing
cycle.9 The discontinuity of the integral (28) corresponding to [γ ] is thus given by∫

Nẽ
ω = N ·

∫
ẽ
ω, (76)

8 Of course, this is a slight abuse of language since above, we defined the three objects in question as
cycles. However, this does not cause any problems since all computations in this work depend only on the
homology classes.
9 This also holds in the marginal case N = n (see [19]), but the argument is different.
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and the remaining task is to determine the integer N . This can be done by a Picard–
Lefschetz type formula introduced in [8]. To understand its content, we first need the
notion of an intersection index. There are quite general definitions of this concept.10

But for our purposes it suffices to consider the intersection index of two closed oriented
manifolds with- or without boundary intersecting transversally and with dimensions
adding up to the dimension of the whole space.

Proposition 21 [19] Let M be a smooth manifold of dimension n and S1, S2 ⊂ M two
orientable submanifolds (with or without boundary) of dimensions p and n − p such
that

S1 ∩ ∂S2 = S2 ∩ ∂S1 = ∅. (77)

If S1 and S2 intersect transversally, then S1 ∩ S2 consists of a finite number of isolated
points and the intersection index 〈S2|S1〉 of S1 and S2 is given by

〈S2|S1〉 = N+ − N− ∈ Z, (78)

where N+ (resp. N−) is the number of points in S1 ∩ S2 at which the orientations of
S1 and S2 match (resp. do not match).

We can express the integer N from (76) as the intersection index of the vanishing cell
with the integration cycle as follows:

Theorem 22 (Picard–Lefschetz Formula, [19]) The integer N in Eq. (76) is given by

N = (−1)
(n+1)(n+2)

2 · 〈e|h〉 (79)

where h is the integration cycle at t .

In this paper, we do not explicitly compute the intersection index relevant for one-loop
Feynman integrals since it involves a very different array of techniques, mostly from
homological algebra. Therefore, this step is postponed to the second part of this work.

2.3.4 Variation and discontinuity along products of loops

So far, we only discussed how to compute the variation and discontinuity for simple
pinches along simple loops around points of codimension 1. To fully understand the
discontinuities of one-loop Feynman integrals, it is useful to be able to relate the
variation along products of loops to the variation along the individual factors. For the
case of simple pinches, we have the following:

Lemma 23 Let [γ1], [γ2] ∈ π1(T \L, t0) be two simple loops. Then,

Var[γ1]·[γ2] = Var[γ1] + Var[γ2] + Var[γ2]Var[γ1] (80)

10 For example in [19], the intersection index of two currents is defined.
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and

Disc[γ1]·[γ2] = Disc[γ1] + Disc[γ2] + Disc[γ2]Disc[γ1]. (81)

Proof Let h ∈ Hn(Yt0). Denote Var[γi ]h =: Ni ẽi for i = 1, 2. We compute

Var[γ1]·[γ2]h = γ ∗
2 γ ∗

1 h − h

= γ ∗
2 (h + N1[ẽ1]) − h

= N2[ẽ2] + N1γ
∗
2 [ẽ1]

= N1[ẽ1] + N2[ẽ2] + (γ ∗
2 − 1)(N1ẽ1)

= Var[γ1]h + Var[γ2]h + Var[γ2]Var[γ1]h.

(82)

The corresponding formula for the discontinuity follows immediately. �
We can easily generalize this to arbitrary finite products of loops:

Proposition 24 Let [γ1], . . . , [γk] ∈ π1(T ∗, t0) be simple loops. Then,

Var[γ1]···[γk ] =
k∑

i=1

∑
1≤ j1<···< ji≤k

Var[γ ji ] · · ·Var[γ j1 ] (83)

and

Disc[γ1]···[γk ] =
k∑

i=1

∑
1≤ j1<···< ji≤k

Disc[γ ji ] · · ·Disc[γ j1 ]. (84)

Proof We proceed by induction on k. For k = 1, the formulas are trivial. For the
induction step, we compute

Var[γ1]···[γk+1] = Var[γ1]···[γk ] + Var[γk+1] + Var[γk+1]Var[γ1]···[γk ]

=
k∑

i=1

∑
1≤ j1<···< ji≤k

Var[γ ji ] · · ·Var[γ j1 ] + Var[γk+1]

+ Var[γk+1]
k∑

i=1

∑
1≤ j1<···< ji≤k

Var[γ ji ] · · ·Var[γ j1 ]

=
∑

1≤ j1≤k+1

Var[γ j1 ] +
k+1∑
i=2

∑
1≤ j1<...< ji≤k+1

Var[γ ji ] · · ·Var[γ j1 ]

=
k+1∑
i=1

∑
1≤ j1<···< ji≤k+1

Var[γ ji ] · · ·Var[γ j1 ],

(85)

where we used Lemma 23 in the first step and the induction hypothesis in the second
step. Again the formula for the discontinuity follows immediately. �
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Fig. 1 Two Feynman graphs in quantum electrodynamics, both contributing to the probability amplitude
of electron-positron scattering

With Proposition 24, we can compute the discontinuity along any loop around points
where codimension 1 parts of the Landau surface intersect in general position.

3 Feynman graphs and integrals

Now,we turn to the studyofFeynman integrals as holomorphic functions in the external
momenta. To ensure that there are no ambiguities regarding the notation, conventions
and terminology employed in this work and to revisit the basic notions of the field
for the non-expert reader, we quickly recall the definition of Feynman graphs and
integrals. For a more detailed exposition, the reader is referred to [25] or [26]. A graph
always means a finite multi-graph in this text. For a graph G, we denote its underlying
set of vertices by V (G) and its underlying (multi-)set of edges by E(G). The first
Betti number of G, which is the maximal number of independent cycles, is denoted
by h1(G). It is customary to say that G has h1(G) loops. For us, a Feynman integral
means a graph together with some additional information specifying at which vertices
how many particles are in- or outgoing. More specifically, we make the following

Definition 15 AFeynman graph (G, φ) is a graphG together with amap φ : V (G) →
N called the external structure.

This is not the most general definition of Feynman graphs. In many physical theories,
for example quantum electro- or chromodynamics, one wants to distinguish different
types of edges (see Fig. 1 for two examples). The essential features of the analytic
structure of the parameter-dependent integrals associated with such a graph are, how-
ever, already captured in our setting. So we do not go into detail regarding these more
general Feynman graphs and integrals.
A Feynman graph (or Feynman diagram as they are sometimes called) is a represen-
tation of a collection of possible ways elementary particles can interact: The external
structure represents in- and outgoing particles. It assigns each vertex a number of
external momenta. It is common to draw a pictorial representation of a Feynman
graph (G, φ) by drawing the underlying graph G as usual and then attaching φ(v)

lines not connected to a second vertex to each vertex v ∈ V (G).
Each Feynman graph G is assigned a Feynman integral by applying the Feynman

rules to it, which contributes to the probability amplitude of a given process. There
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are several equivalent descriptions of this procedure. Here, we focus on the so-called
momentum space representation, which is obtained from a Feynman graph (G, φ)

in the following manner: First, we equip the graph G with an arbitrary orientation
and denote by E ∈ M(|V (G)| × |E(G)|;Z) the corresponding incidence matrix. For
each edge e ∈ E(G), we write down a factor of 1

(k2e+m2
e )

λe (called the propagator),

where ke ∈ C
D is called the internal momentum and me ∈ R≥0 the mass associated

with the edge e. The λe are generally complex numbers with positive real part called
analytic regulators. For each vertex v ∈ V (G), wewrite down a constant factor (which
we ignore in this text since it does not influence the analytic structure) and assign
φ(v) external momenta pv,1, . . . , pv,φ(v) ∈ C

D to it. We denote the total external

momentum at v by pv := ∑φ(v)
i=1 pv,i . Then, we enforce momentum conservation at

every vertex v ∈ V (G), i.e., we insist on the internal and external momenta satisfying∑
e∈E(G) Ev,eke + pv = 0 for every v ∈ V (G).11 Usually, one wants to factor out the

overall momentum conservation, i.e., the condition
∑

v∈V (G) pv = 0, as it does not
depend on the internalmomenta ke. To do this, onemay fix some vertex v0 ∈ V (G) and
drop the momentum conservation at v0. The Feynman integral I (G) corresponding to
a Feynman graph G thus reads

I (G)(p) :=
∫

R|E(G)|D
d|E(G)|Dk

∏
e∈E(G)

1

(k2e + m2
e)

λe

×
∏

v∈V (G)\{v0}
δ

⎛
⎝ ∑

e∈E(G)

Ev,eke + pv

⎞
⎠ .

(86)

Integrating out the δs leads to a linear system of equations for the ke, and it can be
shown that all, but h1(G) of the internal momenta can be eliminated by solving this
system. The remaining internal momenta are then integrated over, and the result reads

I (G) =
∫

R
h1(G)D

dh1(G)Dk∏
e∈E(G)((Ke(k) + Pe(p))2 + m2

e)
λe

, (87)

where Ke : C
h1(G)D → C

D and Pe : C
(
∑

v∈V (G) φ(v))D → C
D are linear maps for all

e ∈ E(G). The resulting propagators and thus, the maps Ke and Pe are not uniquely
determined, but the result of the integration (if it is well-defined at all) is independent
of the remaining freedom of choice. In physics, one is almost always concerned with
Minkowski momenta to adhere to the principals of special relativity. This means in the
physics literature the internal momenta are considered to be real, but the momentum-
squares are typically defined as k2 := −k20 + k21 + · · · + k2D−1.

12 Unfortunately, this
immediately leads to problems since the integration domain now includes the poles

11 Note that this implies that all external momenta are counted as incoming in our convention.
12 It is customary to start indexing the components of momenta with 0 instead of 1. It should also be
mentioned that we employ a different sign convention than most particle physicists (it appears that the
author’s convention is in fact met with open hatred, see for example the footnote on page 2 in [21]), who
like to set k2 = k20 − k21 − · · · − k2D−1. In this case, the propagator needs to be (k2e − m2

e )
−λe instead.
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at k2e + m2
e = 0. The usual ploy to avoid this issue is to introduce a small complex

shift in the propagator by replacing (k2e + m2
e)

−λe with (k2e + m2
e − iε)λe for some

0 < ε " 1. Then, the integration is carried out and the limit ε → 0+ is taken at
the very end of the calculation. This is called the iε-prescription. We shall see that
this is not satisfactory for our purposes and we take a different route: In our setting,
it is necessary to consider complex internal momenta. The Minkowski momenta can
then be identified with those momenta that have purely imaginary 0th component and
all remaining components real. We, however, start with an entirely real integration
domain R

D (in the physics literature this is known as a Euclidean Feynman integral)
instead of choosing to integrate over all Minkowski momenta iR × R

D−1, which
never meets the zero locus of k2e + m2

e as long as m2
e > 0. This serves as the starting

point for an analytic continuation. In Sect. 2, we saw how an analytic continuation
requires us to continuously deform the integration domain as we move along a path
in the space of external momenta. In particular, we show in Sect. 4 how this is done
explicitly for one-loop Feynman integrals in the case where we want to continue from
Euclidean external momenta to Minkowski external momenta and explain how this
is in agreement with the iε-prescription. For now, we simply define our Feynman
integrals as Euclidean integrals.

Definition 16 Let G be a Feynman graph. The corresponding Feynman integral in
momentum space representation in D ∈ N dimensions is

I (G)(p) :=
∫

R
h1(G)D

dh1(G)Dk
∏

e∈E(G)

1

((Ke(k) + Pe(p))2 + m2
e)

λe
, (88)

where Ke and Pe are the linear maps obtained as described above.

As mentioned above, we have omitted some constant factors in this definition as
they do not play a role in the analytical structure. These factors are only needed to
compare numerical values obtained fromFeynman integrals with the experiment. Note
that it suffices to understand the bridge-less graphs G, or one-particle-reducible (1PI)
graphs as they are called in the physics literature, to understand all Feynman integrals,
as integrals corresponding to graphs with bridges factorize into 1PI contributions.
Up to this point, we have not stated what complex manifold we would like to (or
even can) consider a Feynman integral to be a function on. In this work, we focus
on the dependence on the external momenta. The masses are regarded as fixed and
positive (the massless case works differently and we postpone the discussion of this
case to future research). Thus, an obvious choice would be (CD)

∑
v∈V (G) φ(v). But this

can be simplified. First of all, the external momenta are restricted to a hyperplane by
overall momentum conservation. In particular, we can express one of the momenta
as minus the sum of all the others so that (CD)

∑
v∈V (G) φ(v)−1 would be a sufficient

space to work with. Furthermore, it is well-known in physics that a Feynman integral
is Lorentz-invariant, i.e., applying the same Lorentz transformation to all external
momenta does not change the value of the integral. In our setup, this statement takes a
slightly different form: Sincewe need toworkwith arbitrary complexmomenta and not
just Minkowski momenta, our transformation group is different. But the general idea
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stays the same: The integral should be invariant under all linear transformations of the
external momenta leaving the products pi p j unchanged. This group is the Lie group
O(D, C) of complex orthogonal D × D-matrices. We define an action of O(D, C)

on (CD)n by

g · (x1, . . . , xn) = (g · x1, . . . , g · xn) (89)

for all g ∈ O(D, C) and all n ∈ N
∗, where themultiplication on the right is just regular

matrix-vector multiplication. The invariance of Feynman integrals under O(D, C) for
the one-loop case is proven in the next section.

