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ABSTRACT

We use the cutoff rate to analyze reliable rates over the first-
order Guass-Markov fading channel when an optimized pilot-symbol
assisted modulation (PSAM) scheme is used to provide partial CSI
to the receiver. The transmitter uses BPSK modulation, and has
knowledge of the SNR at the receiver and the normalized doppler
spread only. Under an average energy constraint, closed form ex-
pressions are found for the optimal training and data energies, for
both the adaptive and non-adaptive cases. For the non-adaptive
case, a lower bound on the optimal training period, which is exact
at moderate to high SNR, is given.

1. INTRODUCTION

We investigate reliable rates for single user transmission over a
temporally-correlated Rayleigh fading channel, which we model
as a first-order Guass-Markov process. We use the average cutoff
rate as an information-theoretic metric.

At the outset, the channel state is unknown to both the trans-
mitter and receiver. To learn the channel, we use pilot-symbol
assisted modulation (PSAM) [3], and employ a MMSE channel
estimator, thereby providing partial CSI to the receiver. By opti-
mizing the cutoff rate over the training parameters (energy alloca-
tion and the training period), we characterize the reliable rates on
the Gauss-Markov channel for an optimized PSAM approach.

Previous work on reliable rates for fading channels using an
optimized PSAM channel estimation scheme have been primarily
for the (block) iid Rayleigh fading scenario, and have looked at
the maximization of (bounds on) mutual information [12], [6]. A
minimax optimization leads to a Gaussian input distribution, and
makes the analysis tractable. It has been shown in [4] that the
Gaussian input is ill-suited for consideration on the Guass-Markov
channel, as it produces bounded mutual information at high SNR.
The results of [1] indicate that the capacity-achieving distribution
for the iid Rayeligh scenerio without CSI is a discrete one, and that
at low SNR, binary ON-OFF keying (OOK) is optimal.

The paper most related to our work is [10], which also con-
siders reliable rates for the Gauss-Markov fading model when par-
tial CSI is provided to the receiver via a PSAM/MMSE estimation
scheme. The mutual information metric is used, and its intractabil-
ity leads to a numerical analysis. The authors use the optimal bi-
nary input distribution at the transmitter, however, the transmission
energy is kept constant.

Here, we consider a similar framework, and obtain analytic
results for the adaptive energy scenario. Our results detail the op-
timal energy allocation between the pilot and data, and we find a

bound on the optimal training period (the period between train-
ing symbols) that is exact at moderate to high SNR. We assume
antipodal BPSK modulation. We consider the case of adaptive
modulation in [11].

We will use the cutoff rate Ro as an information-theoretic met-
ric for characterizing the reliable rates R for the systems we study.
The use of cutoff rate Ro in place of capacity has been common
since its reintroduction in [9], and discussions on cutoff rate for no
CSI and full CSI may be found in [7] and [8]. The cutoff rate is
a lower bound on capacity and the function Ro − R may be used
in place of the random coding exponent to characterize the entire
rate vs. performance curve. The use of cutoff rate in place of ca-
pacity often leads to tractable results that would not be available
otherwise. For low-complexity, low-delay systems, the cutoff rate
is often viewed as a “practical channel capacity.”

2. SYSTEM MODEL

We describe the channel model, the training scheme, and the chan-
nel estimation algorithm.

2.1. The Gauss-Markov Channel

The channel of interest is a Rayleigh flat fading model. Typically
the Jakes model is used to describe the temporal correlation of
the fading process. It is known that second- and third-order AR
(Gauss-Markov) models provide excellent fits to the Jakes model.
The higher-order models are not analytically tractable and so do
not provide ready insights. We consider the first order Gauss-
Markov fading channel described via

hk = αhk−1 + zk (state),

yk =
√

Ekhksk + nk (observation), (1)

where k denotes discrete time, hk ∼ CN (0, σ2
h) models fading,

0 < α < 1 describes the channel correlation and is related to the
normalized Doppler spread; zk ∼ CN (0, σ2

h(1 − α2)) is driving
noise, yk is the signal at the receiver, Ek is the energy of the k-
th symbol, nk ∼ CN (0, σ2

N ) models AWGN, and sk ∈ {−1, 1}
(antipodal BPSK modulation).1 We assume that σ2

N , σ2
h �= 0.

2.2. Channel Estimation

Partial CSI is available at the receiver via pilot-symbol assisted
modulation and MMSE channel estimation. We will use a periodic

1In this paper CN ∼

(
µ, σ2

)
denotes a complex Gaussian random

variable with mean µ and with independent real and imaginary parts, each
having variance σ2/2.



