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Czechoslovak Mathematical Journal, 34 (109) 1984, Praha 

CUTS IN CYCLICALLY ORDERED SETS 

ViTÈzsLAv NOVAK, Brno 

(Received August 29, 1983) 

1. PRELIMINARY REMARKS 

An ordered set is a pair (G, < ) where G is a set and < is an order on G, i.e. an 
irreflexive and transitive binary relation on G. We write briefly G instead of (G, < ) 
if the order < is given. If < is an order on G, then the dual relation < * = > is an 
order on G. An element x e G is called the least element of (G, <) iïï x < y for any 
y e G ~ {x}; the greatest element is defined dually. If (G, < ) is an ordered set and 
H Я G, then < n Я^ is an order on Я; this order is denoted by < |д or, briefly, 
also < , and the subset H = (Я, < ) is called an ordered subset of the ordered set 
G = (G, < ) . An order < on a set G is linear iff* x < }̂  or j ; < x for any x, y e G, 

X Ф j ; in this case (G, < ) is called a linearly ordered set. 

I.I.Definition. Let (G, <c) , (Я, <^) be ordered sets with G n H = 0. An 
ordinal sum G ® H of ordered sets G, Я is the set G u Я with the binary relation < 
defined by x < у iïï either x, y e G, x <ду or x, yeH^x <ну or xeG, yeH. 

It is known ( [ ! ] ; but it is trivial to prove it) that < is an order on G u Я so that 
G ® Я is an ordered set. Further, the operation @ is associative so that the symbol 
Gl © G2 Ф ... © G„ is defined, whenever Gj, ..., G„ are pairwise disjoint ordered 
sets. 

1.2. Definition. Let (G, < ) be a linearly ordered set. A subset / ^ G is called an 
interval in G iff* there exist subsets A, В of G with G = ^ © / © B . A subset A ^ G 

is called an initial interval in G iff* there exists a subset Б of G with G = A @ B. 

A final interval is defined dually. 

The following assertion is known; however, it is not difficult to prove it directly: 

1.3. Theorem. Let (G, < ) be a linearly ordered set. A subset I £ G is an interval 

in G iff it has the following property: x, y e I, z e G, x < z < y => z el. A subset 

A Я G is an initial interval in G iff it has the following property: xeA, yeG, 

y<x^=^yeA. A subset В ^ G is a final interval in G iff it has the following 

property: xe B, y e G, x < y => y e B. 
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1.4. Definition. Let G be a set, Ta ternary relation on G. This relation is called: 

asymmetric, iff (x, y, z)e T=> (z, >% x) e Г, 
cyclic, iïï [x, y, Z)G T=> (3;, z, x) G Г, 
transitive, iff (x, j , z) G Г, (x, z, м) G Г=> (x, j , w) G T, 
linear, iff x, j , z G G, x ф j Ф z Ф x => (x, y, z) G Г or (z, j , x) G JT. 

1.5. Definition. Let G be a set, С a ternary relation on G which is asymmetric, 
cyclic and transitive. Then С is called a cyc/fc order on G and the pair (G, C) is called 
a cyclically ordered set. If, moreover, card G ^ 3 and С is linear, it is called a linear 

cyclic order on G and (G, C) is called a linearly cyclically ordered set or a cj^c/e. 

If we define a dual relation Г* to a ternary relation Tby (x, y, z)e T^ о (z, y, x) G 
G T, then the following remark obviously holds: 

1.6. Remark. If С is a cyclic order on a set G, then C* is a cychc order on G. 

1.7. Theorem. Let (G, C) b^ a cyclically ordered set, let x e G. For any y, z e G 

put y <c,x ^ iff either (x, j , z) G С or x = y ф z. Then <c^x ^^ ̂ ^ order on G with 
the least element x. 

Proof. [4], 3.1. 

1.8. Remark. Analogously we can define, for a cyclically ordered set (G, C) and 
XE G: y K^'"" z о either (y, z, x)e С or у ^ z = x. Then <^' ' ' is an order on G 
with the greatest element x. 

1.9. Lemma. / / С is a linear cyclic order on a set G, then <c,x ^^ ̂  linear order 
on G. 

Proof. Trivial; see also [4], 3.4. 

1.10. Theorem. Let (G, < ) be an ordered set. Define a ternary relation C^ on G 

by (x, y, Z)G C^ iff either x<y<zory<z<xorz<x<y. Then C^is a cyclic 

order on G. 