4 One-loop Feynman integrals

We now begin our investigation of one-loop Feynman graphs, i.e., Feynman graphs
G with h1(G) = 1. As mentioned in Sect. 3, it suffices to consider the 1-particle-
irreducible graphs to understand their analytic structure. The 1PI graphs with one
loop are the cycle graphs Cn (viewed as Feynman graphs) shown in the following
figure:

pn

k

p1 k + p1 p2

k + p1 + p2

p3

k +∑3
i=1 pi

p4k +∑4
i=1 pi

p5

On the level of (multi-)sets, this means

V (Cn) := {1, . . . , n}, E(Cn) := {{1, 2}, {2, 3}, . . . , {n − 1, n}, {1, n}}. (90)

Note that we assigned exactly one external momentum to each vertex, i.e., the external
structure φ of the graphs under consideration is simply given by φ(v) = 1 for all
v ∈ V (Cn).13 We could consider more general external structures, but this bears no
relevance to our discussion: If there is more than one line attached to a vertex, the
integral depends only on the sum of all external momenta going into that vertex. In

13 For physicists, this means we consider Feynman graphs in φ3-theory, where φ stands for a scalar field
and the exponent gives the power with which this field occurs in the Lagrangian. The later is also the allowed
valency for the vertices of graphs appearing in a perturbative expansion.
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the coordinates we chose, the general one-loop Feynman integral in momentum space
representation in D dimensions from Definition 16 reads

I (Cn)(p) =
∫

RD

dDk∏n
i=1((k +∑i−1

j=1 p j )2 + m2
i )

λi

=
∫

RD

dDk∏n
i=1((k + P(i)(p))2 + m2

i )
λi

.

(91)

To ease notation, we set P(i)(p) := ∑i−1
j=1 p j for all i ∈ {1, . . . , n}. Recall that we

agreed to fix all masses mi to be real and positive. Of course, the integral (91) is not
well-defined in general. But for p ∈ (RD)n−1 the integral (91) converges absolutely if
and only if 2Re(λ) > D. This is an application ofWeinberg’s famous Power Counting
Theorem [24] in its simplest form (where no subdivergencies need to be considered
since all proper subgraphs of Cn are forests and hence, trivially “converge” as there is
no integration to be performed).
The Feynman graph C2 will accompany us as a running example throughout this
section to illustrate all the ideas as they occur:

Example 1 Consider the Feynman graph C2:

C2 =
p1

k + p1

k p2

In terms of (multi-)sets, this means C2 = (G, ϕ) with

G = ({1, 2}, {{1, 2}, {1, 2}}). (92)

and ϕ(v) = 1 for v = 1, 2. The corresponding Feynman integral in D dimensions
reads ∫

RD

dDk

(k2 + m2
1)

λ1((k + p1)2 + m2
2)

λ2
. (93)

It does not depend on p2 and in fact momentum conservation demands p2 = −p1.

For reasons that become apparent further below, we exclude a certain subset of
momenta from our parameter space:

Definition 17 For all n ∈ N
∗, we define

Tn := {p ∈ (CD)n−1 | det

⎛
⎜⎜⎜⎝

p1 p1 p1 p2 · · · p1 pn−1
p2 p1 p2 p2 · · · p2 pn−1

...
...

. . .
...

pn−1 p1 pn−1 p2 · · · pn−1 pn−1

⎞
⎟⎟⎟⎠ �= 0}. (94)
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The configurations of external momenta in (CD)n−1\Tn are colinear and behave rather
differently. Examples have shown that for these momentum configurations, Feynman
integrals exhibit poles instead of essential singularities and hence, there is no associ-
ated monodromy. A discussion of these points is beyond the scope of this paper and
postponed to future research. Note that p ∈ Tn implies that themomenta p1, . . . , pn−1
are linearly independent (over C) and in particular Tn �= ∅ if and only if D ≥ n − 1.
During the course of this section, we will find that for momenta in Tn only simple
pinches occur which can be analyzed by the techniques from Sect. 2.3.

4.1 Compactification and stratification

In the form (91), we can not yet apply the techniques from Sect. 2.3 to I (Cn). We first
have to compactify the integration cycle as well as its ambient space. In the one-loop
case, this can be done without substantial problems. For details on the problems that
occur when working with multiple loops, see [17]. There are various ways to achieve
a compactification, but we stick to the arguably simplest one for the purpose of this
work. Further, below we show that in the cases we are interested in, genuine pinches
which trap the integration cycle appear only at points k ∈ C

D at “finite distance,” i.e.,
outside of the set of additional points the compactification introduces. So the chosen
compactification is not particularly important for our purposes.
There is one rather obvious way to achieve the desired compactification in the case of
odd D.We view the integration domainR

D as being embedded in the complex analytic
manifold C

D . The ambient space C
D can in turn be viewed as being embedded in the

compact complex analytic manifold CP
D . Applying the pull-back of the inverse of

the natural inclusion

i : C
D ↪→ CP

D, z 
→ [1 : z] (95)

restricted to its image (i.e., viewed as a biholomorphic map C
D ∼→ i(CD) =

CP
D\H∞) to the integral (91), we obtain

I (Cn)(p) =
∫

RPD

u2λ−D−1 · �D∏n
i=1((k + uP(i)(p))2 + u2m2

i )
λi

=:
∫

RPD
ωn,D(p), (96)

where

�D := u · dDk −
D−1∑
i=0

(−1)i ki · du ∧ dk0 ∧ · · · ∧ d̂ki ∧ · · · ∧ dkD−1 (97)

is the differential form from Lemma 2. Here, we denote the additional (homogeneous)
coordinate introduced by the inclusion into complex projective space by u instead of
k0 since, as mentioned above, it is customary in the physics literature to index the
components of k from 0 to D − 1 instead of from 1 to D. This notation also helps to
render the conceptual difference between the coordinate u and the coordinates given
by the D components of k more visible. Note also that we replaced the integration
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domain i(RD) by its closure i(RD) = RP
D . This does not affect the value of the

integral as RP
D − i(RD) = H∞ ∩ RP

D has Lebesgue measure 0.
The same idea works for even D with a slight modification: In this case, RP

D is not
orientable, so the integral (96) does notmake any sense.However,we can still apply the
program from [19] by lifting to the oriented double cover SD of RP

D . The geometric
part of the analysis, which does not require the integration cycle to be oriented, can be
performed on the level of RP

D embedded in the compact space CP
D while the actual

integration can be performed on the double cover. The details of this can be found in
the second part of this work.
Now, we need to establish some notation. We write

Qi (p) : C
D+1 → C, (u, k) 
→ (k + uP(i)(p))2 + u2m2

i ∀i ∈ {1, . . . , n}
(98)

for all p ∈ (CD)n−1. For all i ∈ {1, . . . , n}, we set

Si := {([u : k], p) ∈ CP
D × Tn | (k + uP(i)(p))2 + u2m2

i = 0}, (99)

and the corresponding fiber (with respect to the obvious projection) at p ∈ Tn by

Si (p) := {[u : k] ∈ CP
D | (k + uP(i)(p))2 + u2m2

i = 0}. (100)

Furthermore, we set S :=⋃n
i=1 Si and S(p) :=⋃n

i=1 Si (p) for all p ∈ Tn . Note that
Si (p) (resp. Si ) is a complex analytic closed submanifold of CP

D (resp. CP
D × Tn)

of (complex) codimension 1 for all p ∈ Tn and all i ∈ {1, . . . , n} by Proposition 1.
Indeed, the gradient of the defining equation Qi (p)(u, k) = 0 in C

D+1\{0} vanishes
nowhere:

∂Qi (p)

∂(u, k)
(u, k) = 2

(
k + uP(i)(p)

kP(i) + u((P(i)(p))2 + m2
i )

)
!= 0 (101)

implies k = −uP(i)(p) by the first D equations and thus, u2m2
i = 0 by the last

equation. Sincem2
i �= 0, thismeans u = 0which in turn implies k = 0, a contradiction.

Thus, the zero locus S(p) is the union of a finite number of closed complex analytic
submanifolds for all p ∈ Tn . The integration domain RP

D is now a compact D-cycle
in CP

D\S(p) for any p ∈ (RD)n−1. Indeed, for (u, k) ∈ R
D+1\{0}, p ∈ (RD)n−1

and i ∈ {1, . . . , n}, the equation

Qi (p)(u, k) = (k + uP(i)(p))2 + u2m2
i

!= 0 (102)

implies u = 0 and thus, k = 0, again a contradiction. The integrand of (96) is a
holomorphic D-form on CP

D\S(p) for all p ∈ Tn which depends holomorphically
on p, i.e.,

ωn,D ∈ �D(((CP
D × Tn)\S)/Tn). (103)
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Therefore, we can conclude that I (Cn) defines a holomorphic function outside of
its Landau surface. Now, we would like to compute the Landau surface of I (Cn) as
in Definition 11. Further, below we introduce a stratification on S which allows us
to see that the Landau surface is given precisely by all p ∈ Tn such that the finite
parts of the Si (p) are not in general position and effectively ignore what happens at
infinity. This is the case if and only if there is an index set I ⊂ {1, . . . , n} and a point
k ∈ ⋂i∈I (Si (p) − H∞) (where we implicitly use inhomogeneous coordinates) such
that the normal vectors of the Si (p) − H∞ with i ∈ I at k are linearly dependent.
Thus, the Landau surface consists of all points p ∈ Tn for which a solution

(α, k, p) ∈ (Cn\{0}) × C
D × Tn (104)

with

αi = 0 or Qi (p)(1, k) = 0 ∀i ∈ {1, . . . , n} (105)

and

n∑
i=1

αi
∂Qi (p)

∂k
(1, k) = 0 ⇔

n∑
i=1

αi (k + P(i)(p)) = 0 (106)

exists. These equations are the famous Landau equations [14]. As a remark, it should
be mentioned that

∑n
i=1 αi = 0 implies

∑n
i=1 αi P(i)(p) = 0. This means that the

momenta p1, . . . , pn−1 are linearly dependent so that p /∈ Tn . Hence, when solving
the Landau equations, we can always assume

∑n
i=1 αi = 1 without loss of generality

by dividing α by
∑n

i=1 αi �= 0. We denote the set of all (α, k, p) satisfying these
equations by

Bn := {(α, k, p) ∈ (Cn\{0}) × C
D × Tn | (α, k, p) satisfies (105) and (106)}.

(107)

Let

π : (Cn\{0}) × C
D × Tn � Tn, (α, k, p) 
→ p (108)

be the canonical projection and for now define the Landau surface of Cn to be Ln :=
π(Bn). Note that Ln is a closed set. In a moment, we shall see that Ln agrees with the
Landau surface of I (Cn) as in Definition 11, justifying this terminology.
Note that if we were to consider the case u = 0 as well, the equations to test for linear
dependence of the normal vectors become

k2 = 0,
n∑

i=1

ai k = 0,
n∑

i=1

αi k P
(i)(p) = 0. (109)
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We remark that (109) can only have a solution if
∑n

i=1 αi = 0. Nevertheless, these
equations generally have a solution for every p ∈ Tn which poses a problem. To
circumvent this issue, we introduce a Whitney stratification of S such that some strata
lie entirely in the finite part of CP

D and the remaining ones entirely in H∞. Then,
we show that the restriction of the canonical projection to the strata at infinity is a
submersion.

Example 2 Again considering the simplest example C2, the corresponding Landau
equations read

α1 = 0 or k2 + m2
1 = 0, (110)

α2 = 0 or (k + p1)
2 + m2

2 = 0, (111)

α1k + α2(k + p1) = 0. (112)

First assume that α1 = 0. Then, α2 �= 0 and by Eq. (112) we have k + p1 = 0. But by
(111) this implies m2 = 0 which we explicitly excluded. A similar argument applies
to the case α2 = 0 so that a solution (α, k, p) to the Landau equations must satisfy
α1, α2 �= 0. Now, assume α1 + α2 = 0. Then, (112) implies p1 = 0 (so p /∈ T2
which we already knew from the discussion above) and from (110) and (111) we get
m2

1 = m2
2. Since we assumed the masses to be real and positive, this means m1 = m2.

If α1+α2 �= 0 on the other hand, we can assume α1+α2 = 1without loss of generality
by dividing by α1+α2 if necessary. Then, from (112) we obtain k = −α2 p1. Plugging

this into (110), we obtain α2
2 = −m2

1
p21

(note that p21 = 0 is not possible due tom1 �= 0),

and thus, we get

(
1 ±

√
−m2

1

p21

)2

p21 + m2
2 = 0 ⇔ −p21 = (m1 ± m2)

2. (113)

from (111). Note that Eq. (113) also covers the case α1 + α2 = 0. In conclusion, the
Landau surface of C2 is given by

L2 = {p1 ∈ T2 | − p21 = (m1 ± m2)
2} (114)

which can be conveniently written as the zero locus of

T2 → C, p1 
→ λ(−p21,m
2
1,m

2
2)=(−p21−(m1 + m2)

2)(−p21 − (m1 − m2)
2),

(115)

with λ : C
3 → C being the Källén-function defined by

λ(a, b, c) := a2 + b2 + c2 − 2(ab + bc + ca) (116)

for all a, b, c ∈ C.
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Let us take a moment to reflect on the combinatorial structure of the Landau surfaces
associated with one-loop graphs. Let n ≥ 2 and suppose I ⊂ E(Cn). Now, we
consider solutions (α, k, p) ∈ Bn to the Landau Eqs. (105) and (106) with αi �= 0
for all i ∈ I and αi = 0 if i /∈ I . We denote the set of such solutions by Bn,I ⊂ Bn .
Note that such solutions are in bijective correspondence with solutions (α′, k′, p′) to
the Landau equations of Cn/(E(G)\I ), the graph with all edges not in I contracted
to a point. Therefore, the Landau surface Ln consists of solutions with αi �= 0 for
all i ∈ {1, . . . , n} and parts which are the Landau surfaces of smaller graphs with
some external momenta replaced by the appropriate sums of momenta obtained from
shrinking the edges corresponding to vanishing αi . Motivated by this observation, we
define

Ln,I := π(Bn,I ) (117)

for all I ⊂ E(Cn), again with

π : (Cn\{0}) × C
D × Tn � Tn, (α, k, p) 
→ p (118)

the canonical projection. Clearly, we have Ln = ⋃
I⊂E(Cn)

Ln,I .14 Furthermore,
Ln,I = ∅ whenever |I | ≤ 1. This decomposition of the Landau surface is useful
to organize calculations but also nice from a theoretical point of view due to the fol-
lowing two propositions. Their proof is postponed to Sect. 4.3, where we have a more
convenient description of Ln at our disposal.

