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Abstract: At present, variable selection turns to prominence since it obviously
alleviate a trouble of measuring multiple variables per sample. The partial least
squares regression (PLS-R) and the score of Variable Importance in Projection
(VIP) are combined together for variable selection. The value of VIP score
which is greater than 1 is the typical rule for selecting relevant variables. Due
to a constant cutoff threshold is not sometimes suitable for every data structure,
a new cutoff threshold for VIP in classification task has been proposed and then
compared to the classical one thru the interesting situation simulation. There
were 180 situations generated based on four parameters: Percentage of the
number of relevant variables, Magnitude of mean difference of relevant variables
between two groups, Degree of correlation between relevant variables, and the
sample size. The result of this study presents that the new cutoff threshold can
improve in identifying relevant variables more than the previous threshold as
seeing of good value of the average balanced accuracy in most of situations.
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1. Introduction

Because of the progressive technology in the past decade, a large number of data
can be accumulated. Data set with hundreds or thousands of attributes is called
high dimensional data. For example, microarray data which is a lot of biological
data of tissues is derived from DNA microarray experiments. The experiment
allows simultaneous measurement of tens of thousands of gene expression levels
per sample. However, the number of samples from the microarray experiment
usually contains less than one hundred samples. The number of genes (vari-
ables) in data then far exceeds the number of samples. Such data set presents
great challenges in data analysis because some existing methods of data anal-
ysis can not support it. Furthermore, each of gene does not hold for relevant
information. There are only 5% of total genes containing relevant information
about the grouping [1]. Therefore, selecting a subset of relevant genes and then
using only some of them for the subsequent data analysis is essential.

Variable selection is the process of determining relevant variables from the
original variable set. It offers several advantages such as avoiding overfitting,
improving model performance, providing faster and more cost-effective mod-
els and gaining a deeper insight into the underlying processes. The methods
of variable selection in the viewpoint of classification can be classified into
three categories: filter, wrapper and embedded methods. Existing methods for
variable selection reviewed in [2] was mentioned as a good review. For high
dimensional data like microarray data, wrapper and embedded methods spend
much of time in contrast to the filter method which considers only the intrin-
sic properties of the classification independence. Since it is independent and it
performs only once for all classification algorithms, it can be computed fast and
simply. Filter method is divided into two types corresponding to dependency of
variable (univariate and multivariate). Univariate type considers each variable
as independence from other variables while multivariate type includes variable
dependency for selecting the relevant variable subset.

The VIP is a measurement including variable dependency which is consid-
ered as the benefit of multivariate filter method. In the situation of high dimen-
sionality, it usually involves with correlation between variables and missing of
observations or variables more than samples. Under this circumstance, nowa-
days the VIP score obtained by PLS-R has been paid an increasing attention
as a significant measurement of each predictor variable [3], [4], [5]. Normally,
the average of the squared values of the VIPs is equal to 1. The criterion of
VIP value with greater than 1 is then often used as a cutoff point for variable
selection [3], [5], [6], [7]. Predictor variables with the value of VIP score greater
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than 1 will be selected. However, data structures are generally diverse. The
cutoff threshold then should not be the same in different type of data structure
[3]. Determining the appropriate cutoff threshold is not simple. Too high value
of cutoff threshold will lead to absent of some crucial variables. Oppositely, too
low value of cutoff threshold will reach to more unrelated variables.

For this study, the new cutoff threshold of VIP is proposed for identification
of relevant variables relying on the use of detection outlier with boxplot obtained
from the added noise variables to estimate the cutoff threshold.

The rest of this paper is organized as follows. Section 2 presents background
and related works. Section 3 describes the methodology. The results and dis-
cussions are given in Section 4. Final conclusions are concluded in Section

O.

2. Background and Related Works
2.1. The Approach of PLS-R

Partial least square (PLS) is the name of a set of algorithms developed in
the 1960s and 1970s by Herman Wold to address problems in econometric path
modeling. It was then subsequently adopted by his son Svante Wold and friends
in the 1980s for regression problems in chemometric and spectrometric modeling
[8] called partial least squares regression (PLS-R). The advantage of the PLS-R
is handling data sets with many noisy, collinear variables and missing values.
Additionally, the assumption of error distribution is not required in the PLS-R
[9]. The number of PLS-R applications is steadily increasing in research fields
such as bioinformatics, machine leaning and chemometrics [10].