Proof. [4], 3.5. 

1.11. Lemma. Let (G, <) be a linearly ordered set with card G ^ 3. Then C< 
is a linear cyclic order on G. 

Proof. Trivial; see also [4], 3.7. 

1.12. Lemma. Let < be an order on a set G. Then C<* = C*. 

Proof. Trivial. 
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2. DEFINITION OF A CUT 

From now on, we shall deal only with linearly cyclically ordered sets. For the sake 
of brevity, we shall omit the adjective "linear"; thus, "cyclically ordered set" means 
always "linearly cychcally ordered set". 

A cut in a linearly ordered set is defined as a couple of its subsets. An analogue in 
a cyclically ordered set is impossible. Intuitively, a "section" of an oriented circle 
determines a linear ordering of points of that circle. This is a motivation for the 
following 

2.1. Definition. Let (G, C) be a cyclically ordered set. A cut on this set is a linear 
order < on G with the property x < y < z => [x, y, z) e C. 

In 2.5 we shall see that cuts exist. Now we derive some simple properties of theirs. 

2.2. Lemma. Let (G, C) be a cyclically ordered set, let < be a cut on (G, C), let 

X, y, z E G, (x, y, z) E C. Then either x<y<zory<z<xorz<x<y. 

Proof. Any of the remaining possibilities z < y < x, y < x < z, x < z < y 

implies (z, y, X)E С by definition of a cut, which contradicts (x, y, z) E C. 

2.3. Theorem. Let (G, C) be a cyclically ordered set, let < be a linear order on G. 
The order < is a cut on (G, C) if and only if C< = C. 

Proof. 1. Let < be a cut on (G, C) and let (x, y, Z)E C^. Then either x < у < z 

or y<z<x or z<x<y, which implies (by the definition of a cut) (x, y, z) E C. 

Thus C< ^ C. As С< is a linear cychc order by 1.11 and С is linear, we have C< = C. 

2. Let C< = C. If X, J, z 6 G, x < у < z, then (x, y, Z)E C< — C. Thus < is 
a cut on (G , C ) . 

2.4. Theorem. Let (G, <) be a linearly ordered set with card G ^ 3. Then there 

exists just one cyclic order С on G such that < is a cut on (G, C). 

Proof. Existence: Put С = C<. By 1.11, С is a cychc order on G and by 2.3, < is 
a cut on (G, C). 

Unicity: Let C^, С2 be cyclic orders on G for which < is a cut. Let (x, y, z) e C^. 
By 2.2 we have either x < 3 ; < z or 3 ; < z < x or z < x < j ; , which implies (x, j , z) G 
E C2 by 2.1. Thus Cj ^ C2 and as the both relations C^, C2 are Hnear, we obtain 
Ci = C,. 

2.5. Theorem. Lef (G, C) be a cyclically ordered set, let x E G. Then <c,x ^^ ^ ^^^ 
on (G, C). 

Proof. By 1.9, <c,x is a linear order on G. Let w, t;, w e G, w <c,x^ <c,x^­

First assume x 6 {u, v, w}. Then (x, u, v) E C, (X, V, W) E C, thus (v, w, x) e C, 
(v, X,U)E С and by transitivity of C, (y, w, w) e С and hence (u, v, W)E С If x e 
e {u, V, w], then x = и and as у <c,^ w, we have (x, Ь, W) E C, i.e. (м, v, w) e С 
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Thus we always have и <c,x^ <c,x^ ^ ("? ?̂ ̂ ) ^ ^ ^^^ <c,x is a cut on (G, C). 
Dually, we can prove: 

2.6. Remark. Let (G, C) be a cycHcally ordered set, let xeG. Then <^' ' ' is a cut 
on (G, C). 

The both orders <c,x? <^'^ ^̂ *̂  thus cuts on (G, C) and by their definitions, 
<c,jc has the least element, <^'^ the greatest element. Other cuts with this property 
do not exist, for: 

2.7. Theorem. Let (G, C) he a cyclically ordered set, let < be a cut on (G, C) with 

the least element x. Then < — <c,x­

Proof. Let y^zeG — {x}, у < z. Then x < у < z and, by definition of a cut, 
(x, y, z) G С. Hence у <c,x ^' Further, x is the least element in both (G, < ) and 
(G, <c,x)­ We have shown that < ^ <c^x ̂ ^d as the both orders are Hnear, we have 

< = <c,x­
Of course, dually we have: 

2.8. Remark. Let (G, C) be a cyclically ordered set, let < be a cut on (G, C) with 
the greatest element x. Then < = <^'^. 