Proposition 25 Let n ≥ 2 and I ⊂ E(Cn) with |I | ≥ 2. Then, Ln,I is a complex
analytic submanifold of codimension 1 in Tn.

Proposition 26 Let I1 � · · · � Ik ⊂ E(Cn). Then, the Ln,I1 , . . . , Ln,Ik intersect in
general position.

Stratification Let I = {i1, . . . , im} ⊂ {1, . . . , n} with i1 < · · · im and let us consider
the defining equations for Si1 ∩ · · · ∩ Sim . The intersection of these m manifolds is
given by all ([u : k], p) ∈ CP

D × (Tn\Ln) such that the following m equations hold
simultaneously:

(k + uP(i)(p))2 + u2m2
i = 0 ∀i ∈ I (119)

Now, plugging the first equation (the one labeled by i1) into the remaining m − 1
equations yields the following equivalent set of equations:

(k + uP(i1)(p))2 + u2m2
i1 = 0 (120)

14 Remark: We can also form the sets L̃n,I := ⋃
J⊃I Ln,J . Then, the collection of sets L̃n,I is partially

ordered by inclusion and in fact constitutes a finite simplicial poset. The associated simplicial complex
consists of a single simplex. Gluing together all simplices obtained from a graph Cn by permuting the
masses m1, . . . ,mn along their common faces yields the complex of holocolored one-loop graphs as
investigated in [3].
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and

2u(P(i)(p) − P(i1)(p))(k + uP(i)(p))

+u2((P(i)(p) − P(i1)(p))2 − m2
i1 + m2

i ) = 0
(121)

for all i ∈ I\{i1}. For notational convenience, we define the holomorphic function

fi, j : (CD+1\{0}) × Tn → C

((u, k), p) 
→ 2(P( j)(p)−P(i)(p))(k+uP( j)(p))
+u((P( j)(p)−P(i)(p))2−m2

i +m2
j )

(122)

for all i, j ∈ {1, . . . , n} so that the last m − 1 equations read

u · fi1,i ((u, k), p) = 0 ∀i ∈ I\{i1}. (123)

Note that

fi, j ((0, k), p) = 2(P( j)(p) − P(i)(p))k (124)

and that

P( j)(p) − P(i)(p) =
j−1∑
l=i

pl (125)

for all i, j ∈ {1, . . . , n} with j ≥ i . For all l ∈ {1, . . . , n − 1}, we also compute the
derivatives

∂pl [(k + uP(i1)(p))2 + u2m2
i1]|u=0 = 0 (126)

and for all i, j ∈ {1, . . . , n} with j ≥ i the derivatives

∂pl fi, j ((u, k), p)|u=0 =
{
2k if i ≤ l ≤ j − 1

0 otherwise.
(127)

Now, we define

BI ,fin :=
{
([u : k], p) ∈ CP

D × (Tn\Ln) | (k+uP(i1)(p))2+u2m2
i1

=0

∀i∈I\{i1} : fi1,i ((u,k),p)=0

}
(128)

and

BI ,∞ := {([u : k], p) ∈ BI ,fin | u = 0}. (129)
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Lemma 27 The sets BI ,fin (resp. BI ,∞) define codimension |I | (resp. codimension
|I | + 1) complex analytic submanifolds of CP

D × (Tn\Ln).

Proof By the Implicit Function Theorem, it suffices to check that the gradients of
the defining functions of BI ,fin and BI ,∞ are linearly independent. For all points
([u : k], p) ∈ BI ,fin with u �= 0, this follows immediately from p /∈ Ln and the
definition of Ln . According to Eqs. (126) and (127), the derivatives for BI ,fin with
respect to (k, p) at ([0 : k], p) ∈ BI ,fin (divided by 2) read

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k
0
...

0
0
...

0
0
...

0
0
...

0
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P(i2)(p) − P(i1)(p)
0
...

0
k
...

k
0
...

0
0
...

0
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P(i3)(p) − P(i1)(p)
0
...

0
k
...

k
k
...

k
0
...

0
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . (130)

Here, it is understood that the ( j + 1)th vector has i j+1 − i1 consecutive entries with
value k (constituting a total of (i j+1 − i1) · D entries), starting at i1 · D + 1. Since
k �= 0, these gradients are clearly linearly independent. For BI ,∞, the argument is
similar. The only difference is that BI ,∞ has the additional defining equation u = 0
whose gradient is clearly linearly independent of the remaining vectors. �
Now, using our manifolds BI ,fin and BI ,∞, we introduce a Whitney stratification on
S which allows us to distinguish between the finite and infinite part of S. To this end,
we first define the sets

T := {(I , x) | I ⊂ {1, . . . , n}, I �= ∅, x ∈ {fin,∞}} (131)

and

S := {1, . . . , n} × {fin,∞}. (132)

We equip S with a partial order ≺ defined by

∀(m1, x1), (m2, x2) ∈ S : (m1, x1) ≺ (m2, x2)

:⇔ m2 ≤ m1 ∧ (x1, x2) �= (fin,∞).
(133)
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For any non-empty I = {i1, . . . , im} ⊂ {1, . . . , n}with i1 < · · · < im , we now define

AI ,fin := BI ,fin −
⋃
J�I

BJ ,fin − H∞ × (Tn\Ln), (134)

as well as

AI ,∞ := BI ,∞ −
⋃
J�I

BJ ,∞. (135)

Note that AI ,fin ∩ AJ ,∞ = ∅ for all non-empty I , J ⊂ {1, . . . , n}. Also note that

AI ,fin =
{
([u : k], p) ∈ BI ,fin | u �=0, ∀i<i1 : (k+uP(i)(p))2+u2m2

i �=0,
∀i /∈I , i>i1 : fi1,i ((u,k),p) �=0

}
(136)

and

AI ,∞ =
{
([u : k], p) ∈ BI ,∞ | ∀i<i1 : (k+uP(i)(p))2+u2m2

i �=0,
∀i /∈I , i>i1 : fi1,i ((u,k),p) �=0

}
. (137)

In what follows, we show that the AI ,x (where (I , x) ∈ T ) can be used as strata for a
Whitney stratification of S.

Lemma 28 For all non-empty (I , x) ∈ T , we have

ĀI ,x = BI ,x . (138)

Proof Let (I , x) ∈ T . Clearly, BI ,x is a closed set. Thus, it suffices to show that
BI ,x ⊂ ĀI ,x . So let ([u : k], p) ∈ BI ,x and letU ⊂ BI ,x be an open neighborhood of
([u : k], p). We may assume without loss of generality that U contains a coordinate
neighborhood V of ([u : k], p). By Eqs. (136) and (137), the set AI ,x is given by all
points in BI ,x at which a finite set of holomorphic functions does not vanish. By using
coordinates, we can view these as holomorphic functions on V . Denote these functions
by f1, . . . , fm : V → C. Then,

∏m
i=1 fi : V → C is a holomorphic function on V

which is not identically zero. Hence, it cannot vanish on all of V . But this means V
(and thus also U ) contains a point ([u′ : k′], p′) ∈ V such that fi ((u′, k′), p) �= 0 for
all i ∈ {1, . . . ,m}. This means ([u′ : k′], p′) ∈ AI ,x , and we conclude that ([u : k], p)
lies in the closure ĀI ,x of AI ,x . �
Now, we combine the AI ,x to form the pieces of a stratification. For all (m, x) ∈ S,
we set

Am,x :=
⋃

I⊂{1,...,n}
|I |=m

AI ,x . (139)

Proposition 29 The Am,x form an S-decomposition of S.
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Proof Clearly, the collection of the Am,x is locally finite (as there are only finitely
many pieces) and every Am,x is a locally closed set. Furthermore, it is not difficult to
see that

⋃
(I ,1)∈T

AI ,x = S−H∞ × (Tn\Ln) and
⋃

(I ,∞)∈T
AI ,x = S ∩ (H∞ × (Tn\Ln))

(140)

so that

⋃
(m,x)∈S

Am,x =
⋃

(I ,x)∈T
AI ,x = S. (141)

The frontier condition is also easy to verify: According to Lemma 28, we have

Ām,x =
⋃

I⊂{1,...,n}
|I |=m

ĀI ,x =
⋃

I⊂{1,...,n}
|I |=m

BI ,x (142)

for all (m, x) ∈ S. Since BI ,∞ ⊂ H∞ and AI ,fin ∩ H∞ = ∅ for all non-empty I ⊂
{1, . . . , n}, we immediately see that Am1,x1∩ Ām2,x2 = ∅ for all (m1, x1), (m2, x2) ∈ S
whenever x1 = fin and x2 = ∞. Furthermore, note that

AI ,fin ∩ BJ ,fin = AI ,∞ ∩ BJ ,fin = AI ,∞ ∩ BJ ,∞ = ∅ (143)

for all non-empty subsets I , J ⊂ {1, . . . , n} such that J is not a subset of I . In case
J ⊂ I , it is also easy to see that

AI ,fin ⊂ BJ ,fin, AI ,∞ ⊂ BJ ,fin, AI ,∞ ⊂ BJ ,∞. (144)

Now, applying Eq. (142) readily yields the desired frontier condition. �
Proposition 30 AI ,x is a smooth manifold for every (I , x) ∈ T and Am,x is a smooth
manifold for every (m, x) ∈ S.

Proof By Lemma 27, we know that the BI ,x are smooth (even complex analytic)
manifolds. By construction, each AI ,x is an open subset of BI ,x (with respect to the
topology on BI ,x ) and thus, a smooth manifold itself. Since the AI ,x are disjoint, we
see immediately that the Am,x are smooth manifolds as well (as they are the disjoint
union of smooth manifolds). �
Proposition 31 The decomposition above is a Whitney stratification of S.

Proof By Proposition 29, we know that the Am,x form an S-decomposition of S,
which consists of smooth manifolds by Proposition 30. It remains to check Whitney’s
condition B (see Definition 8) for any pair of strata. All pairs (AI ,1, AJ ,1) satisfy
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condition B since the AI ,1 form the canonical stratification (see Eq. (44)) of the
manifolds

S1 − (H∞ × (Tn\Ln)), . . . , Sn − (H∞ × (Tn\Ln)), (145)

which are in general position. For all pairs (AI ,∞, AJ ,∞) and (AI ,1, AJ ,∞) with
J ⊂ I , it is also easy to see that condition B holds: Locally these pairs look like

{x ∈ C
a | x1 �= 0} and {x ∈ C

a | x1 = · · · = xb = 0} (146)

for appropriate a, b ∈ N with a ≥ b. In these coordinates, the condition can be readily
verified. �
With our Whitney stratification in place, we can now deduce that I (Cn) defines a
holomorphic function outside its Landau surface Ln by showing that the restriction of
the projection to any stratum AI ,∞ at infinity is always a submersion. Thus, informally
speaking, we can ignore the non-general position of the Si at infinity and can focus
the discussion on finite internal momenta.

Theorem 32 The one-loop Feynman integral I (Cn) defines a holomorphic function
on Tn\Ln.

Proof By Proposition 31, the (connected components of the) AI ,x constitute the strata
of a Whitney stratification of S. Thus, we can apply Thom’s Isotopy Theorem 14. It
is clear that Ln is the set where the projection restricted to the strata of the form AI ,1
is not a submersion. Hence, it suffices to show that π |AI ,∞ is a submersion for all
non-empty I ⊂ {1, . . . , n}. So let I = {i1, . . . , im} ⊂ {1, . . . , n} be non-empty with
i1 < · · · < im . The tangent space at ([u : k], p) ∈ AI ,∞ can be identified with the
orthogonal complement of the vectors

⎛
⎜⎜⎜⎝
k
0
...

0

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

P( j)(p) − P(i1)(p)
(∂p1 P

( j)(p) − ∂p1 P
(i1)(p)) · k

...

(∂pn−1 P
( j)(p) − ∂pn−1 P

(i1)(p)) · k

⎞
⎟⎟⎟⎠ , (147)

where j runs over all elements of I\{i1}. This space is given by the solution to the
homogeneous linear system of equations given by the matrix

⎛
⎜⎜⎜⎜⎜⎜⎝

kT 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0 · · · 0 0 · · · 0
(
∑i2−1

l=i1
pl)T 0 · · · 0 kT · · · kT 0 · · · 0 0 · · · 0 · · · 0 0 · · · 0

(
∑i3−1

l=i1
pl)T 0 · · · 0 kT · · · kT kT · · · kT 0 · · · 0 · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
. . .

...
...

. . .
...

(
∑im−1

l=i1
pl)T 0 · · · 0 kT · · · kT kT · · · kT kT · · · kT · · · kT 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (148)

where the columns are the vectors from (130). The differential of the projection

restricted to AI ,∞ takes a vector

(
x
p′
)

in this tangent space to p′. So we need to
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check if for every p′ ∈ Tn\Ln there is a solution x ∈ C
D to the inhomogeneous

system of linear equations

⎛
⎜⎜⎜⎜⎝

kT

(
∑i2−1

l=i1
pl)T

...