The relationship between blocks of observed variables and means of latent
variables of the PLS-R model is called components. These components are
linear transformations of the original predictor variables which have high co-
variance with the response variables. In case of single response variable y and
ppredictor variables of Xbasing on these components, X and y are decomposed
as of Equation 1 and Equation 2, respectively.

X=TP +E (1)
y=Tq +f (2)
where T = [t1,...,t,] € R"*" represents the sample sized n of the hcomponents,

P =[p1,...,pn] € R and q = [q1, ..., qn] € RY" denotes as loadings of X
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and y, respectively. Generally, P and q are computed by ordinary least squares
(OLS). E and fare residuals of X and y, respectively.

The construction of components is the major point of PLS-R. The compo-
nents are the linear transformations of X which maximize covariance between
response variable y and components. The approach of finding each of compo-
nents is done sequentially. For the first component (t; = Xwy), it is deter-
mined by maximizing the covariance between y and t; under the constraint
of|wi|| = 1. To extract each other components, original matrix X and y has
to be reconstructed by substituting of their residuals. This process is called de-
flation of matrices X and y. The residuals of X and y for the first component
are found out as of Equation 3 and Equation 4, respectively.

E; =X — t1p] (3)

f1 =y —tiq1 (4)

where p; and ¢; are loadings defined by OLS fitting.

Also, the residual of athcomponents Xand y are computed as of Equation
5 and Equation 6, respectively.

Ea - Ea—l - tap:l (5)

fo =11 —tuq (6)

where Eg = X and fy = y.

There are various approaches of PLS-R. The PLS-R above is called PLSI.
More detailed variants of PLS can be found in [11]. The particular algorithm
of PLS1 is given in Figure 1. X andy have been standardized to have mean 0
and unit variance before starting the procedure. The number of components
(h) has to be determined at first time. There are many techniques to design
the number of components. Some authors suggested to fixed the number of
components from three to five [12], [13], [14] while as others recommended to
identify the size of the space by classification performance of cross-validation
[15].

2.2. The VIP Score
The VIP score first published by Wold and others in 1993 [3] measures explica-

tive power of predictor variables with respect to the response variable which
basing on the PLS-R. The VIP score of variablej is calculated as of Equation
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7.
2 2
> R%(yta) (Wa;/ llwall)
vIp= | <=L . , (7)
(1/p) 2 R¥(yta)
where w,; is weight of the jthpredictor variable in component a and R2 (y,ta)

is fraction of variance in y explained by the component a. The variable with
higher value of VIP score shows that it is more relevant to predict the response
variable.

Input: X, y, h
Output: W, q, T, P

1. Standardize all predictor variables and response variable,

Call the resulting atrays Ejy and fj), respectively.
2. Forall a=1,...,h do

21 a ]. a— 1/
22) t, = Eu_lwﬂ/(wﬂwﬂ)
A

- Elu—lta/(t:::ta ]

25 E,=E,_;—t,p,
26) £, =1, ;1 —q,t,

o]

Figure 1: Algorithm of PLS-R

2.3. Related Work

Two main problems encounter when high dimensional data are analyzed. Firstly,
the number of predictors is larger than the sample size. Secondly, there is mul-
ticollinearity among predictor variables. Therefore, irrelevant variable should
be eliminated from the data set before analyzing. The VIP has been used in
microarray data to measure the importance of variables (genes) [16], [17], [18].
There are several techniques in the use of VIP. Most of works selected variables
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with the value of VIP score more than a constant value such as 1 [6], [16], or
2 [18]. Some studies like [17] used the VIP score to rank variables and choose
the top k values. The other created new significant index based on the VIP [6].

The proposed method is compared to the works mentioned above as follows.
Randomization of the order of the samples for generating noise variables applied
from [19] is assessed to generating noise variable randomly. The use of VIP for
ranking variable importance is evaluated to the classical of PLS-R coefficient
[20], [21], [22], weight vector (w) [19], and ¢-statistic [12]. Finally, consideration
of cutoff threshold by use of boxplot is appraised to the using maximum value
of importance index of noise variable [20], percentile of importance index of
noise variable [19], [20], and range of importance index based on the ¢-Students
distribution [22].