3. PROPERTIES OF CUTS 

3.1. Definition. Let (G, C) be a cyclically ordered set, let < be a cut on (G, C). 
This cut is called: 
a. jump, iff (G , < ) has both the least and the greatest element, 
a gap, iff (G, < ) has neither the least nor the greatest element, 
Dedekind, iff" (G, < ) has just one of the boundary elements. 

3.2. Definition. A cyclically ordered set (G, C) is called dense iff there exists no 
jump on (G, C). 

As one can expect, it holds: 

3.3. Theorem, A cyclically ordered set (G, C) is dense iff it has the following 

property: x, у e G, x ф у => there exists z E G with (x, z, y)  e C. 

Proof. 1. Assume that for any x, y e G, x Ф y there exists z e G with (x, z, y)e С 

and let < be a jump on (G, C) with the least element у and the greatest element x. 
By 2.7. we obtain < = <c,y and by the assumption an element z eG exists with 
(x, z, y) G С. Then (3;, X, z)e С which implies x <c,y z, i.e. x < z and this is a con­
tradiction, for X is the greatest element in (G, <) . Thus, (G, C) contains no jumps 
and it is dense. 

2. Let elements x, у e G, x ф у exist so that (x, z, y)e С holds for no z e G. 

Then <c,y is a cut on (G, C) with the least element y; we show that x is its greatest 
element. When an element z e G exists with x <c^y z, then (y, x, z)e С and also 
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(x, z, У)Е с which contradicts our assumption. Thus <c,y is a jump on (G, C) and 
(G, C) is not dense. 

3.4. Definition. Let (G, C) be a cyclically ordered set, let x, у e G, x Ф >̂ . The 
ordered pair (x, v) is called a pair of consecutive elements in (G, C) iff there exists 
no z G G with (x, z, y) e C. 

Note that by 3.3, (G, C) is dense iff it contains no pair of consecutive elements. 

3.5. Lemma. Let (G, C) be a cyclically ordered set, let (x, y) he a pair of con­

secutive elements in (G, C) nad let < be any cut on (G, C). Then just one of the fol­

lowing possibilities occurs: 

(1) y is the least and x is the greatest element in (G, < ) ; 
(2) y covers X in (G, < ) . 

Proof. If < = <c^y or < = < ^ ' ^ then by the same argument as in the proof 
of 3.3 we find that (1) holds. In all the other cases x is not the greatest element in 
(G, <) . Suppose y < x; then there exists zeG with y < x < z, which implies 
{y, X, Z)E С and (x, z, y)e C, SL contradiction. Hence x < у and there exists no 
z e G with x < z < y, for otherwise (x, z, v) e C. This means that y covers x in 
( G , < ) . 

3.6. Theorem. Let (G, C) be a cyclically ordered set and let < i , <2 be two 

distinct cuts on (G, C). Then there exist nonempty disjoint subsets A, В of G such 

that Au В = G, < i | ^ = <2\A, <I\B = <2\в cmd (G, < i ) = Л 0  Я,  (G,  <2)  = 
= В® A. 

Proof. First observe that <2 = < t is impossible for in that case C^^ = C*^ 
by Ы 2 , while necessarily C<^ = С = С <^ by 23. Thus there exist elements x, ye G 