(
∑im−1

l=i1
pl)T

⎞
⎟⎟⎟⎟⎠ · x =

⎛
⎜⎜⎜⎜⎝

0
kT ·∑i2−1

l=i1
p′
l

...

kT ·∑im−1
l=i1

p′
l

⎞
⎟⎟⎟⎟⎠ . (149)

We distinguish two cases: If m ≤ D, we can consider the smaller system

⎛
⎜⎜⎝

(
∑i2−1

l=i1
pl)T

...

(
∑im−1

l=i1
pl)T

⎞
⎟⎟⎠ · x =

⎛
⎜⎜⎝
kT ·∑i2−1

l=i1
p′
l

...

kT ·∑im−1
l=i1

p′
l

⎞
⎟⎟⎠ . (150)

Since p ∈ Tn , the
∑i j−1

l=i1
pl must be linearly independent and hence, the matrix on

the right has the full rank m − 1. The solution space of (150) is thus an affine space
of dimension D − (m − 1) ≥ 1. In this space, there clearly exists an x such that
kT x = 0 so that (149) can indeed be solved. If m = D + 1 on the other hand (note
that we can not have m > D + 1 since m ≥ n and thus n > D + 1, which implies
p /∈ Tn), we show that the matrix on the left-hand side of (149) has rank m, which
immediately implies the existence of a solution. First note that in this case we have

I = {1, . . . , n} which means
∑i j−1

l=i1
pl = ∑ j−1

l=1 pl for all j ∈ {1, . . . , n}. It suffices
to show that k is linearly independent of the

∑ j−1
l=1 pl which is equivalent to k being

linearly independent of the p j . To see this, let us suppose the opposite is true. Then,
there exist λ1, . . . , λn−1 ∈ C (not all equal to zero) such that k = ∑n−1

i=1 λi pi . But
([0 : k], p) ∈ AI ,∞ requires

(P( j)(p) − P(1)(p))k =
n−1∑
i=1

j−1∑
l=1

λi pi pl
!= 0 ∀ j ∈ {2, . . . , n}. (151)

But this implies p /∈ Tn , a contradiction. In conclusion, π |AI ,∞ is indeed a submersion.
�

With our compactification in place, we can show the invariance of the holomorphic
function defined by I (Cn) with respect to the action (89) of O(D, C). To this end, we
consider the following extension of the action (89) to CP

D:

σ̃ : O(D, C) × CP
D → CP

D, (g, [u : z]) 
→ g · [u : z] := [u : g · z]. (152)

Note that this is well-defined since, if (u′, z′) = (λu, λz) for some λ ∈ C
×, we have

g · [u′ : z′] = [λu : g · (λz)] = [λu : λ(g · z)] = g · [u : z] (153)
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for all g ∈ O(D, C). Furthermore, this action is clearly continuous. Note also that
the Landau surface Ln is invariant under our action on Tn : If g ∈ O(D, C) and
(α, k, g · p) ∈ Bn is a solution to the Landau equations, then (α, g−1 · k, p) is also a
solution. Hence, p ∈ Ln ⇔ g · p ∈ Ln for all g ∈ O(D, C). In fact, this even shows
Ln,I = g · Ln,I for all I ⊂ {1, . . . , n} and g ∈ O(D, C). To show the invariance of
our integral under O(D, C), we need some information on how the differential forms
in question transforms under this group. The following lemma establishes the very
simple transformation behavior of ωn,D(p) under O(D, C):

Lemma 33 For all g ∈ O(D, C), we have

(σ̃ (g, ·))∗ωn,D(g · p) = det(g) · ωn,D(p). (154)

Proof Obtained from a straightforward calculation. �
Proposition 34 Let n ≥ 2. The multivalued holomorphic function I (Cn) : Tn\Ln →
C is invariant under the action (89) of O(D, C), i.e., for any p ∈ Tn\Ln and any
g ∈ O(D, C), we have

I (Cn)(g · p) = I (Cn)(p) (155)

when evaluating the left and right hand side on the same branch.

Proof Now, let p ∈ Tn\Ln and g ∈ O(D, C). Let us first suppose that g lies in the
connected component of O(D, C) containing the identity e. In particular, this means
det(g) = 1. Then, if γg : [0, 1] → O(D, C) is a path from e to g, we can define a
path

γ : [0, 1] → Tn\Ln, s 
→ γg(s) · p (156)

from p to g · p. Note that this is also well-defined as the Landau Eqs. (105) and (106)
are invariant under our action of O(D, C) as mentioned above. We know that we can
write

I (Cn)(p) =
∫

�

ωn,D(p) (157)

for an appropriate D-cycle � ⊂ CP
D\S(p). Defining

σ : CP
D × [0, 1] → CP

D, ([z], s) 
→ γg(s) · [z], (158)

we have σ(�, s) ∩ S(γ (s)) = ∅ for all s ∈ [0, 1]. Indeed, if there was [u : k] ∈
σ(�, s) ∩ S(γ (s)), there would exist i ∈ {1, . . . , n} such that

(k + uP(i)(γ (s)))2 + u2m2
i = ((γg(s))

−1k + uP(i)(p))2 + u2m2
i = 0. (159)
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Since σ([u : (γg(s))−1k], s) = [u : k], this means

[u : (γg(s))
−1k] ∈ σ(�, 0) ∩ S(γ (0)) = � ∩ S(p), (160)

in contradiction to � ∩ S(p) = ∅. Thus, by Corollary 11, we can analytically continue
I (Cn) from p to g · p along γ via

I (Cn)(γ (s)) =
∫

σ(�,s)
ωn,D(γ (s)) =

∫
γg(s)·�

ωn,D(γg(s) · p)

=
∫

�

(σ (·, s))∗ωn,D(γg(s) · p) =
∫

�

ωn,D(p) = I (Cn)(p)

(161)

for all s ∈ [0, 1], where we used Lemma 33 in the second to last step.
Now, if g is not in the connected component containing e, then g can be expressed as
a product g = r · g′ of an element g′ in the connected component containing e and a
reflection

r =

⎛
⎜⎜⎜⎝

−1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎞
⎟⎟⎟⎠ . (162)

Thus, it suffices to check the claim for g = r . Using det(r) = −1, we obtain

I (Cn)(r · pin) =
∫

RPD

u2λ−D−1 · �D∏n
i=1((k + uP(i)(r · pin))2 + u2m2

i )
λi

= −
∫
r ·RPD

u2λ−D−1 · �D∏n
i=1((r · k + uP(i)(r · pin))2 + u2m2

i )
λi

=
∫

RPD

u2λ−D−1 · �D∏n
i=1((k + uP(i)(pin))2 + u2m2

i )
λi

= I (Cn)(pin)

(163)

for all pin ∈ (RD)n−1 (where I (Cn) is evaluated on the principal branch). Thus, for
any path γ : [0, 1] → Tn\Ln from pin to p, the analytic continuation along the path
γ ′ : [0, 1] → Tn\Ln from r · pin to r · p defined by γ ′(s) = r · γ (s) for all s ∈ [0, 1]
yields the same result. �

4.1.1 Remark on the compactification in [9]

The authors of [9], a paperwhichwas never published butwas reprinted in [12], employ
a different compactification: They consider specifically the box graph C4 which they
compactify as follows: The integration domain R

D can be thought of as part of a
D-sphere in R

D+1, using the stereographic projection. More precisely, we consider
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the diffeomorphism

f : SD(−1, 0, . . . , 0)\{0} ∼→ R
D, (x0, . . . , xD) 
→

(
x1
x0

, . . . ,
xD
x0

)
. (164)

Here, SD(−1, 0 . . . , 0) is the real D-spherewith radius 1 and center (−1, 0, . . . , 0).
Applying the pullback f ∗ to the Feynman integral (91), one obtains

I (Cn) =
∫
SD(−1,0,...,0)

x2λ−D−1
0 · �D∏n

i=1((k + x0 · P(i)(p))2 + x20m
2
i )

λi
(165)

after adding the set {0} of Lebesgue measure 0 to the integration domain. While
this compactifies the integration domain, the natural choice for the complex ambient
space, the complex sphere

SD
C

:= {(x0, k) ∈ C
D+1 | (x0 + 1)2 + k2 = 1} (166)

around (−1, 0, . . . , 0) with radius 1, is not compact. Thus, the authors view SD
C
as

embedded in CP
D+1 in a second step, i.e., they apply the pullback of the inverse of

the inclusion

i : C
D ↪→ CP

D+1, z 
→ [1 : z] (167)

restricted to its image like we do in the first step. The integral they obtain after applying
all transformations reads

I (Cn) =
∫
SD

P

x2λ−D−1
0 · �D∏n

i=1((k + x0 · P(i)(p))2 + x20m
2
i )

λi
, (168)

where

SD
P

: = {[u : x0 : k] ∈ CP
D+1 | (x0 + u)2 + k2 = u2}

= {[u : x0 : k] ∈ CP
D+1 | x20 + k2 = −2ux0}.

(169)

This compactification comeswith significant restrictionswith respect to the dimension:
The form of Eq. (168) suggests that the differential to be integrated might be singular
at points [u : x0 : k] ∈ SD

P
with x0 = 0 and k = 0, which would be an issue. The

term x2λ−D−1
0 could potentially cancel the singular nominator at such points, but if it

actually does depends on D and λ. A careful computation of the relevant differential
form in charts shows that this cancellation happens if andonly if D ≤ Re λ. Particularly
in the case λ1 = · · · = λn = 1 one is usually interested in, this is a problem: In this
case, we have λ = n and for p ∈ Tn we need D ≥ n−1. Hence, this compactification
can only work if D = n or D = n−1. For example, the box graph C4 in 4 dimensions
as investigated in [9] can be compactified in this manner, while the triangle graph C3
in 4 dimensions cannot (even though the corresponding integral is convergent). The
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upside of this compactification is that, after some straightforward manipulations of the
integral (168), the set onwhich the differential formwe integrate becomes singular can
be written as the union of projective hyperplanes. This makes it considerably easier
to compute the relevant vanishing classes and intersection indices, a problem which
is tackled in [6] (where the restriction in application to physics is also mentioned).
On the other hand, it seems likely that the ideas used in this computation cannot be
generalized to more than one loop.

4.2 On the continuation of the local section defined byRP
D

Before discussing the discontinuity of I (Cn), we first establish some results on the
continuation of the local section defined by the initial integration cycle RP

D .
The next lemma allows us to show that if there is an ambient isotopy realizing a
continuation, we can always choose it in a way that fixes the integration cycle at
infinity.

Lemma 35 Let K ⊂ Tn be a compact set. Then, there exists an open neighborhood
U∞ ⊂ CP

D of H∞ ∩ RP
D such that

U∞ ∩ S(p) = ∅ ∀p ∈ K . (170)

Proof First, note that for any p ∈ Tn we have

Qi (p)(0, k) = k2 �= 0 ∀k ∈ R
D, ∀i ∈ {1, . . . , n}. (171)

Thus, H∞ ∩RP
D ∩ S(p) = ∅. Now, let d : CP

D ×CP
D → R≥0 be a metric on CP

D

inducing its standard topology. Then,

d(H∞ ∩ RP
D, S(p)) > 0 (172)

for all p ∈ Tn . Now, d(H∞ ∩ RP
D, S(·)) can be viewed as a continuous function on

Tn which necessarily takes on a minimum dmin > 0 on the compact set K . Thus, if
we denote by D([z], dmin) ⊂ CP

D the open disc of radius dmin around [z], we have
D([z], dmin)∩ S(p) = ∅ for all [z] ∈ H∞ ∩RP

D and p ∈ K . Consequently, the open
set

U∞ :=
⋃

[z]∈H∞∩RPD

D([z], dmin) (173)

fulfills the requirement of the lemma. �
Corollary 36 Let γ : [0, 1] → Tn be a path with γ (0) ∈ (RD)n−1. Suppose there
exists an ambient isotopy σ of CP

D such that σ(·, s) takes S(γ (0)) to S(γ (s)) for all
s ∈ [0, 1]. Then, there exists an ambient isotopy σ ′ of CP

D adapted to γ such that

σ ′(H∞ ∩ RP
D, s) = H∞ ∩ RP

D (174)
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for all s ∈ [0, 1].
Proof LetU∞ be an open neighborhood of H∞ as in Lemma 35. Furthermore, letU be
an open neighborhood of S(γ (0)) disjoint fromU∞. Then, σ restricts to an isotopy of
U ∪U∞ such that the track σ̂ ((U ∪U∞)×[0, 1]) is open. We can modify this ambient
isotopy by letting it be the identity onU∞. Now, by Theorem 9, there exists an ambient
isotopy σ ′ of CP

D which agrees with σ on the compact set S(γ (0)) ∪ (H∞ ∩ RP
D).

In particular, σ ′(H∞ ∩ RP
D, s) = H∞ ∩ RP

D for all s ∈ [0, 1]. �
Now, we discuss a class of path along which we can always analytically continue.
For any I ⊂ {0, . . . , D − 1}, consider the continuous matrix-valued function s 
→
MI (s) ∈ M(D × D, C) defined by

(MI (s))i j :=

⎧⎪⎨
⎪⎩
ei

π
2 s if i = j ∈ I

1 if i = j /∈ I

0 otherwise.