3. Methodology

The cutoff threshold presented here has many significant steps. Adding noise
variables to the original data set is firstly and then computing the VIP scores
of them. The VIP scores are always equal to or greater than 0 while only the
VIP scores of noise variables (VIPus.) should be closed to 0 because they are
not relevant to the predict response variable. However, a chance of the VIP pice
is far from 0 which will be probably identified as outlier. The outliers are
observations inconsistent with other observations in the data set which is less
likely to cause from the same population with other observations. Therefore,
the outliers of VIP,,ise Will be considered as scores of VIP of relevant variables.
The cutoff threshold for detecting outlier is applied in selection of pertinent
variables by estimating with boxplot. A boxplot demonstrated by Tukey [23] is
a graphical display of data dispersion. It indicates which observations regarded
as outliers. Without any of assumptions underlying statistical distribution,
boxplot is suitable method for detecting outlier of VIP yise. In addition, only the
upper detection is required because the lower VIP represents that the variables
are irrelevant. Boxplot Cutoff Threshold (BCT) is defined as of Equation 8.

BCT = Q3+ 1.5 x IQR (8)

where @1 and Q3 are lower and upper quartile of VIP, s, respectively and the
IQR is the difference between Q3 and @1 called the interquartile range.

The algorithm of selecting variables via VIP with BCT (VIP-BCT) is shown
as of Figure 2.
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Inpue: X, y, h

Output: Selected variables

*
1. Generated a noise variable matrix X having the same dimension as

X by randomly permuting each variable in X

2. Combined X and X matrices in the new matrix of variable
Z= [x,x*] with size nx2p

3. Applied PLS-R using Z and the response vectory . Then,
(VIP, VIP,,..., VIP,) and (VIP], VIP,,..., VIP;) were computed
corresponding to variables (xl.x.z,.__.xp) and noise variables
(x;x;x;), respectively,

4. Computed the BCT following of Equation 8.
5. Selected the original predictor variables with the VIP scores which
were greater than the BCT.

Figure 2: Algorithm of the VIP-BCT

The algorithm of the VIP-1 shown in Figure 3 was compared to the use of
VIP-BCT. The step 1 and step 2 of the VIP-BCT were lost here because the
cutoff threshold in VIP-1 was fixed to 1.

Inpuc X, v, h
Output: Selected vatiables

1. Applied PLS-R using X and the response vector ¥ . Then,
(VIP,, VIP,...., VIPP) was computed for (X;,X,..., xp)rcspecti\-'elj.-'.

2. Selected the predictor variables with the VIP scores which were

greater than 1.

Figure 3: Algorithm of the VIP-1
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3.1. Design of Simulation

Comparison between the algorithms of VIP-BCT and VIP-1 was made thru a
simulation program. In this experimental, it focused on a binary classification
problem. Defined the vector of the binary responsey = (—1,...,—1, 1,..., 1),
and the matrix of predictor variables X = (X1[X32),,,,,, where n was the sample
size, p was the number of predictor variables (equal to 2,000), X; was the n x
dmatrix corresponding to d truly relevant variables and Xy was the matrix of the
remaining p — dirrelevant variables. Since normal distribution has been widely
utilized for gene expression data simulation [24], the irrelevant variables Xg are
independently drawn from it and the relevant variables X are generated from
different distribution or the same distribution with distinguishable parameters.
Thus, the irrelevant variables were drawn from normal distribution with p =
0,0 = 1 and the relevant variables were generated from multivariate normal
distribution with mean and variance-covariance as described below.
There were four parameters required to simulate as following.

1. Four levels of the percentage of the number of relevant variables (Prel):
(1) 1% or d = 20, (2) 3% or d = 60, (3) 5% or d = 100 and (4) 10% or
d = 200.

2. Three levels of the magnitude of mean difference of relevant variables
between two groups  (Mdif): (1) 1 unit, p_; = (=0.5 —0.5... —0.5)’
and py1 = (0.50.5...0.5)

(2) 3 unit, 1 = (~1.5 —1.5... — 1.5) and pyq = (1.51.5...1.5)
(3) 5 unit, p_g = (—2.5 —2.5... —2.5)" and py1 = (2.52.5...2.5)
3. Five degrees of correlations between relevant variables(X): (1) ¥; =