such that X < i J, X <2 Ĵ  so that there exist nonempty subsets H ^ G with < i|flr = 
= <2|я­ Denote this property of subsets of G by (P). If 5^ is a chain (with respect 
to set inclusion) of (P)­subsets of G, then the set­theoretic union u ^ is a (P)­subset; 
so, by Zorn's lemma, there exists a maximal (P)­subset A Я G. We show that A is an 
interval in (G, < i). Let x, у e A, z e G, x < j z < ^ j . Then (x, z, y) e С so that 
either x < 2 Z < 2 j o r z < 2 j ^ < 2 ^ o r j ; <2 x <2 z. The second and the third cases 
are impossible, since x <2 y. Thus x <2 ^ <2 У­ Let и e A he any element with 
w < 1 z. If w = X, then w <2 z. If w < 1 X, then w < ^ x < ^ z, thus (u, x, z) e C, 
which implies either и <2X<2'Zoxx<2Z<2Uoxz<2U <2 x. The second case 
is impossible, since и <2 x (и, x e A and < i | ^ = <2|л)? the third one is also impos­
sible, since X <2 z. If X < 1 M, then и <^ z <­^ y, thus (w, z, У)Е С and hence either 
и <2Z<2yorz<2y<2^ 0П у <2U < 2 ^ ­ The second and the third cases are 
impossible, since и <2У and z <2У­ We have shown и <^ z => и <2Z'. Bya similar 
argument we find w G Л, z < ^ м => z <2 w. It follows that A u [z] is a (P)­subset and 
the maximality of A implies z e A. Note that for the same reason A is an interval 
also in (G, <2)' 
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As A is an interval in (G, < J , we have x E G — A, x <i y for some y e A => x < j 
< i z for each z e A; the same holds for <2. This yields: 

X E G — A, X < I y for some >' E A => y <2 x. (*) 

Otherwise there would exist XEG — A, yEA with x <^ y, x <2У and then 
X <i z, X <2 z for each z e A, thus A u {x} is a (P)­subset, which contradicts the 
maximality of A. 

Suppose now that A is neither an initial nor a final interval in (G, < i ) . Then 
(G, < i ) = (Я, < i ) e ( y l , < i ) e ( K , < i ) with Я Ф 0, К Ф 0. Choose x e Я , 
у E A, z E К. Then x < j v < i z and (*) implies z < 2 Ĵ  < 2 ̂ ­ This is a contradiction, 
for X <i у < 1 z implies (x, y, z) E С and z < 2 J < 2 ̂  implies (z, y, x) G С. Thus Л 
is an initial or a final interval in (G, < i ) and for the same reason it is an initial or 
a final interval also in (G, < 2). 

Put В = G — A; В is 3. final or an initial interval both in (G, < i ) and in (G, <2), 
and we show that < | |Я = <\ß.  Assume  the  existence  of  elements x, у E В with 
^ <i y^ У <2 ^­ Choose any z e ^4; if Л is an initial interval in (G, < i ) , then z <^ 

< 1 X < 1 >' and from (*) we have у < 2 ̂  < 2 ­̂ This is a contradiction, for z < ^ x < j 
< 1 3; implies (z, x, y) E С and 3; < 2 x < 2 z implies (y, x, z) G C. If Л is a final interval 
in (G, < 1), then x < j 3; < | z and z < 2 у < 2 ̂ ? which leads to a contradiction as well. 

Assume that A is an initial interval both in (G, < j) and in (G, <2). Then (G, < 1) = 
= (A, < i ) e (Б, <,), (G, <2) =  И ,  <2)  e  (Я,  <2)  and  as {A, <,) = {A, к^), 

(Я,  < i )  = {в,  <2),  we  have  < i  =  <2,  which  is  a  contradiction.  Thus,  if A  is  an 
initial  interval  in  (G,  < 1), it  is a  final  interval  in  (G,  <2) and  (G,  < i )  = {A,  < i )  © 
0  (Б,  < i ) ,  (G,  <2)  =  (Я,  <2) ©  (^,  <2)­  If  ^  is  a  final  interval  in  (G,  < i ) ,  it  is 
an  initial  interval  in  (G,  <2)  and  the  given  equality  holds  after  interchanging  the 
sets A, B. 

ЪЛ. Remark.  The sets A, В from  3.6 are unique. 

Proof.  Assume  (G, <^) =^ A @ B,  (G,  <2)  =  Б  © Л  and,  at  the  same  time, 
(G,  < i ) = A^ ®B„  (G,  <2)  =  Я i ®A,,  As  Л  Л I  are  initial  intervals  of  the 
linearly  ordered  set (G,  < j ) ,  either A ^ A^  or  ^ j  З  4̂ holds;  let the  first  possibility 
occur.  Suppose A ф A^;  if  we  choose  arbitrary  elements x E A^ —A  and  j e B j , 
then  X <2 J  in {B,  <2) © {A, <2)  and у <2 ^  in  (Б^,  <2) ©  (^1, <2)­  This  is 
a  contradiction  and  hence A = A^, 

3.8. Lemma. Let G be a set with  card  G ^  3. L^^  <л ,̂ <2  b^ linear orders on G 

such that there exist disjoint subsets A, В of G with A и В = G,  < i | ^  = <2\A^ 

<I\B = <2\B ^"^  (G,  < i )  =  Л © В,  (G,  <2) = В @ A. Then there exists just one 

cyclic order С on G such that  < i ,  <2  '̂̂ ^ (^^ts on (G, C). 