(175)

Note that we again start our indexing at 0 instead of 1 and that MI (0) = idCD . Then,
for any p ∈ (CD)n−1 we can define a path

γI ,p : [0, 1] 
→ (CD)n−1, s 
→ (MI (s)p1, . . . , MI (s)pn−1). (176)

Furthermore, we define the continuous map

σI ,p : CP
D × [0, 1] → CP

D, ([u : k], s) 
→ [u : MI (s)k]. (177)

Proposition 37 Let p ∈ (RD)n−1 and I ⊂ {0, . . . , D−1}. Then, for every s1 ∈ (0, 1)
the ambient isotopyσI ,p|CPD×[0,s1] is adapted toγI ,p|[0,s1].15 In particular, the integral
I (Cn) can be analytically continued from p to γI ,p(s1) along γI ,p|[0,s1].
Proof According to Proposition 12, it suffices to show

σI ,p(RP
D, s) ∩ S(γI ,p) = ∅ ∀s ∈ [0, s1]. (178)

So let s ∈ [0, s1]. We write I = {i1, . . . , i|I |} and J := {0, . . . , D − 1}\I =
{ j1, . . . , j|J |} with i1 < · · · < i|I | and j1 < . . . < j|J |. Furthermore, we denote

kI := (ki1, . . . , ki|I |) and kJ := (k j1, . . . , k j|J |), (179)

as well as

P(l)
I (p′) := (P(l)

i1
(p′), . . . , P(l)

i|I | (p
′)) and P(l)

J (p′) := (P(l)
j1

(p′), . . . , P(l)
j|J |(p

′))

15 Being technically pedantic, it should be noted that our definition of ambient isotopy only covers the case
s1 = 1. So σI ,p |CPD×[0,s1] and γI ,p |[0,s1] are to be understood as appropriate reparametrizations such

that they define maps CP
D × [0, 1] → CP

D and [0, 1] → (CD)n−1, respectively.
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(180)

for all l ∈ {1, . . . , n} and all p′ ∈ (CD)n−1.Now, let [u : k] ∈ RP
D . Then, (u, MI (s)k)

is a representative of σI ,p([u : k], s) and for any l ∈ {1, . . . , n} we have

Ql(γI ,p(s))(u, MI (s)k) = (MI (s)k + uMI (s)P
(l)(p))2 + u2m2

l

= eiπs(kI + uP(l)
I (p))2 + (kJ + uP(l)

J (p))2 + u2m2
l .

(181)

Now, either kI + uP(l)
I (p) = 0 and we have

Ql(γI ,p(s))(u, MI (s)k) = (kJ + uP(l)
J (p))2 + u2m2

l > 0 (182)

or kI + uP(l)
I (p) �= 0 in which case Ql(γI ,p(s))(u, MI (s)k) has nonzero imaginary

part. In either case, we conclude Ql(γI ,p(s))(u, MI (s)k) �= 0. �

4.3 Cutkosky’s theorem in the one-loop case

Now, we are in a position to compute the discontinuity of the general one-loop integral
(96) around simple loops up to the intersection index. This requires us to compute the
vanishing sphere.
Let us first consider the geometry of the zero locus of Q j (p)(1, ·) at an arbitrary point
p ∈ (CD)n−1. It is given by all k ∈ C

D such that

(k + P( j)(p))2 + m2
j = 0 ⇔ (ik + i P( j)(p))2 = m2

j . (183)

This describes a complex (D−1)-sphere with radiusm j . It contains the real (D−1)-
sphere

{k ∈ C
D | k + P( j)(p) ∈ iRD, (ik + i P( j)(p))2 = m2

j } (184)

to which it deformation retracts. To compute the vanishing sphere, we want to under-
stand the homology of the finite part of S1(p) ∩ · · · ∩ Sn(p). The intersection of n
complex (D−1)-spheres in general position is a complex (D−n)-sphere,which allows
us to immediately determine the sought homology groups. But we can be significantly
more concrete by employing the Lorentz-invariance, or rather O(D, C)-invariance in
our setup, of Feynman integrals. To fully take advantage of this invariance, we first
prove the following

Lemma 38 Let v1, . . . , vm ∈ C
n be m ∈ N

∗ vectors such that

det

⎛
⎜⎜⎜⎝

v1v1 v1v2 · · · v1vm
v2v1 v2v2 · · · v2vm

...
...

. . .
...

vmv1 vmv2 · · · vmvm

⎞
⎟⎟⎟⎠ �= 0. (185)
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Then, there exists a complex orthogonal matrix M ∈ O(n, C) such that (M · vi ) j �= 0
for all j ≤ i and (M · vi ) j = 0 for all j > i .

Proof We conduct the proof by induction on the number of vectors m. The base case
m = 1 can be solved by induction on the dimension n. For n = 1, there is nothing to
do. Now, suppose we already know the lemma is true form = 1 up to some dimension
n − 1. Let us denote w := v1. If w̃ := (w2, . . . , wn) = 0, there is again nothing to
do. By assumption, we have wTw �= 0. Note that this means we cannot have

(w1, . . . , ŵi , . . . , wn)
T (w1, . . . , ŵi , . . . , wn) = 0 (186)

for all i ∈ {1, . . . , n} since
n∑

i=1

(w1, . . . , ŵi , . . . , wn)
T (w1, . . . , ŵi , . . . , wn) = (n − 1)wTw �= 0. (187)

The permutation matrices are orthogonal so that we can assume w̃T w̃ �= 0 without
loss of generality. Thus, by the induction hypothesis we can find a complex orthogonal
matrix M1 ∈ O(n − 1, C) such that

M1 · w̃ =

⎛
⎜⎜⎜⎝

w′
2
0
...

0

⎞
⎟⎟⎟⎠ ⇒

(
1 0
0 M1

)
· w =

⎛
⎜⎜⎜⎜⎜⎝

w′
1

w′
2
0
...

0

⎞
⎟⎟⎟⎟⎟⎠ (188)

with w′
2 �= 0. Note that

(
1 0
0 M1

)
is also an orthogonal matrix. Now, we define

M2 := 1√
w′
1
2 + w′

2
2

·
(

w′
1 w′

2−w′
2 w′

1

)
. (189)

Note that this is well-defined as w′
1
2 + w′

2
2 = wTw �= 0. Then, we have

MT
2 M2 = 1

w′
1
2 + w′

2
2 ·
(

w′
1
2 + w′

2
2

w′
1w

′
2 − w′

2w
′
1

w′
2w

′
1 − w′

1w
′
2 w′

2
2 + w′

1
2

)
=
(
1 0
0 1

)
(190)

and

M2 ·
(

w′
1

w′
2

)
= 1√

w′
1
2 + w′

2
2

·
(

w′
1
2 + w′

2
2

w′
2w

′
1 − w′

1w
′
2

)
=
⎛
⎝ w′

1
2+w′

2
2√

w′
1
2+w′

2
2

0

⎞
⎠ �= 0. (191)
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We conclude that M2 is orthogonal and that therefore the matrix

(
M2 0
0 1n−2

)
is also

orthogonal, where 1n−2 is the identity matrix of size n − 2. Hence, the matrix

M :=
(
M2 0
0 1n−2

)
·
(
1 0
0 M1

)
∈ O(n, C) (192)

is orthogonal and fulfills the requirement of the lemma.
Now, suppose thatm > 1. Then, by the induction hypothesis,we canfind an orthogonal
matrix M ∈ O(n, C) such that for all i < m we have (M · vi )i �= 0 and (M · vi ) j = 0
for all j > i . Now, consider the vector v′ := (xm, . . . , xn) ∈ C

n−m+1 obtained by
removing the first m − 1 components of M · vm . Then, there is an orthogonal matrix
M ′ ∈ O(n −m + 1, C) such that (M ′ · v′)1 �= 0 and (M ′ · v′) j = 0 for all j > 1. We
define

M̃ :=
(
1m−1 0
0 M ′

)
· M ∈ O(n, C). (193)

Then, M̃ is orthogonal as

M̃T = MT ·
(
1m−1 0
0 M ′T

)
= M−1 ·

(
1m−1 0
0 M ′−1

)

= (

(
1m−1 0
0 M ′

)
· M)−1 = M̃−1. (194)

Furthermore, we clearly have (M̃ · vi ) j �= 0 for all j ≤ i and (M̃ · vi ) j = 0 for all
j > i . �

Using this lemma, we can easily compute the center and radius of the complex sphere
given by the finite part of the intersection of the S1(p), . . . , Sn(p). The system of
equations defining

⋂n
i=1 Si (p) − H∞ reads

k2 + m2
1 = 0

(k + p1)
2 + m2

2 = 0

...
...

...⎛
⎝k +

n−1∑
j=1

p j

⎞
⎠

2

+ m2
n = 0
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in inhomogeneous coordinates. By plugging in k2 = −m2
1 from the first equation into

the remaining ones, we see that this system is equivalent to

k2 + m2
1 = 0

2kp1 + p21 − m2
1 + m2

2 = 0

...
...

...

2k
n−1∑
j=1

p j +
⎛
⎝n−1∑

j=1

p j

⎞
⎠

2

− m2
1 + m2

n = 0.

By Proposition 34 and Lemma 38, we can assume

p1 =

⎛
⎜⎜⎜⎝

(p1)0
0
...

0

⎞
⎟⎟⎟⎠ , p2 =

⎛
⎜⎜⎜⎜⎜⎝

(p2)0
(p2)1
0
...

0

⎞
⎟⎟⎟⎟⎟⎠ , · · · ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(pn)0
...

(pn)n−1
0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(195)

with (pi )i−1 �= 0 for all i ∈ {1, . . . , n} without loss of generality. This allows us to
compute the first n−1 components of k recursively: By the second equation, we have

k0 = − 1

2(p1)0
(p21 − m2

1 + m2
2) =: A0(p) (196)

and by the (i + 2)th equation we have

ki = − 1

2(pi+1)i
(2k̄(i)P(i+2) + (P(i+2))2 − m2

1 + m2
i+2) =: Ai (p), (197)

where

k̄(i) := (k0, . . . , ki−1, 0, . . . , 0). (198)

We denote A(n)(p) := (A0(p), . . . , An−2(p), 0, . . . , 0) ∈ C
D . This allows us to

conclude that
⋂n

i=1 Si (p) − H∞ is given by all solutions to

k̄(n−1) = A(n)(p) (199)

and

(kn−1, . . . , kD−1)
2 = −m2

1 − (A(n)(p))2 =: r2n (p), (200)
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where Eq. (200) is obtained from plugging in (199) into k2 + m2
1 = 0. Thus, we

see that
⋂n

i=1 Si (p) − H∞ is a complex (D − n)-sphere around A(n)(p) with radius
squared equal to r2n (p). The A j (p) are designed such that

2A(n)(p)P(i)(p) + (P(i)(p))2 + m2
i − m2

1 = 0 (201)

for all i ∈ {1, . . . , n}. Indeed, we have

2A(n)(p)P(i)(p) = 2Ai−1(p)(pi )i + 2
i−2∑
j=0

A j (p)(pi ) j + 2A(n)(p)P(i−1)

= −(P(i)(p))2 − m2
i + m2

1

(202)

for all i ∈ {1, . . . , n}.
This discussion covers the case in which all S1(p), . . . , Sn(p) intersect, but this can
easily be generalized to intersections of any subset: Let I � {1, . . . , n} and assume
|I | ≥ 2 (otherwise, there is nothing to do). Thedefining equations for

⋂
i∈I Si (p)−H∞

have the same form as in the case I = {1, . . . , n}. In fact, they are exactly the equations
we would obtain for the cyclic graph with |I | edges obtained from shrinking every
edge not in I to zero length (and thus not C|I | as we have defined it since the external
structure is different). Thus, we can go through the same computation as above, but
we replace each momentum P(i)(p) for i ∈ I by the corresponding sum of momenta.
Let I = {i1, . . . , i|I |} with i1 < · · · < i|I |. We shall denote the external momenta
pI ∈ (CD)|I |−1 given by the external structure of the graph with shrunken edges by

(pI )l :=
il+1−1∑
j=il

p j , ∀l ∈ {1, . . . , n − 1 − |I |}. (203)

Then,
⋂

i∈I Si (p)− H∞ is a complex (D− |I |)-sphere around A(|I |)(pI ) with radius
squared equal to r2|I |(pI ).
We can also use this description of

⋂n
i=1 Si (p) − H∞ to prove that the system

S1(p) − H∞, . . . , Sn(p) − H∞ (204)

has a single pinch point for p ∈ Ln which is a simple pinch point.

Proposition 39 Let I ⊂ {1, . . . , n} be non-empty and let p ∈ Ln,I be a point of
codimension 1. Then, there is a single point in CP

D\H∞ at which the manifolds
Si (p) with i ∈ I are not in general position. Furthermore, this point is a simple pinch
point.

Proof By the discussion above,we know that there can only be one finite point at which
the manifolds Si (p) with i ∈ I are not in general position. According to [8], this is
a simple pinch if the corresponding solution to the Landau equations is unique in α

up to a homogeneous factor. We may assume
∑

i∈I αi = 1 without loss of generality.
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Write I = {i1, . . . , im} with i1 < · · · < im . Then, we need to show that αi2 , . . . , αim
are uniquely determined by the Landau equations. This can easily be verified since
αi2 , . . . , αim can recursively determined by the equation

k = −
∑
i∈I

αi P
(i)(p). (205)

�

Notice that we have just proven the following

Proposition 40 (Vanishing Sphere for One-Loop Graphs) Let p ∈ Ln,I be a point of
codimension 1. Then, the system {Si }i∈I has a simple pinch at (A(|I |)(pI ), p) and the
vanishing sphere can be represented by a deformation retract of

ẽ = {k ∈ C
D | k = A(|I |)(p′

I ) ,

D−1∑
i=|I |−1

k2i = r2|I |(p′
I )} (206)

to the real sphere within CP
D for p′ close to p. In particular, if p′ ∈ (MD)n−1 is a

configuration of Minkowski momenta such that r2|I |(p′
I ) ∈ R>0, we have ẽ ⊂ MD.