Lixa, )
1 05 ...0.5 1 09...09
05 1...05 09 1...09
(2)%2 = S : » (3)Fs = Do : ’
05 . 1 |, 0.9 ... 1 |,
(1 (05) (0.5)2 (0.5)3 ... (0.5)% 1
2 d—2
0.5) 1 0.5 0.5)7 ... (0.5
(1), = ( ) ! (0.5) ( )‘ (0.5) and
05t 1 s
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Actual Class Predicted Class

Relevant variable Irrelevant variable
Relevant variable ai a9
Irrelevant variable as ay

Table 1: Confusion matrix and descriptions of its entry

1 '
(0.9) 1 e
4. Three sample sizes(n) : (1) n =40, (2) n =70 and (3) n = 100

3.2. Measure of Performance

The balanced accuracy was applied and gauged to evaluate the both of per-
formances between two different algorithms of cutoff threshold in variable se-
lection. It is defined as the mean of sensitivity and specificity. Sensitivity is
the ratio of the relevant variables classified correctly and the total number of
variables while specificity is the ratio of irrelevant variables correctly classified
and the total number of variables. Since relevant and irrelevant variable size
here were not equal, the balanced accuracy was then chosen for evaluation in-
stead of generally accuracy because of avoiding inflated performance estimates
on unbalanced data sets.

Table 1 displayed the confusion matrix for balanced accuracy and descrip-
tions of its entry.

From Table 1, a1 is the number of relevant variables classified correctly, as is
the number of relevant variables classified incorrectly, as is the number of irrel-
evant variables classified incorrectly and a4 is the number of irrelevant variables
classified correctly. Thus, sensitivity, specificity and balanced accuracy are re-

spectively calculated as follows. Sensitivity = al‘fﬁ@, Specificity = ag‘f(hl and

Balanced accuracy =

Sensitivity+Speci ficity
5 .
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4. Results and Discussions

Three retaining components were fixed and 200 replications for each of 180 situ-
ations were made to evaluate performance between both of the two algorithms.
The balanced accuracy of these two cutoff thresholds along the cases was ex-
hibited as of Table 2. The bold figures denoted the best performance. In most
of cases, the VIP-BCT outperforms the VIP-1. The superior magnitude of the
VIP-BCT can be seen obviously when the Prel is low as of Figure 4 (a). Figure
4 (b) — (e) show the average balanced accuracy of the two cutoff thresholds
according to the remaining parameters. All five figures confirm again that the
VIP-BCT cutoff threshold can beat the VIP-1 cutoff threshold.

= = =
E 1 ;al 1 g 1
3 3 E
g g g
= 09 = 09 = 095
L) @ =)
g g 2
= = =
2 0a 2 08 2 09
: 3 5 10 i | 3 5 40 70 100
Prel Mdif il
() ()] ic)
= =
o 1 o 1
z 5 VIP-1
E il SRS D S
5 2 — - VIP-BCT
= 0.95 T 095
o o
5 5
& 0.9 & 0.9 -
0 0.5 0.9 1]} 0.5 0.9

Combinationof £, ,EZ, and X, Combinationof £, X, and E.

(d) (€

Figure 4: Average balanced accuracy of the VIP-BCT and the VIP-1
according to each of four parameters, (a) Prel, (b) Mdif, (¢) n and (d)
3

Figure 5 (a) was a plot of predictor variables of the VIP-1. The variables
which values of VIP were greater than 1 were selected. Figure 5 (b) and (c) were
plots of the VIP-BCT for the original predictor variables and noise variables,
respectively. Its cutoff which was calculated from the VIP of noise variables
as shown with red dash line in Figure 5 (c) was higher than the VIP-1. As of
this result, the VIP-BCT cutoff threshold is more selective. Note that the VIP