Proof.  The  uniqueness  follows  from  2.4.  For  the  existence  it  suffices  to  prove 
C<^  =  C<2. Let  (x, y, z) e C.<j. Then  either xK^yK^z or y K^^^ZK^X от z<j^ 

< i  X < i  y.  We  investigate  only  the  first  case;  the  second  and  the  third  one  are 
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similar. We have the following possibilities: 

x,y,zeA=>x <2У <2Z =>{x,y,z)e C<^ ; 

x,yeA, ZE В => z <2X <2У =>{x,y,z)eC^^; 

X e A , y, z e. В => у <2 z <2 x => (x, y, z) e C< ; 

X, y, z e В => X <2 У <2 z => (x, у, Z)E C<^ . 

Thus ^NQ have shown C<^ З C^^ and as both cyclic orders C<^, C<^ are linear, we 
conclude C<^ == C<2. 

3.9. Corollary. Let G be a set with card G ^ 3, let < i , <2 he distinct linear 

orders on G. Then C<^ = C<^ holds if and only if there exist nonempty disjoint 

subsets A, В of G with A и В = G, < i | ^ = <2|л? <I\B = <2\в ^"^ (^? < i ) — 
= A®  B, (G, <2) =  B@ A. 

Proof. I fC<j = C<2, then, by 2.3, < i , <2 are two distinct cuts on a cyclically 
ordered set (G, C) where С = C<^ =.C<2. By 3.6, the orders < i , <2 have the desired 
properties. Conversely, if the condition of Corollary is satisfied, then, by 3.8 and 2.3, 
C^^ = C<^ holds. 

If (G , < ) is a hnearly ordered set and x e G, then we denote by (G, <)^ or, briefly, 
G .̂, the open initial interval in (G, < ) determined by the element x, i.e. G^ = {y e G; 
у  <x], 

3.10. Lemma. Let (G, C) be a cyclically ordered set, let < be a cut on (G, C) 

and let XEG. Then (G, <c,;c) = (^ " (̂ ^̂  <)x^ <) ® (< .̂ <);c­

Proof. If X is the least element in (G, <) , then < = <c,jc and the formula holds, 
since (G, <)д. = 0. Otherwise < , <c,x ^^e distinct cuts on (G, C) and by 3.6 there 
exist nonempty disjoint subsets A, В of G with A и В = G, < |л = <C,JC|/1J < | B = 
= <C,X\B and (G, <) = A Ф B, (G, <c,x) = 5 © ^ . Then A is an initial interval 
in (G, < ) and (G, <c,x) = В @ A implies that В has the least lement x. Thus A = 

= (G, < ) , and Б = G ­ (G, < ) , . 

3.11. Theorem. Let (G, C) be a cyclically ordered set and let <^, <2, <з be three 

pairwise distinct cuts on (G, C). Then there exist three nonempty pairwise disjoint 

subses A, B, D of G such that A KJ В и D = G, < i | ^ = <2\A = <з|л» <I\B ~ 

= <2|jB = <з|в. <I\D = <2\D = <з\о, and either (G, <^) = A@ В @ D, 

(G, <2) =  Я  ©  D  0 Л, (G, <з) = D © Л © Б or (G, <з) = Л © J5 © D, 
(G, <2) = JB © i) © Л, (G, < i ) = D © Л ©  Я  /20W5. 

Proof.  By 3.6 there exist nonempty disjoint  subsets A^, B^ of  G with A^\j B^ =^ G, 
<I\A,  = <2|лр  < i |Я ,  =  <2|Я,,  (< ,̂  < i )  =  ^1  ©  ^ 1 , {G,  <2)  =  JBI  © Л1, and 

there exist nonempty disjoint subsets Л2, B2 of G with ^2 ^ ^2 = G, < J^^ = < sL^» 
< I | B 2 = <з|в2' (^ ' < i ) = ^2 © ^2, (< ,̂ <з ) = ^2 © ^2­ As Л1, Л2 are initial 
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intervals of the linearly ordered set (G, < i ) , we have either A^ ^ A2 or A2 ^ A^^. 