Note that the above proof also yields an algorithm to determine the Landau surface
for any loop graph which does not require us to solve the Landau equations:

Algorithm 1 The Landau surface Ln can be computed in terms of any kinematic
invariant by the following algorithm:
1. Choose a complete set of kinematic invariants s1, . . . , s n(n−1)

2
.

2. Compute Ai (p) for i = 0, 1, . . . , n − 2 by using Eqs. (196) and (197).
3. Compute r2n (p) by using Eq. (200).
4. Express all components of p in r2n (p) in terms of the invariants s1, . . . , s n(n−1)

2
.

5. The result is a rational function in the s1, . . . , s n(n−1)
2

which can be solved for one of them.

Example 3 Returning to our running exampleC2, we compute A(2)(p) aswell as r22 (p)
in this case. By definition, we have Ai (p) = 0 for all i �= 0. The entry A0(p) can just
be read of from its definition (196) as

A0(p) = − 1

2(p1)0
((p1)

2
0 − m2

1 + m2
2). (207)
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Thus, we can easily compute

r22 (p) = −m2
1 − A2

0(p) = −4(p1)20m
2
1

4(p1)20
− ((p1)20 − m2

1 + m2
2)

2

4(p1)20

= − 1

4(p1)20
((p1)

4
0+m4

1+m4
2+2(p1)

2
0m

2
1+2(p1)

2
0m

2
2 − 2m2

1m
2
2)

= −λ(−(p1)20,m
2
1,m

2
2)

4(p1)20
.

(208)

Here, λ is again the Källén function (see Eq. (116)). Recall that we required p1 to
satisfy (p1)i = 0 for all i > 0. Thus, (p1)20 = p21, and we obtain

r22 (p) = −λ(−p21,m
2
1,m

2
2)

4p21
. (209)

In particular, r22 (p) = 0 if and only if λ(−p21,m
2
1,m

2
2) = 0. Thus, the external

momenta p at which r22 vanishes are precisely the momenta in the Landau surface
of C2 as computed in Example 2. This is of course no accident as we have seen that
r2n (p) is in fact the radius squared of the vanishing sphere.

A priori it might not be easy to perform step (5) in the Algorithm 1. But it seems that
it is possible to choose appropriate channel variables such that r2n can be brought into
a form in which the nominator is quadratic in each of the channel variables, making
step (5) almost trivial. While we do not prove this statement in this work, we at least
see that it works out in non-trivial examples (see Sect. 5).
We can also make use of our formula for r2n to proof Propositions 25 and 26 now,
which stated that the Ln,I (with I ⊂ {1, . . . , n} such that |I | ≥ 2) are codimension 1
complex analytic submanifolds of Tn intersecting in general position:

Proof of Proposition 25. It suffices to show that for all p ∈ Tn , the equation ∂pr2n (p) =
0 implies r2n (p) �= 0. So let p ∈ Tn and suppose that ∂pr2n (p) = 0. Then, in particular
∂pn−1r

2
n (p) = 0. Since the A0, . . . , An−3 do not depend on pn−1, this equation reads

− 2An−2(p)∂pn−1 An−2(p) = 0. (210)

Suppose first that An−2(p) = 0. Then, r2n (p) = r2n−1(p1, . . . , pn−2) and
∂pr2n (p) = ∂pr2n−1(p1, . . . , pn−2), so the claim follows by induction. Now, suppose
∂pn−1 An−2(p) = 0. Let us denote

v̄ := (v0, . . . , vn−3) ∈ C
n−2. (211)

for every v = (v0, . . . , vD−1) ∈ C
D . Then,

∂ p̄n−1 An−2(p) = − 1

2(pn−1)n−2
(2 Ā(n)(p) + 2 P̄(n)(p))

!= 0, (212)
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which implies Ā(n)(p) = −P̄(n)(p). Furthermore, using Eq. (201), we compute

∂(pn−1)n−2 An−2(p)

= 1

2(pn−1)
2
n−2

(
2A(n−1)(p)P(n)(p) + (P(n)(p))2 − m2

1 + m2
n

)
− 1

= − 1

(pn−1)n−2
An−2(p) − 1,

(213)

which implies An−2(p) = −(pn−1)n−2. Together we obtain A(n)(p) = −P(n)(p).
This also means (P(n)(p))2 = −m2

1 + m2
n . This can be used to compute

r2n (p) = −m2
1 − (A(n)(p))2 = −m2

1 − (P(n)(p))2 = −m2
n �= 0 (214)

as claimed. �

Proof of Proposition 26. To show that Ln,I1 , . . . , Ln,Ik intersect in general position,we
need to show that ∂pr2|I1|(pI1), . . . , ∂pr

2|Ik |(pIk ) are linearly independent at every point
p ∈⋂k

i=1 Ln,Ii . We do this by induction on k. By applying a cyclic permutation to the
vertices and edges of the graph Cn , we may assume without loss of generality that Ik
contains an element i ∈ Ik such that i > j for all j ∈ Ik−1. Since the r2|I1|, . . . , r

2|Ik−1|
do not depend on pi−1, it suffices to show ∂pi−1r

2|Ik |(pIk ) �= 0. In the previous proof,

we have seen that ∂pi−1r
2|Ik |(pIk ) = 0 implies r2|Ik |(pIk ) �= 0 so we are done. �

Finally, we are in a position to state and proof Cutkosky’s Theorem in the one-loop
case. We remind the reader that the integral of interest is

I (Cn)(p) =
∫

RD

dDk∏n
i=1((k + P(i)(p))2 + m2

i )
λi

, (215)

as defined in Eq. (91). While all computations in the finite chart work for odd and
even dimensions D, we recall that the compactification (see Eq. (96)) as it stands can
only be employed for odd D and hence, we need to restrict the theorem to this case
for now.

Theorem 41 (Cutkosky’s Theorem for One-Loop Graphs) Let D be odd. Let I ⊂
E(Cn) and denote m := |I |. Let p ∈ Ln,I be a point of codimension 1 and γ a simple
loop around p. Let p′ ∈ MD such that r2n (p′) is small and real. Then, the discontinuity
of I (Cn) around p in a neighborhood of p′ is given by

Disc[γ ] I (Cn)(p
′) = N (2π i)m

∫
ẽ
Resm[ωn,D(p′)]. (216)

In particular for λi = 1 for all i ∈ I , we obtain
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Disc[γ ] I (Cn)(p
′) = N (2π i)m

∫
iR×RD−1

∏
j∈I δ((k + P( j)(p′))2 + m2

j )∏
j /∈I ((k + P( j)(p′))2 + m2

j )
λ j
d Dk.

(217)

Proof Wehave seen in Proposition 39 that at p there is a single pinch point at A(|I |)(p).
So according to our considerations in Sect. 2.3.3 and Theorem 18, we thus have

Disc[γ ](I (Cn))(p
′) = N

∫
e
ωn,D(p′) = N (2π i)m

∫
ẽ
Resm[ωn,D(p′)] (218)

where ẽ is the vanishing sphere as computed in Proposition 40. Denote by

i : C
D ∼→ CP

D\H∞ (219)

the natural inclusion with restricted target. The Leray residue commutes with pull-
backs (see Proposition 19) so that we can write

Disc[γ ](I (Cn))(p
′) = N (2π i)m

∫
ẽ
Resm[ωn,D(p′)]

= N (2π i)m
∫
i−1(ẽ)

Resm[i∗ ωn,D(p′)]
(220)

by removing the plane H∞ at infinity, which has Lebesgue measure 0, from the inte-
gration domain. If now λi = 1 for all i ∈ I , we obtain

Disc[γ ](I (Cn))(p
′) = N (2π i)m

∫
iR×RD−1

∏
j∈I δ((k + P( j)(p′))2 + m2

j )∏
j /∈I ((k + P( j)(p′))2 + m2

j )
λ j
d Dk,

(221)

where we used Definition 12 for the δ-function and the fact that i−1(ẽ) ⊂ MD . �
Comparing our formula for the discontinuity with some of the common literature, it
is striking that we replace the propagators which go on-shell at a point in the Landau
surface by simple δs instead of δ+s, which often appear in texts citing Cutkosky’s
Theorem. The term δ+((k + P( j)(p))2 +m2

j ) contains an additional factor of �(k0 +
P( j)(p)), forcing the energy flowing through the corresponding edge to be positive.
This prescription clearly depends on the arbitrarily chosen orientation of the edges.
While it seems to be known by many physicists that the sign of the energy should be
chosen in accordance with the corresponding solution of the Landau equations, at the
same time there are some potentially confusing formulations in the literature. Thus,
we briefly remark on this point: The prescription including the δ+s without further
information does not seem to make sense in the general case. But if we consider
singularities corresponding to a set of edges such that removing these edges from the
graph yields a new graph with two connected componentsG1 andG2 (as in the special
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case of equation (17) in [7]), thenwe canmake sense of this idea: If we designate one of
the connected components as the incoming part and the other one as the outgoing part,
there is a preferred orientation of the removed edges, namely the one that points from
the incoming part to the outgoing part. The following figure illustrates this situation:

G1 G2

But for more general cuts, there is no preferred orientation and a careful choice has to
be made. As mentioned above, the consensus is that the sign fixed by the δ+s should
agree with the signs of the corresponding solution of the Landau equations. Curiously
enough, the δ+ in this sense does not appear explicitly in the general formulation
(equation (6)) in the original work [7] by Cutkosky. He formulates the theorem by
writing δp instead of δ and states “The subscript p on the delta functions means that
only the contributions of the “proper” root of q2i = M2

i is to be taken”. Here, qi denotes
what we write as k + P(i)(p) and Mi denotes what we write as mi .
From our discussion, it is evident that in the one-loop case the vanishing sphere over
whichwe need to integrate lies in a subspace ofCD with fixed k0 (namely k0 = A0(p)).
Thus, the sign of all k0 + P( j)

0 (p) is already determined by the δ-functions alone and
the � would be superfluous.

Example 4 To conclude our discussion of Cutkosky’s Theorem for one-loop graphs,
we return to our running exampleC2 one last time and compute its discontinuity in the
case where λ1 = λ2 = 1. Note that in this case the corresponding Feynman integral
does not converge in D = 4 space-time dimensions and needs to be renormalized to
make sense of it. Since we do not discuss renormalization in this paper, the space-time
dimension is assumed to be smaller than 4 so that the integral converges.
In Example 2, we saw that the Landau surface L2 of C2 consists of all points p1 ∈
C

D\{0} such that

− p21 = (m1 + m2)
2 or − p21 = (m1 − m2)

2 (222)

and in Example 3, we saw that the vanishing sphere corresponding to such a point
is the real sphere inside the complex sphere around (A0(p), 0, . . . , 0) ∈ C

D with

radius squared equal to −λ(−p21 ,m
2
1,m

2
2)

4p21
which needs to be real and positive. Again

we may assume p1 = ((p1)0, 0). Thus, it is not difficult to see that r22 (p) is real
and positive if and only if (p1)0 ∈ iR with either (Im((p1)0))2 > (m1 + m2)

2 or
(Im((p1)0))2 < (m1 − m2)

2.
Now, we use Theorem 41 to compute the discontinuity of I (C2): Let p′ ∈ T2 such
that −p′2 = (m1 ± m2)

2, let γ : [0, 1] → T2\L(C2) be a simple loop, consisting of
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a path from some Euclidean momentum to p ∈ T2 close to p′ such that

− 1

4p2
λ
(
−p2,m2

1,m
2
2

)
> 0 (223)

and a small loop around p′. Then,

Disc[γ ] I (C2)(p)

= N (2π i)2
∫
iR×RD−1

δ(k2 + m2
1)δ((k + p)2 + m2

2)

= −N
∫

RD−1

2π2√
k2 + m2

1

(
δ

(
(i
√
k2 + m2

1 + p0)
2 + k2 + m2

2

)

+δ

(
(−i
√
k2 + m2

1 + p0)
2 + k2 + m2

2

))

= −N
∫

RD−1

2π2√
k2 + m2

1

(
δ

(
2i p0

√
k2 + m2

1 + p2 − m2
1 + m2

2

)

+δ

(
−2i p0

√
k2 + m2

1 + p2 − m2
1 + m2

2

))
.

(224)

Now, we compute

± 2i p0
√
k2 + m2

1 + p2 − m2
1 + m2

2 = 0

⇔
√
k2 + m2

1 = ± i

2p0
(p2 − m2

1 + m2
2)

⇒ k2 = − 1

4p2
(p2 − m2

1 + m2
2)

2 − m2
1 = − 1

4p2
λ(−p2,m2

1,m
2
2) = r22 (p).

(225)

Note that the second line of (225) can be fulfilled for some k ∈ R
D−1 if and only if

± i

2p0
(p2 − m2

1 + m2
2) ≥ m1. (226)

Since we integrate only over non-negative |k|, we can hence write

δ

(
±2i p0

√
k2 + m2

1 + p2 − m2
1 + m2

2

)

=
√
k2 + m2

1

2|p0||k| �

(
± i

2p0
(p2 − m2

1 + m2
2) − m1

)
δ

(
|k| −

√
r22 (p)

) (227)

under the integral, where � denotes the Heaviside-function.
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Lemma 42 We have

�

(
i

2p0
(p2 − m2

1 + m2
2) − m1

)
+ �

(
− i

2p0
(p2 − m2

1 + m2
2) − m1

)

= �

(
−λ(−p2,m2

1,m
2
2)

4p2

)
= �(r22 (p)).