=
Prel | Mdif | n boh bR =5 =4 =5
VIP-1 | VIP-BCT | VIP-1 | VIP-BCT | VIP-1 | VIP- BCT | VIP-1 | VIP- BCT | VIP-1 | VIP- BCT
10 0.8396 0.8519 0.8396 0.8498 0.8424 0.8564 0.8374 0.8528 0.8413 0.8557
T 70 0.8540 0.9709 0.8516 0.9723 0.8561 0.9773 0.8541 0.9676 0.8551 0.9690
100 | 0.8615 0.9890 0.8617 0.9880 0.8637 0.9904 0.8612 0.9888 0.8624 0.9904
10 0.8672 0.9929 0.8670 0.9928 0.8673 0.9927 0.8665 0.9929 0.8670 0.9925
1% 3 70 0.8862 0.9919 0.8858 0.9915 0.8859 0.9911 0.8864 0.9918 0.8864 0.9913
100 | 0.9014 0.9914 0.0018 0.9908 0.9004 0.9904 0.9016 0.9915 0.9015 0.9908
10 0.8730 0.9927 0.8726 0.9929 0.8728 0.9930 0.8727 0.9930 0.8731 0.9927
5 70 0.8947 0.9919 0.8947 0.9918 0.8944 0.9916 0.8946 0.9919 0.8948 0.9917
100 | 0.9117 0.9913 0.0121 0.9910 0.0123 0.9911 0.0125 0.9916 0.0123 0.9910
10 0.8533 0.8538 0.8594 | 0.8577 0.8559 0.8823 0.8531 | 0.8526 0.8571 | 0.8558
T 70 0.8801 0.9683 0.8807 0.9770 0.8844 0.9837 0.8802 0.9696 0.8803 0.9701
100 | 0.8951 0.9893 0.8930 0.9889 0.8958 0.9891 0.8948 0.9885 0.8929 0.9891
10 0.9079 0.9930 0.9078 0.9918 0.0067 0.9916 0.0083 0.9930 0.9078 0.9925
3% 3 70 0.9393 0.9922 0.9376 0.9902 0.9347 0.9897 0.9397 0.9917 0.9389 0.9908
100 | 0.9501 0.9914 0.9555 0.9893 0.9494 0.9897 0.9598 0.9915 0.9585 0.9901
10 0.9197 0.9927 0.9189 0.9925 0.0189 0.9921 0.0196 0.9930 0.0189 0.9927
5 70 0.9517 0.9918 0.9513 0.9907 0.9506 0.9904 0.0512 0.9921 0.9515 0.9914
100 | 0.9701 0.9917 0.9698 0.9897 0.9683 0.9896 0.9702 0.9917 0.9702 0.9905
10 0.8655 | 0.8515 0.8776 0.8896 0.8735 0.9170 0.8651 | 0.8544 0.8690 | 0.8640
T 70 0.8998 0.9671 0.8072 0.9858 0.8983 0.9846 0.9001 0.9702 0.8985 0.9703
100 | 0.9196 0.9892 0.9072 0.9896 0.0050 0.9895 0.0101 0.9888 0.0145 0.9879
10 0.9351 0.9928 0.9343 0.9911 0.9302 0.9908 0.9351 0.9926 0.9354 0.9919
5% 3 70 0.9668 0.9920 0.9633 0.9901 0.9540 0.9900 0.9669 0.9917 0.9663 0.9905
100 | 0.9822 0.9918 0.9757 0.9900 0.9630 0.9912 0.0824 0.9912 0.0817 0.9895
10 0.9477 0.9930 0.9473 0.9920 0.9466 0.9913 0.9478 0.9928 0.9477 0.9926
5 70 0.9768 0.9924 0.9761 0.9902 0.9742 0.9895 0.9770 0.9922 0.9766 0.9913
100 | 0.9894 0.9918 0.9886 0.9892 0.9861 0.9898 0.9894 0.9918 0.0893 0.9906
10 0.8882 | 0.8529 0.8973 0.9086 0.8959 0.9632 0.8877 | 0.8526 0.8907 | 0.8630
T 70 0.9347 0.9683 0.9088 0.9896 0.8990 0.9881 0.9347 0.9699 0.9322 0.9716
100 | 0.9571 0.0888 0.9094 0.9908 0.8938 0.9892 0.0562 0.9881 0.9490 0.9880
0% 10 0.9726 0.9930 0.0662 0.9904 0.0541 0.9913 0.9721 0.9927 0.9721 0.9918
3 70 0.9922 0.9923 0.9827 0.9916 0.9638 0.9922 0.9921 | 0.9919 0.9920 | 0.9901
100 | 0.9976 | 0.9920 0.9867 0.9926 0.9669 0.9924 0.9976 | 0.9911 0.9976 | 0.9896
10 0.9816 0.9929 0.9808 0.9906 0.9783 0.9908 0.0818 0.9930 0.0818 0.9925
5 70 0.9960 | 0.9924 0.9951 | 0.9899 0.9921 | 0.9909 0.9962 | 0.9924 0.9961 | 0.9910
100 | 0.9991 | 0.9918 0.9985 | 0.9909 0.9953 | 0.9923 0.9991 | 0.9917 0.9991 | 0.9902