The inclusion here is proper, for if A^ = Aj, then B^ = B2 so that <2 = <з , which 
contradicts our assumption. 

1. Let Ai c: ^2­ Consider the sets A^, A2 ~ A^, B2. As <I\AI = <2|^i5 ^I\A2 — 

= <З\А2 ^^^ ^1 ^ ^2, we have < i | ^ , = <2\A, = <з |лг Further, <i |^2­^i == 
= <з|л2­^1 ^^^ as A2 ­ A^ ^ Б1, we have < I | A , ­ ^ , = <2|^2­^i­ Thus 
<I\Д2­A, = <2\A2­A, = <З\А2­АГ Finally, we have B2 Я B^ and hence  < i | Я ,  ­

=  <2|Я2'  <i|Я2  = <з|в2­ Consequently, <i|^^ = <,|в^ = <з|в^. Now, we have 

(G, < i ) = ^ 1 0 ( ^ 2 ~ A,)®B2, 

{G,<2) = iA2­Ai)®B2®A,, 

(G, <з) = ^2 0 ^ 1 ®{A2 ­ A,). 

2. Let Л2 CI Л1­ By an analogous reasoning we find 

= <7 Л. = < '1\AI­A2^ ^2\AI­A2 ­­ ^ 3 | ^ i ­ ^ 2 » 

= < 

and 
^ l | Я i  — ^2\Bi — ^3\Bi 

(G, <з) = (^1 ­ ^ 2 ) 0 ^ 1 0 . 4 2 , 

(G, <2) = в, 0 ^ 2 0 ( ^ 1 ~ A2), 

(G, < i ) = ^2 0 ( ^ 1 ­ ^ 2 ) 0 ^ 1 . 

4. CYCLIC ORDERING OF CUTS 

4.1. Definition. Let (G, C) be a cyclically ordered set, let < i , <2, < з be three 
pairwise distinct cuts on (G, C). Put ( < i , <2, <з) e *? iff there exist three nonempty 
pairwise disjoint subsets A, B, D of G such that Л u Б u Z) = G, < i | ^ = <2|л = 
= <3U. < I | B = <2\B = <з\в, <I\D = <2\D = <3lD.and(G, <^) = A® B® D, 

(G, <2) = i5 0 D 0 Л, (G, <з) = Z) 0 Л 0 В. 

4.2. Theorem. Let (G, C) be a cyclically ordered set and let ^ be the set of all 

cuts on (G , C ) . Then ^ is a cyclic order on the set ^. 

Proof. Suppose that there exist pairwise distinct cuts < i , <2, < з on (G, C) with 
( < i , ^25 <з)е^^? ( ^ 3 ' ^2? < i ) e ^ . Then there exist nonempty pairwise disjoint 
subsets Л, Б, Z) of G with A и В KJ D = G, < i | ^ = <2|л = <з |л. < I 1 B = <2\в = 

= <з |в . < I | D = <2\D = <з |о . (^. < i ) ­ ^ © 5 0 D; ( G , <2) =  Я  0  D  0 Л, 
(G, <з ) = D 0 Л 0 Б, and nonempty pairwise disjoint subsets Aj^, B^, D^ of G 
with A^uB.u D^ = G, <i|^^ = <2|л, = <З\А,, <I\B, = <2\в, = <з |вр 
< I | D . = < 2 | D , = <з |ор (G, <з ) = ^1  0 Я i © Z ) i ,  (G, <2) =  Bi © D l 0 ^ 1 , 
{G, <t) ^ D^®A^® В^. Then Б ©D © Л = Б^ © D^ © Л^ = (G, <2), and 
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hence either Б ^ B^ orB^ З В. Lot В З B^iiîB cz Б^, choose л; e Б, j ; e (Б^ ­ В) r\. 

n D. Then (G, <з) = Л^ © Б^ e i^i implies x < з j and (G, <з ) = i) 0 Л © Б 
implies у <s х­ This is a contradiction. Analogously Б^ с Б is impossible and thus 
Б = Б^. Now we have (G, < i ) = Л © Б © D, (G, < i ) = Dj © Л © Б, which 
implies D = 0, D^ = 0 and this is a contradiction. The relation ^ is thus asymmetric. 