(228)

Proof A straightforward computation reveals

i

2p0
(p2 − m2

1 + m2
2) ≥ m1 or − i

2p0
(p2 − m2

1 + m2
2) ≥ m1

⇔ − (p2 − m2
1 + m2

2)
2

4p2
≥ m2

1

⇔ −λ(−p2,m2
1,m

2
2)

4p2
≥ 0.

(229)

�
Using Lemma 42, the discontinuity can hence be written as

Disc[γ ] I (C2)(p) = −Nπ2
∫

RD−1

δ(|k| −
√
r22 (p))

|p0||k| �

(
−λ(−p2,m2

1,m
2
2)

4p2

)

= −Nπ2 2π
D−1
2

�( D−1
2 )

· (r22 (p))
D−3
2

|p0|

= − Nπ
D+3
2

2D−4�( D−1
2 )

· (λ(−p2,m2
1,m

2
2))

D−3
2

(−p2)
D
2 −1

.

(230)

It should be noted that it is known by physicists that while −(p′)2 = (m1 + m2)
2

yields a genuine discontinuity on the principal branch, the point−(p′)2 = (m1−m2)
2

(called the pseudo-threshold) does not. Thus, we expect the intersection index N to
vanish in this case.

4.4 Discontinuity around points of higher codimension

Aside from the somewhat pathological colinear kinematic configurations outside of
Tn where the determinant of the matrix containing all products of external momenta
vanish, we have discussed how to compute the discontinuity along any simple loop
around a point of codimension 1 in the Landau surface of a one-loop Feynman graph.
This does, however, not exhaust all possible loops in the space of non-pathological
external momenta minus the Landau surface. We have seen in Proposition 25 and 26
that the Ln,I are codimension 1 submanifold intersecting in general position. Thus, a
point p ∈ Ln in the intersection ofmore than one Ln,I is a point of higher codimension.
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But we also know that Tn\Ln is spanned by simple loops (see Proposition 15), so that
it is possible to decompose a loop “around” p into simple loops.

Proposition 43 Let p ∈ Ln be a point of codimension k ∈ N
∗ and γ : [0, 1] → T be

a simple loop around p. Then, γ can be decomposed as

γ = γ1 · · · γk, (231)

where the γi : [0, 1] → T are powers of simple loops around the codimension 1 parts
of Ln intersecting at p.

Proof Denote m := (n − 1)D. According to Proposition 26, the point p lies in the
intersection of k codimension 1 parts of L which intersect in general position. Thus,
locally the intersection looks like

Xm,k := C
m\{(z1, . . . , zD) ∈ C

m | ∃i ∈ {1, . . . , k} : zi = 0}. (232)

Note that

H : Xm,k × [0, 1] → Xm,k

((z1, . . . , zm), t) 
→ (z1, . . . , zk, (1 − t)zk+1, . . . , (1 − t)zm)
(233)

is a deformation retract from Xm,k to (a subspace isomorphic to) Xk,k , so that

π1(Xm,k, (z1, . . . , zm)) � π1(Xk,k, (z1, . . . , zk)) (234)

for any (z1, . . . , zm) ∈ C
m . Now, note that

π : Xk,k → Xk−1,k−1, (z1, . . . , zk) 
→ (z1, . . . , zk−1) (235)

defines a Serre fibration with fiber

π−1({z1, . . . , zk−1}) = {(z1, . . . , zk) ∈ Xk,k | zk �= 0} (236)

homotopy equivalent to the circle S1 for any (z1, . . . , zk−1) ∈ Xk−1,k−1. Hence, we
obtain a short exact sequence

1 → π1(S
1) → π1(Xk,k) → π1(Xk−1,k−1) → 1 (237)

contained in the long exact sequence of the fibration. Thus,

π1(Xk,k) � πXk−1,k−1 ⊕ π1(S
1) (238)

and by induction we obtain

π1(Xk,k) � Z
k (239)
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for all k ∈ N
∗, where the factors of Z are generated by simple loops around the k

codimension 1 parts of Ln intersecting at p. This proves the claim. �
This allows us in principle to compute the discontinuity around any loop by Propo-
sition 24: Given a loop γ of interest, we have to find a decomposition γ = γ1 · · · γk
into simple loops whose existence is guaranteed by Proposition 43. Then, by applying
Proposition 24 sufficiently often, we can reduce the computation of Disc[γ ] to the
computation of Disc[γi ] for all i ∈ {1, . . . , k}. The latter case is covered by the general
theory.

5 More advanced examples

To illustrate the results from the last section and to check the results therein by com-
paring them with the common literature, we look at the two examples C3 and C4 in
more detail. In both examples, we focus the discussion on the case where all analytic
regulators λi are set to 1.

5.1 The triangle graph C3

First, we consider the triangle graph

C3 =
p3

k

p1

k + p1

p2

k + p1 + p2

.

In projective form, the corresponding Feynman integral reads

I (C3)(p)

=
∫

RPD

u2λ−D−1 · �D

(k2 + u2m2
1)

λ1((k + up1)2 + u2m2
2)

λ2((k + u(p1 + p2))2 + u2m2
3)

λ3
.

(240)

Having discussed C2 already, we know that there are discontinuities associated with
any pair of edges put on mass-shell. The three corresponding reduced graphs are
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G1 =
p2

p3

k

k + p1 p1

,

G2 =
p1

p3

k

k + p2 p2

,

G3 =
p3

k

k + p1 + p2

p1

p2

,

and they have the following Landau surfaces:

L2,{3} = {(p1, p2) ∈ T3 | − p21 = (m1 ± m2)
2}

L2,{1} = {(p1, p2) ∈ T3 | − p22 = (m2 ± m3)
2}

L2,{2} = {(p1, p2) ∈ T3 | − (p1 + p2)
2 = (m1 ± m3)

2}
(241)

Due to the S3-symmetry of the graph C3 (with respect to the action permuting
the vertices), it suffices to compute the discontinuity along one of the surfaces
L2,{1}, L2,{2}, L2,{3}. So let p′ ∈ L2,{3}, let γ : [0, 1] → T3\L(C3) be a simple
loop around p′ and let p = (p1, p2) ∈ T3\L(C3) such that

r22 (p1) = − 1

4p21
λ(−p21,m

2
1,m

2
2) ∈ R+. (242)

Let us now restrict our attention to the case λ1 = λ2 = λ3 = 1. Then, according to
Cutkosky’s Theorem 41, we get

Disc[γ ] I (C3)(p)

= N (2π i)2
∫
iR×RD−1

δ(k2 + m2
1)δ((k + p1)2 + m2

2)

(k + p1 + p2)2 + m2
3

dDk

= −N
∫

RD−1

2π2√
k2 + m2

1

×
∑

τ∈{−1,1}

δ(2iτ(p1)0
√
k2 + m2

1 + p21 − m2
1 + m2

2)

2iτ((p1)0 + (p2)0)
√
k2 + m2

1 + 2kp2 + (p1 + p2)2 − m2
1 + m2

3

.

(243)
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As in our calculations regarding C2, we have

δ

(
±2i(p1)0

√
k2 + m2

1 + p21 − m2
1 + m2

2

)

=
√
k2 + m2

1

2|(p1)0||k|�
(
± i

2(p1)0
(p21 − m2

1 + m2
2) − m1)δ(|k| −

√
r22 (p1)

)
.

(244)

We set

B := (p1 + p2)
2 − m2

1 + m2
3 − (p1)0 + (p2)0

(p1)0
(p21 − m2

1 + m2
2) (245)

and obtain

Disc[γ ] I (C3)(p) = −π2N

|(p1)0|
√
r22 (p1)

∫
SD−1

d�D−1

∫ 1

−1
d cos(ϕ)

×
∑

τ∈{−1,1} �(τ i
2(p1)0

(p21 − m2
1 + m2

2) − m1)

− (p1)0+(p2)0
(p1)0

(p21 − m2
1 + m2

2) + 2
√
r22 (p1)|p2| cos(ϕ) + (p1 + p2)2 − m2

1 + m2
3

= − π
D+3
2

�( D−1
2 )|(p1)0||p2|r22 (p1)

(
ln(B + 2

√
r22 (p1)|p2|

)
− ln

(
B − 2

√
r22 (p1)|p2|)

)
,

(246)

where we again used Lemma 42 to evaluate the sum of the two Heaviside-functions
to 1.
Now, we discuss the case where all three edges are put on shell.We can easily compute
an equation for the Landau surface by the procedure from Sect. 4: According to our
recursive formula (197), we have

A1(p) = − 1

2(p2)1

(
(p1 + p2)

2 − m2
1 + m2

3 − (p1)0 + (p2)0
(p1)0

(p21 − m2
1 + m2

2)

)
.

(247)

Note that A1(p) = − 1
2(p2)1

B. We set

B1 := (p1 + p2)
2 − m2

1 + m2
3 and B2 := (p1)0 + (p2)0

(p1)0
(p21 − m2

1 + m2
2)

(248)

and compute

r23 (p) = r22 (p) − A2
1(p) = −λ(−p21,m

2
1,m

2
2)

4p21
− B2

1 − 2B1B2 + B2
2

4(p2)21
. (249)
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At this point, we could end the calculation: We have successfully reduced the descrip-
tion of the Landau surface L3,{1,2,3} to a single equation. However, it is very useful
for physicists to be able to solve this equation for the O(D, C)-invariant products. In
our case C3, we do this for

s := −p21, t := −p22, u := −(p1 + p2)
2. (250)

Due to the symmetry of the graph, it suffices to solve for one of the variables and we
choose s here. The solution solved for t or u can then be obtained by simply permuting
the vertices of the graph C3. To this end, we first write

B2
2 = ((p1)0 + (p2)0)2

p21
(λ(−p21,m

2
1,m

2
2) − 4m2

1 p
2
1) (251)

to obtain

r23 (p) = − 1

4p21(p2)
2
1

((p1 + p2)
2λ(−p21,m

2
1,m

2
2) + p21B

2
1 − 2p21B1B2

− 4p21((p1)0 + (p2)0)
2m2

1)

= − 1

4p21(p2)
2
1

(−u(s + (m1 + m2)
2)(s + (m1 − m2)

2)

− s(u + m2
1 − m3)

2 − m2
1(s − t + u)2

+ (u + m2
1 − m2

3)(s − t + u)(s + m2
1 − m2

2))

= − 1

4(p1)20(p2)
2
1

(−m2
3s

2 + c · s + d)

(252)

with

c := 2m2
1t + 2m2

2u − (t + m2
2 − m2

3)(u + m2
1 − m2

3) (253)

and

d := −m2
1(t − u)2 − u(m2

1 − m2
2)

2 + (m2
1 − m2

2)(−t + u)(u + m2
1 − m2

3).

(254)

We see that the denominator of r23 (p) is a polynomial of degree 3 in s, t, u which is
quadratic in each of the channel variables separately. In particular, we can view it as
a quadratic polynomial in s. This allows us to conclude that r23 (p) = 0 if and only if

s = 1

2m2
3

(
c ±

√
c2 + 4m2

3d

)

= 1

2m2
3

(−(t − m2
2)(u − m2

1) + m2
3(t + u + m2

1 + m2
2) − m4

3
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+
√
m4

2 + (t − m2
3)

2 − 2m2
2(t + m2

3)((u − m2
3)

2 − 2m2
1(u + m2

3) + m4
1)).

(255)

This concludes the computation of the Landau surface L3.
Turning to the computation of the discontinuity of I (C3) along simple loops around
codimension 1 points in L3,{1,2,3}, assume again that γ1 = γ2 = γ3 = 1. Note that in
this case the integral I (C3)(p) converges absolutely in D = 4 space-time dimensions
for p close to Euclidean momenta according to the power counting criterion. Let
p ∈ L3,{1,2,3} and let γ : [0, 1] → T3\L3 be simple loop around p. We can compute
the corresponding discontinuity using Theorem 41. For the actual calculation, it is
convenient to again choose p1 and p2 such that (pi ) j = 0 for j ≥ i which we can do
by Lemma 38. By our previous calculation, we have

Disc[γ ](I (C3))(p)

= −iπ3N

|(p1)0|
√
r22 (p1)

∫
SD−1

d�D−1

∫ 1

−1
d cos(ϕ)δ(2

√
r22 (p1)|p2| cos(ϕ) + B).

(256)

The integral over the δ-function evaluates to 1

2
√
r22 (p1)|p2|

if and only if

A1(p)√
r22 (p1)

∈ [−1, 1]. (257)

This is always true for any p such that r23 (p) = r22 (p1) − A2
1(p) > 0. Thus,

Disc[γ ](I (C3))(p) = −i Nπ
D+5
2

�( D−1
2 )|(p1)0||(p2)1|r22 (p1)

. (258)

5.2 The box graph C4

Finally, we consider the graph
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C4 =

p4

k

p1

k + p1

p2

k + p1 + p2

p3

k + p1 + p2 + p3

The corresponding Feynman integral in projective space reads

I (C4)(p) =
∫

RPD

u2λ−D−1 · �D

(k2 + u2m2
1)

λ1((k + up1)2 + u2m2
2)

λ2

× 1

(k + u(p1 + p2))2 + u2m2
3)

λ3((k + u(p1 + p2 + p3))2 + u2m2
4)

λ4
.