PSAM methodology in which a single training (pilot) symbol is
periodically inserted into the symbol stream every T symbol slots.
Motivation for sending one pilot symbol, rather than many, may be
found in [2], [5], and [3]. Given periodic training, we assume that
the energy allocation is also periodic, i.e., the received data are

yk =
√

E�hk + nk, � = k mod T.

At the receiver, a MMSE channel estimator is used as follows:
Upon the reception of a training symbol, the current channel state
is estimated, and the next T − 1 channel states are predicted us-
ing only the most recent training symbol. The MMSE estimator
equations are:

ĥmT = E [hmT |ymT ] =

√
E0

σ2
N/σ2

h + E0
ymT ,

ĥmT+� = α�ĥmT for 1 ≤ � ≤ T − 1. (2)

The marginal pdf of the estimator (2) is given by:

ĥmT+� ∼ CN (
0, σ̂2

�

)
, σ̂2

� = α2l E0σ
2
h

σ2
N/σ2

h + E0
, (3)

for 0 ≤ � ≤ T − 1. Note that the performance of the estimator
becomes worse with increasing �.

3. AVERAGE CUTOFF RATE

To characterize the rates that can be used reliably on the Gauss-
Markov channel, we will use the average cutoff rate RA, which is
developed as follows: The estimation scheme separates the chan-
nel into T distinct slots per period. Consider the �th slot. Over
time, and after estimation, successive realizations of the �th slot
have the same marginal statistics (3), and form a channel which
can be treated as iid under the assumption of “perfect” interleav-
ing. The first channel is used only for training symbols, and the
remaining channels are data channels. Then RA is simply the av-
erage cutoff rate over the set of T channels created by the channel
estimation algorithm. Given partial CSI at the receiver, via the
channel estimate ĥ in (2), we assert that2 the ergodic cutoff rate of
the �th channel (� �= 0) is given by:

Ro,� = − log2

{
1

2
+

1

2

[
1 + κ� (1 − ω�)

1 + κ�

]}
,

where ω� � σ̂2
� /σ2

h (0 ≤ ω� ≤ 1) is the estimator quality and
κ� � σ2

hE�/σ2
N is the received SNR in the �th slot. Figure 1

shows the cutoff rate as a function of ω� and κ�. Note that, above a
certain value of κ�, the cutoff rate saturates to a value that depends
only on the estimator quality ω�. The average cutoff rate RA is

RA � 1

T

T−1∑
�=1

Ro,� = − 1

T

T−1∑
�=1

log2

[
1 − 1

2

α2�κ�κ0

(1 + κ�) (1 + κ0)

]
.

(4)

Codebook multiplexing is one scheme that achieves RA. There
are T − 1 codebooks. The �th codebook operates independently
at rate Ro,� and transmits an N -length codeword over a period of
NT slots. Under the assumption of perfect interleaving, RA is a
lower bound on reliable rates for the Guass-Markov channel for
the following reasons:

2We defer the proof of this assertion, and of several other results, to
[11].

LB1. The PSAM front end is a design constraint and may be rate-
suboptimal. The MMSE-1 estimation algorithm is clearly
suboptimal, as it uses only the current training symbol.

LB2. Treating the Guass-Markov channel as T independently coded
sub-channels does not allow for joint coding across sub-
channels.

Increasing the energy in the pilot improves channel estimation
accuracy and increases RA; decreasing the energy in the data sym-
bols decreases RA. Thus, subject to a total energy constraint, there
is an energy allocation problem which we study next.

4. OPTIMAL ENERGY ALLOCATION: EQUAL ENERGY
DATA SLOTS

In this section we assume that practical constraints require that all
data slots use the same energy κD , so that κ� = κD for � ∈
{1, . . . , T − 1}.3

4.1. Optimal Energy

Here, we will find the data energy κ∗
D and training energy κ∗

0

which maximize RA subject to a constraint on the total energy,

κ0 + (T − 1)κD ≤ κtot. (5)

The average cutoff rate is given by (4) with κ� = κD , ∀� ≥ 1.
We can show that the optimal solution satisfies the equality

constraint in (5), and is given by

κ∗
D = Γ −

√
Γ2 − κtot

T − 1
Γ, Γ =

κtot + 1

T − 2
, (6)

for T > 2. For T = 2, κ∗
D = κ∗

0 = κtot/2.
Note that κ∗

D does not depend on α, however RA(κ∗
D), does.

Next, we look at two asymptotic results:

• Low energy regime (κtot � 1), we obtain

κ∗
D =

1

2

κtot

T − 1
, κ∗

0 =
κtot

2
,

implying that half of the available energy per period should
be allocated to the training symbol. The 50-percent train-
ing paradigm has also been reported in [12] for a different
channel model, metric, and assumptions.