Assume < i , <2, < з , <4e*^ , ( < i , <2, < з ) е ^ , ( < i , < з , < 4 ) e ^ . Then there 
exist nonempty disjoint subsets A, B, D of G with y 4 u Б u i ) = G, < i L = <2L = 
= <3U, <i lЯ  = <2\B = <з\в, <I\D = <2\D = <з\в, {G, <i) = A@B@ D, 

(G, <2) = В @ D @ A, (G, <з ) = i) © Л © Б, and nonempty disjoint subsets 
Ai,Bi,D^ of G with A^u B,u D^ = G, <I\A, = <З\А, = <4U, <I\B, = 

= < з к = <4вг^ <l|l>i = <^\D, = <4|l>i' (G^ < l ) = ^1 © ^1 ® ^ 1 , {G, <з) = 
= ^1 © /)i © ^ 1 , (G, <4) = Di © ^1 © Б^. As Л © Б © D = ^1 ©Б1 © /)i = 
= (G, < 1), we have either A^A^ or ^ i ^ Л. The equality Л = Л^ is impossible, for 
in that case D © Л © Б = Б^ © D^ © Л = (G, <з) , which implies Б = 0, a con­
tradiction. Suppose A^ a A; if we choose x E A^, yEA — A^, then (G, <з) = 
= D @ A@ В implies x K^y and (G, <з ) = Б^ © Dj © A^ implies j < з x. This 
is a contradiction and thus A cz A^. Further, we have either A^ ^ A @ В or A @ 

© Б  З  ^ 1 ­  If ^1  cz Л © Б, choose x E A, у E В ~ A^. Then (G, <з ) = D © Л © Б 
implies x < з 3; and (G, <з) = Б^ © Z)ĵ  © Л^ implies у < з x, which is impossible. 
If Л © Б с Л1, choose XE A @ В, у E A^ ­ {A @ В). Then (G, <з ) = Б^ © D^ © 
@ A^ implies x <з 3; and (G, <з ) = D © Л © Б implies j < з x, which is a contra­
diction. Thus Л1 = Л © Б and from A®B@D = A^@D = A^@B^@D^ = 

= (G, < i ) we have D = B^@ D^. Now, we have (G, < i ) = Л © (Б © Б^) © D^, 
(< ,̂ <2) = (^ ® ^1) © i^i © Л, (G, <4) = Z)i © Л © (Б © Б^). This implies 
( < 1? < 25 <4) e ^ and the relation ^ is transitive. It follows directly from the defini­
tion that ^ is cycHc. Finally, if < i , <2, < з е ^ are pairwise distinct, then 3.11 
implies either ( < i , <2, < з ) б ^ or ( < з , <2, < I ) G ^ . Thus ^ is linear and it is 
a cyclic order on <̂ . 

4.3. Lemma. L^r (G, C) be a cyclically ordered set and let < i , <2, < з е ^ . 
Then ( < i , <25 <з) ^ G /zo/цfs if and only if there exist elements x, y, z E G with 

X  <i  y  <i  Z,  y  <2  Z  <2  X,  Z  <2  X  <2  У­

Proof. Let ( < i , <2, < з ) б ^ . If A,B, D are subsets of G with the properties 
from 4.1, choose x E A, y E B, z E C. Then x <i y <i z, y < 2 Z < 2 X , z < з Х <ъ У­

Conversely, let there exist elements x, y, z EG with x <i у <i z, у <2 z <2 x, 

z <2 X <2 y. Then the cuts < i , <2, < з are pairwise distinct and thus there exist 
subsets Л, Б, Z) of G with the properties from 3.11. Elements x, y, z must lie in the 
distinct sets A, B, D, since the orders < i , <2, < з coincide on these sets. If the 
second case from 3.11 occurred, we should obtain in all possible situations always 
a contradiction. Thus the first case of 3.11 occurs and ( < i , <2, < з ) б ^ . 