(259)

As before, we can obtain parts of the Landau surface by considering the reduced graphs
of C4. There are four graphs with one edge contracted to zero length

p1

p4

k − p2 − p3

p2

k − p3

p3
k

,

p3

k

p1

k + p1

p2

k + p1 + p2

,
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p3

k

p1

k + p1

p2

k + p1 + p2

,

p3

k

p1

k + p1

p2

k + p1 + p2

,

and 6 graphs with two edges contracted to zero length

k + p1 + p4

k

p1

p4 p2

p3

,

k + p1 + p2

k

p1

p2 p3

p4

,

p1

k − p1 − p2

k

p2

p3

p4 ,

p1

k − p1 − p2

k

p2

p3

p4 ,
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p1

k − p1 − p2

k

p2

p3

p4 ,

p1

k − p1 − p2

k

p2

p3

p4 .

Using our calculations for C2, we immediately obtain

L4,{1,2} = {p ∈ T4 | − p23 = (m3 ± m4)
2},

L4,{1,3} = {p ∈ T4 | − (p1 + p2)
2 = (m2 ± m4)

2},
L4,{1,4} = {p ∈ T4 | − p22 = (m2 ± m3)

2},
L4,{2,3} = {p ∈ T4 | − (p1 + p2 + p3)

2 = (m1 ± m4)
2},

L4,{2,4} = {p ∈ T4 | − (p2 + p3)
2 = (m1 ± m3)

2},
L4,{3,4} = {p ∈ T4 | − p21 = (m1 ± m2)

2}.

(260)

Similarly with our calculations for C3, we obtain

L4,{1,2,3} = {p ∈ T4 | r23 (p1, p2, p3 + p4) = 0} −
⋃

I⊂{1,2,3,4}
|I |=2

L4,I ,

L4,{1,2,4} = {p ∈ T4 | r23 (p1, p2 + p3, p4) = 0} −
⋃

I⊂{1,2,3,4}
|I |=2

L4,I ,

L4,{1,3,4} = {p ∈ T4 | r23 (p1 + p2, p3, p4) = 0} −
⋃

I⊂{1,2,3,4}
|I |=2

L4,I ,

L4,{2,3,4} = {p ∈ T4 | r23 (p1 + p4, p2, p3) = 0} −
⋃

I⊂{1,2,3,4}
|I |=2

L4,I .

(261)

Now, we compute L4,{1,2,3,4}: We have

r24 (p) = r23 (p) − A2
2(p) (262)

with

A2(p) = − 1

2(p3)2
(A0(p)(p1 + p2 + p3)0 + A1(p)(p1 + p2 + p3)1

+(p1 + p2 + p3)
2 − m2

1 + m2
4).

(263)
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Similarly to our exampleC3 above, we have reduced the task of computing L4,{1,2,3,4}
to solving a single equation: r24 (p) = 0. Again it is useful to solve this equation for
the channel variables. We set

s := p21, t := p22, u := p23, v := (p1 + p2)
2, w := (p1 + p3)

2, x := (p2 + p3)
2.

(264)

However, in this case the task is a bit more tricky and we have to distinguish some
cases.While calculatingC3, it was enough to solve for one of the channel variables due
to the S3-symmetry of the underlying graph. Since C4 does not enjoy a corresponding
S4-symmetry, we have to solve for say s, v and w to be able to cover all results. The
nominator of r24 (p) is again quadratic in each channel variable separately. Hence, we
have

y = 1

2ay

(
− by ±

√
b2y − 4aycy

)
(265)

for all y ∈ {s, t, u, v, w, x} where the coefficients ay, by, cy can be read off from
r24 (p) directly. But r24 (p) is a pretty messy expression so that we do not perform the
calculation by hand. Instead we used a Mathematica program. The results obtained
by solving r24 (p) = 0 for one of the channel variables are equally messy and might
not seem particularly useful. For completeness, we include them anyway. For s, we
obtain

as = 1

16

(
m4

2 − 2m2
2

(
2m2

3 − m2
4 + t + u

)
+4m4

3 − 4m2
3

(
m2

4 + t + u − x
)

+
(
−m2

4 + t + u
)2)

(266)

bs = 1

8

(
m2

2

(
m2

3(−t − 3u + v + 3w + 2x) + m2
4(2u − v − w − x)

− 2t2 + t(−4u + v + 2(w + x)) − 2u2 + u(4v + w + x) − vx)

+ m2
3

(
2m2

3(t + u − v − w − x) + 2x(2t + 2u − v − w)

− (3t + u)(t + u − v − w) − 2x2)

+ m2
4

(
m2

3(−t − 3u + 3v + w + 2x) + t(−2v + w + x) + v(u + x)
)

+ m4
2(t + 2u − w − x) + m2

1(m
2
2(−t − 3u + x)

+ m2
4(3t + u − x) + (t − u)

(
−2m2

3 + t + u − x
))

− m4
4(t + v)

− x
(
t2 + t(u − v) + uv

)
+ t(t + u)(t + u − v − w)) (267)

cs = 1

16

(
m4

2

(
t2 + 4tu − 2t(w + x) + 4u2 − 4u(v + w + x) + (w + x)2

)
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+ m4
1

(
t2 − 2t(u + x) + (u − x)2

)
+ 2m2

1

(
− m2

2

(
t2 + t(u − w − 2x) + 2u2 − u(2v + w + 3x) + x(w + x)

)
+ m2

3

(
−t2 + t(v + w + x) + u2 − u(v + w + x) + x(w − v)

)
+ m2

4

(
t2 + t(3u − v − 2w − x) + v(x − u)

)
+ t3 − t2(v + w + 2x)

+ t
(
−u2 + u(v + w − 2x) + x(2v + w + x)

)
+ vx(u − x)

)

− 2m2
2

(
m2

4

(
t2 + t(2u − v − w − x) + v(x − w)

)

+ m2
3(x(t − u − v + w) − (t − 2u + w)(t + u − v − w)

)

+ t3 + t2(3u − v − 2(w + x))

+ t
(
2u2 − 4uv − 3u(w + x) + v(w + 2x) + (w + x)2

)
+ v

(
−2u2 + 2u(v + w + x) − x(w + x)

))

+
(
m2

3(−t − u + v + w) + m2
4(t − v) + t(t + u − v − w) + x(v − t)

)
2
)
(268)

For v, we obtain

av = 1

16

((
−m2

3 + m2
4 + t − x

)
2 − 4m2

2u
)

(269)

bv = 1

8

(
m2

2

(
m2

3(s − t + 2u − w + x) + m2
4(−s + t + w − x)

− x(s + 2(t + u) − w) + st + 4su + t2 + 4tu − tw + 2u2 − 2uw + x2)

+ m2
4

(
m2

3(3s + 2t + u − w) + s(−2t + u + x) + t(−2t − u + w + 2x)
)

+ m2
3

(
m2

3(−(2s+t+u−w))+s(3t+u−2x)+x(−2t−u+w)+2t(t + u − w)
)

− m4
4(s + t) + m2

1

(
m2

3(t − u − x) − m2
4(t + u − x) + 2m2

2u − t2 + t(u + 2x)

+ x(u − x)) − 2m4
2u + sx(t − u) − st(t + u) − t(t − x)(t + u − w − x)

)
(270)

cv = 1

16

(
− 2m2

2

(
m2

3(2s
2 + s(t + 3u − 3w − 2x) − t2 + t(u + x)

+ (u − w)(2u − w − x)) + (s + t + 2u − w − x)
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(
m2

4(t − s) + s(t + u) + t(t + u − w − x)
))

− 2m2
4

(
m2

3

(
2s2 + s(t + 3u − w − 2x) + t(t + u − w)

)
+ (s − t)(s(t + u) + t(t + u − w − x))) − 4m2

3s
2t

− 4m2
3s

2u + 4m2
3s

2x + 4m4
3s

2 + 2m2
1(m

2
2(−(s(t + 3u − x)

+ t2 + t(u − w − 2x) + (u − x)(2u − w − x)))

+ m2
3(x(t − u + w) − (t − u)(2s + t + u − w))

+ m2
4(s(3t + u − x) + t(t + 3u − 2w − x)) + s(t − u)(t + u − x)

+ t
(
x(w − 2(t + u)) + (t − u)(t + u − w) + x2

))

− 6m2
3st

2 + m4
2(s + t + 2u − w − x)2 − 8m2

3stu + 6m2
3stw

+ 8m2
3st x + 4m4

3st + m4
4(s − t)2 − 2m2

3su
2 + 2m2

3suw

+ 8m2
3sux + 4m4

3su − 4m2
3swx − 4m4

3sw − 4m2
3sx

2 − 4m4
3sx − 2m2

3t
3

+ m4
1

(
t2 − 2t(u + x) + (u − x)2

)
− 4m2

3t
2u

+ 4m2
3t

2w + 2m2
3t

2x + m4
3t

2 − 2m2
3tu

2

+ 4m2
3tuw + 2m2

3tux + 2m4
3tu − 2m2

3tw
2

− 2m2
3twx − 2m4

3tw + m4
3u

2 − 2m4
3uw

+ m4
3w

2 + (s(t + u) + t(t + u − w − x))2) (271)

Finally, for w we obtain

aw = 1

16

(
−2m2

2

(
m2

3 + t
)

+
(
t − m2

3

)
2 + m4

2

)
(272)

bw = 1

8

(
m2

2

(
m2

4(−s + t + v) + m2
3(3s + 3u − v − x)

+ 2st + su + 2t2 + 3tu − tv − 2t x − 2uv + vx)

+ m2
3(m

2
3(−(2s + t + u − v)) + s(3t + u − 2x) + 2t(t + u − v) + x(v − t))

+ m4
2(−(s + t + 2u − x)) + m2

4(
m2

3(s + t − v) + t(s − t + v)
)

+ m2
1(m

2
2(t + u − x) + m2

3(t − u + x)

+ t
(
−2m2

4 − t + u + x
))

− t
(
s(t + u) + t2 + t(u − v − x) + vx

))
(273)
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cw = 1

16

((
t2 − 2(u + x)t + (u − x)2

)
m4

1

+ 2((t − v)x2 + (s(u − t) − 2t(t + u) + (2t + u)v)x

−
(
t2 + st + ut + 2u2 + x2 + 3su − 2uv − (s + 2t + 3u)x

)
m2

2

− ((t − u)(2s + t + u − v) + (−t + u + v)x)m2
3

+
(
t2 + 3st + 3ut − vt + su − uv − (s + t − v)x

)
m2

4 + (t − u)((s + t)(t + u) − tv))m2
1

+
(
s2 + 2ts + 4us + t2 + 4u2 + x2 + 4tu − 4uv − 2(s + t + 2u)x

)
m4

2

+ 4s2m4
3 + t2m4

3 + u2m4
3 + v2m4

3 + 4stm4
3 + 4sum4

3

+ 2tum4
3 − 4svm4

3 − 2tvm4
3 − 2uvm4

3 − 4sxm4
3

+
(
s2 − 2(t + v)s + (t − v)2

)
m4

4 + ((s + t)(t + u) − tv)2 + (t − v)2x2

− 2t3m2
3 − 6st2m2

3 − 2su2m2
3 − 2tu2m2

3

− 2tv2m2
3 − 4sx2m2

3 − 4s2tm2
3 − 4s2um2

3 − 4t2um2
3

− 8stum2
3 + 4t2vm2

3 + 6stvm2
3 + 2suvm2

3

+ 4tuvm2
3 + 4s2xm2

3 + 2t2xm2
3

+ 2v2xm2
3 + 8st xm2

3 + 8suxm2
3 + 2tuxm2

3

− 4svxm2
3 − 4tvxm2

3 − 2uvxm2
3

− 2
(
(t + u)s2 + (2t − u)vs − (t + v)xs

+
(
2s2 + (t + 3u − 3v − 2x)s + (t − v)(t + u − v)

)
m2

3 + (t − v)((t − v)x − t(t + u − v)))m2
4

− 2
(
t(t − v)(t + u − v) + s

(
t2 + (u − v)t + uv

))
x

− 2m2
2(t

3 + (3u − v − 2x)t2 + (2u − x)(u − 2v − x)t

+
(
2s2+(t+3u−v − 2x)s−t2 + 2u(u − v) − (u + v)x + t(u + v + x))m2

3

+ ((s − t + v)x − (s − t)(s + t + 2u − v))m2
4 + s2(t + u)

+ v
(
−2u2 + 2(v + x)u − x2

)
+ s

(
2t2 + (4u − v − 2x)t + 2u2 + vx − u(4v + x)

)))
(274)

These results agree with the results of [16], which cover the case m1 = · · · = m4 and
s = t = u = (p1 + p2 + p3)2.16

16 For easier comparison: In [16], our variables v and x are called s and t , respectively.
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6 Conclusion and outlook

We have seen that the techniques to treat singular integrals developed in works such
as [8, 19] can be applied to one-loop Feynman integrals to rigorously state and prove
Cutkosky’s Theorem on the discontinuity of Feynman integrals on the principal branch
at Minkowski momenta. This settles a claim appearing regularly in the literature (see
for example [7] or [1]) in this particular case, up to the computation of the relevant
intersection index. The latter will be done in a follow-up paper.

Of course, the goal is to eventually prove Cutkosky’s Theorem in the general multi-
loop case. There seems to be no straightforward way to apply the program to graphs
with more than loop. Problems occur already at the first stage of compactification
since the naive compactification via projective space does not work. What one could
do instead is consider Feynman integrals as iterated integrals (one iteration for each
loop-momentum) and then apply the generalization of the techniques in [19] to the
case where the integrand itself is also ramified. This is a non-trivial task, however, and
future research has to show if this is a valid route.
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