Table 2: Balanced Accuracy of the VIP-1 and the VIP-BCT

THONVIHOdINT HTdVIUVA A0 A'TOHSHYH.L 440100

L1¢
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Figure 5: Plot of VIP from the case of Prel= 10%, Mdif= 1,n = 70 and
3. = ¥ for (a) only original predictors, (b) original predictors resulted
from computing with noise variable and (c) noise variables.

scores of the original variables obtained from the VIP-BCT and the VIP-1 were
not equal as seeing in Figure 5 (a) and (b) because the VIP included variable
dependency. Therefore, the VIP of the original variables between analyzing of
adding noise variables and without noise variable was different.

The cutoff threshold of the VIP-BCT was greater than 1 for all the cases
but they tended to decrease when the Prel, Mdif and nwere increasing. This
result was corresponding to [3] in parameter of the Prel. That is, when the Prel
was low the proper cutoff value was required to be greater than one. As of this
reason, the VIP-BCT cutoff threshold certainly outperformed the other when
the Prel was low. The average cutoff of the VIP-BCT cutoff threshold along
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the cases was displayed as of Table 3.

5. Conclusions

For this study, 180 situations were conducted and then compared the cutoff
threshold of VIP between the new VIP-BCT and the traditional VIP-1. Exper-
iment was designed by simulating four parameters: Prel, Mdif,3 and n. The
results demonstrate that in most of cases, the VIP-BCT delivered balanced
accuracy better than the VIP-1 also it outstandingly performs in identifying
relevant variables and outperforms the other. Appropriate cutoff values of VIP
should be different depending on data structure. Their cutoff values of VIP
need to be greater than 1 especially when the Prel, Mdif and n are low also
they seem to be increasing when the three parameters decrease. There are
various measurements for ranking the importance of variable. Thus, there are
not usually explicit rule for estimating a suitable number of variables for those
measurements. The BCT can be applied to be the cutoff threshold for any
measurements and then the results of that application should be studied.
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Prel | Mdif | >3 5 5 =1 =5
n = 40 n =70 n = 100 n = 40 n =70 n = 100 n = 40 n =70 n = 100 n = 40 n =70 n = 100 n = 40 n =70 n = 100
1 2.36 2.30 2.24 2.35 2.27 2.21 2.34 2.26 2.19 2.35 2.30 2.23 2.35 2.28 2.21
1% 3 2.26 2.13 2.04 2.25 2.12 2.00 2.24 2.10 1.98 2.26 2.13 2.03 2.25 2.11 2.01
5 2.22 2.09 1.98 2.22 2.09 1.97 2.21 2.07 1.95 2.22 2.10 1.99 2.22 2.08 1.96
1 2.27 2.17 2.07 2.23 2.06 1.95 2.20 2.02 1.90 2.28 2.15 2.05 2.25 2.10 1.99
3% 3 2.03 1.82 1.67 1.99 1.75 1.59 1.96 1.73 1.58 2.03 1.82 1.66 2.01 1.77 1.61
5 1.97 1.74 1.58 1.95 1.70 1.52 1.93 1.68 1.51 1.97 1.74 1.58 1.96 1.72 1.55
1 2.20 2.05 1.94 2.10 1.91 1.79 2.07 1.86 1.75 2.19 2.03 1.91 2.15 1.97 1.83
5% 3 1.87 1.62 1.45 1.80 1.53 1.39 1.76 1.54 1.43 1.86 1.61 1.44 1.83 1.57 1.39
5 1.78 1.52 1.36 1.74 1.46 1.29 1.71 1.45 1.30 1.78 1.52 1.35 1.77 1.49 1.32
1 2.05 1.84 1.68 1.88 1.71 1.64 1.85 1.70 1.66 2.04 1.82 1.66 1.98 1.74 1.60
10% 3 1.58 1.31 1.14 1.49 1.30 1.20 1.51 1.36 1.30 1.58 1.30 1.13 1.55 1.26 1.10
5 1.48 1.21 1.05 1.41 1.16 1.04 1.41 1.19 1.09 1.48 1.20 1.04 1.46 1.19 1.02
Table 3: The average cutoff threshold of the VIP-BCT
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