• High energy regime (κtot � 1), we have

κ∗
D =

κtot

T − 2

(
1 − 1√

T − 1

)
, and

κ∗
0 = κtot

[
1 − T − 1

T − 2

(
1 − 1√

T − 1

)]
. (7)

A similar result was found in [12]. For large T , the energy
allocated to the training symbol decays as T−1/2,

κ∗
0 =

κtot√
T

.

3Henceforth, we will describe energy quantities by their faded values,
denoted by κ = Eσ2

h/σ2
N . The system designer has control over the cor-

responding unfaded energy E. The conversion between these two quanti-
ties is trivial, as the transmitter has knowledge of the noise ratio, σ2

N/σ2
h.



4.2. Optimal Training Period

The training period T is the remaining design parameter. Here, we
find the optimal training period T ∗ for maximization of RA. For
a fair comparison, we generalize the constraint of (5) so that the
average energy per slot κav remains fixed as we vary T :

κ0 + (T − 1)κD = κtot = Tκav (8)

Let R∗
A(T ) be the optimized average cutoff rate for fixed T .

Using (8) in (4), with κ� = κ∗
D given by (6), and Tκav replacing

κtot we obtain

R∗
A(T ) = − 1

T

T−1∑
�=1

log2

{
1 − α2�

2

(
Tκav − (T − 1)κ∗

D

)
κ∗

D(
1 + Tκav − (T − 1)κ∗

D

) (
1 + κ∗

D

) }
(9)

which depends on T , α, and κav. Increasing T decreases the
overhead (rate loss) due to training, but also decreases the channel
estimation accuracy, and thus the achievable rate in the latter slots.
We seek the T that optimizes R∗

A(T ).
In the high energy regime (κav → ∞), each term in the sum-

mation of (9) enters the saturation region, and we have

RA = − 1

T

T−1∑
�=1

log2

[
1 − α2�

2

]
.

Denoting the optimum training period in the high energy regime
as T ∗

H , we have that

T ∗
H = arg max

T

T−1∏
�=1

[
1 − α2�

2

]−1/T

. (10)

which is given explicitly in terms of α in Table 1. Notice that T ∗
H is

an increasing function of α. This is easily verified from (10) for the
high energy case, and can be verified, in general, from (9). This is
because larger α implies that estimates of successive channel slots
degrade slowly, and therefore more channels can be utilized before
we reach the point at which the loss in R∗

A(T ) incurred by adding
another channel is no longer offset by the potential gain due to less
training overhead.

T ∗
H is a lower bound on T ∗ for any κav (i.e., T ∗

H ≤ T ∗).
This is because, in the saturation region, the quality loss between
successive data slots is magnified (see Figure 1). Therefore, mak-
ing T larger diminishes R∗

A(T ) quickly. In Table 2, we compare
the optimum training period in the high energy regime T ∗

H , with
T ∗ for several values of κav. Note also that for α ≤ 0.98 and
for κav ≥ 10, the bound is nearly exact. Note that T ∗ indicates
the optimal training period under an average energy constraint; it
clearly depends upon the normalized Doppler bandwidth, α.

5. OPTIMAL ENERGY ALLOCATION: VARIABLE
ENERGY DATA SLOTS

In this section we seek to optimize RA in (4) over κ �
{κ0, . . . ,κT−1}, subject to the total energy constraint

T−1∑
�=0

κ� = κtot.

We will treat the training period T as a fixed parameter.

α T ∗
H

0 < α < 0.73 2
0.74 ≤ α < 0.89 3
0.90 ≤ α < 0.94 4
0.95 ≤ α < 0.96 5

α = 0.99 9
α = 0.999 27
α = 0.9999 84

Table 1. The optimal training period at high energy T ∗
H

T ∗

α T ∗
H κav = 1000 100 10 1

0.50 2 2 2 2 2
0.80 3 3 3 3 3
0.90 4 4 4 4 5
0.95 5 5 5 5 8
0.98 7 7 7 8 13
0.99 9 9 9 11 20
0.999 27 27 28 37 88
0.9999 84 85 90 136 387

Table 2. Comparing T ∗
H to T ∗ for different values of κav

Our intuition from water-filling over parallel AWGN channels
applies here as we are ignoring the correlation between the T chan-
nels with respect to coding, and are instead exploiting this correla-
tion in designing the channel estimator. Waterfilling predicts that
more energy will be allocated to less noisy channels, and that chan-
nels with noise-levels above a threshold will not be used at all. We
will see that both of these ideas are preserved, where the noise
metric is σ2

N/σ2
h.

5.1. Substitution Function

Optimization of RA over κ does not lead to a closed form solution
for the optimal energy allocation. Instead, we propose an approxi-
mate solution based on optimizing the substitution function

R̃A �
T−1∑
�=1

α2� κ�κ0

(1 + κ0) (1 + κ�)
.

over κ. We will denote the optimizer of the substitution function
by κ̃∗

. Let κ∗ be the optimal energy-vector for RA in (4). We
claim that κ̃∗ ≈ κ∗ for the following reasons (proofs and further
details are given in [11]):

A1. The approximate solution is exact (i.e., κ̃∗
= κ∗)

as α → 1 or as α → 0 or as κtot → 0.

A2. The appropriate Taylor expansion shows that κ̃∗ ≈ κ∗ if
α2� � 1 or if κ0 � 1 or if κ� � 1, ∀� ≥ 1.

A3. Numerical simulations show that κ̃∗ ≈ κ∗ for moderate
values of α, at moderate to high values of κtot (this is the
region where no theoretical justification has been given).

Illustrative examples of the above remarks are given in section 5.3.



5.2. Optimal Energy Allocation

The optimal energy vector κ̃∗
is specified by the following:

Theorem. (a) Use the first M data slots (TA = M ) iff

φα(M − 1) ≤ κtot <
φα(M)

1 − δ(M − T + 1)
, (11)

where δ(x) is the Kronecker delta, 1 ≤ M ≤ T − 1, and

φα(N) =[
α−N − 1

1 − α
−

(
N +

1

2

)
+

√
1

4
+

(α−N − α) (α−N − 1)

1 − α2

]
.

(12)

(b) The optimal training energy (TA �= 1) is given by:

κ0(TA) = −∆ (TA + κtot)

+

√
(∆2 + ∆) (TA + κtot)

2 − (∆ + 1) (TA + κtot),

where ∆ = 1
2

(1−α)(1+αTA )

α−αTA
.

(c) The data energies (TA �= 1) are given by, 1 ≤ � ≤ TA,

κ� = α�−1 1 − α

1 − αTA
[κtot − κ0(TA) + TA] − 1.

(d) If TA = 1, κ0 = κ1 = κtot/2.

Proof. See [11]. �

The channel assignment strategy of (11) is illustrated in Figure
2 for a system with κtot = 50, T = 21, and for several values of α.
Consider the curve φ.8(M). The candidate energy line intersects
φ.8(M) between M = 10 and M = 11. Therefore, TA = 11 is
the optimum number of data paths to activate.

We look at some consequences of the Theorem:

1. TA is an increasing function of α (see Fig 2). This can be
verified by noting that

∂φα(M)

∂α
< 0, for 0 < α < 1.

.

2. As κtot → ∞ all T − 1 slots become active and

κ0(T − 1) = κtot

[√
h(α) − 1

h(α) − 1

]
, (13)

where h(α) = (1+α)(1−αT−1)

(1−α)(1+αT−1)
.

3. As κtot → 0 only the first data slot is active and

κ0(1) =
Etot

2
. (14)

5.3. Numerical Simulations

In this section, we show that κ̃∗ ≈ κ∗ using numerical tech-
niques. Define the normalized error metric4

e � ‖κ− κ̃‖1

κtot
.

Figure 3 compares κ̃∗
with κ∗ for κtot = 10 and T = 6,

and for several values of α. The remarks A1 and A2 predict that
the approximate solution performs well for α = 0.2 and α =
0.98. This is verified in the figure, both graphically and from the e
metric. We observe that the solution is also close for α = 0.5 and
α = 0.7. Note that in all cases the approximate solution correctly
predicts the number of active paths TA.

In Figure 4, we compare κ̃∗
and κ∗ for α = 0.85, T = 6,

and for different values of κtot. The remarks A1 and A2 predict ac-
curacy for κtot = 0.1. We see that the normalized error e remains
small for the higher values of κtot as well. Again, the approximate
solution correctly predicts TA in each case.

6. DISCUSSION

We considered the Gauss-Markov fading channel with partial CSI
available at the receiver via periodic training. Using average cut-
off rate as a metric, we derived a closed-form expression for the
optimal allocation of energy between the training and data slots
for both the fixed and variable data energy cases. For the fixed
data-energy case, we also found a bound on the optimal training
period, that is exact at moderate to high SNR. For the variable
data-energy case, a well-justified substitution function was used,
leading to closed-form expressions for the optimal number of ac-
tive data slots, and the energy allocation to each slot. We are cur-
rently studying optimal binary signaling in place of BPSK, more
sophisticated estimation strategies, and MIMO/OFDM extensions.
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4Here ‖a‖1 denotes the 1-norm of the vector a.
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