4.4. Theorem. Let (G, C) be a cyclically ordered set and let x, j , z e G, x ф у Ф 
Ф z Ф X. Then{x, у, Z)E С holds if and only if {<c,x^ <c,yy <c,z) ^ ^' 
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Proof. (x,y,z)EC implies x <c,:c У <c,x ^^ У <c,y^ <c,y^^ ^ <c,z^ <с,гУ 

and from 4.3 we have {<c,x^ <c,y^ "^c,z) e ^­ Conversely, let {<c,x^ <c,y^ ^c,z) ^ ^ 

and assume (x, y, z) ё С. Then (z, y, x)e С and from the first step of the proof 
we have {<c,z^ ^c,y^ ^c,x) ^ ^? which is a contradiction. Thus (x, y, z) e С 

4.5. Corollary. Let (G, C) be a cyclically ordered set. Then {{<c,xl XEG],^) 
is a cyclically ordered set isomorphic with (G, C). 

Proof. {{<c,xl ^ ^ G}, ̂ ) is — as a subset of (^, ^ ) — cyclically ordered. The map­
ping G ­> {<c,xl X e G} assigning to any x G G the cut <c,x is evidently a bijection; 
by 4.4 it is an isomorphism. 

5. COMPLETION BY CUTS 

5.1. Definition. A cyclically ordered set is called complete, iff it contains no gaps. 

Note that "complete" has another meaning here than in [4]. 

5.2. Theorem. Let (G, C) be a cyclically ordered set. Then the cyclically ordered 

set (^, ^ ) is complete. 

Proof. Let ­< be a cut on (^, '^). Define a linear order < on G by x < y о 

"^ <c,x '^ ^c,y' The relation < is indeed a hnear order on G, for ­< is a linear 
order on ^ , thus also on {<с,х5 ^ ^ G} and as a consequence of the bijection 
X ­> <c,jc, < is a hnear order. We show that < is a cut on (G, C). Let x, y, z e G, 
X < y < z. Then <c,;c < <c,y < <c,z. thus {<c,x^ <c,y. <c,z)^'^ and by 4.4, 
(x, y, z) e C. Thus < G ^ . 

Suppose that < is neither the least nor the greatest element in (^, ­<). Then there 
exist < i , <2^^ such that < i ­ < < ­ < < 2 ­ This implies ( < i , < , < 2 ) e ^ and by 
4.1 there exist nonempty disjoint subsets A, B, D of G such that A и В KJ D = G, 

<I\A = <\A = <2\A, <I\B = <\B = <2\B^ <I\D = <\D = <IID ^nd (G, < i ) = 

= A@ в ® D, {G, <) = В ® D @ A, (G, <2) = D @ A® B. Choose elements 
xeA, уеВ. We show that <c,x < ^c,y If <c,x = < i and <c,y = <2? then the 
desired relation holds. Let <c,x "^ < i­ Then A = A^ ® [A — A^) and as (G, < i)^ = 
= A^, 3.10 implies (G, < i ) = ^^ 0 (^ ­ ^ J 0 (Б © D), (G, <c,x) = {A ~ A^) © 
© (Б © i)) © Л^, (G, < ) = (Б © D) © Л^ © (Л ­ Л^). Consequently, ( < i , <с^^, 

< ) е ^ and hence either < i •<< < c ^ ­< < or <c,^: ­ < < * < < i or < ­ < < i ^ 
­< <c,x' The second and the third case are impossible for < i •< <• Thus < ^ •< 
•*< <c,x'< <• Analogously, if <c,y Ф <2? then we find < ­< <c,y< <2­Thus 
in all cases we have < i ^ <c,x^ < ^ <c,y^ <2 and hence <c,x^ ^c,y 

But {G, <) = В @ D @ A and у e B, x e A, thus у < x. This contradicts the defini­
tion of the order < . 
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5.3. Corollary. Let (G, С) be a cyclically ordered set. Then there exists a complete 

cyclically ordered set (Я, D) containing an isomorphic subset with (G, C). 

P r o o f follows from 5.2 and 4.5. 

5.4. Lemma. Let (G, C) be a cyclically ordered set, let x e G. Then (<c,x? <^'^) 
/5 a pair of consecutive elements in (^, ^ ) . 

Proof. Let < be any cut on (G, C) distinct from both < c ^ and <^ ' ^ By 3.6 
there exist nonempty disjoint subsets Л, В of G with A и В = G, <C,X\A = < | A ' 
<C,X\B = <\B and (G, <c,;c) = ^ ® ^, (G, < ) = J5 © Л. As < ф < ^ ' ^ we have 
A Ф {x}. Now we have (G, '<c , J = {x} @ {A ­ {x}) 0 B,(G, <^'^) = (A ­ {x})@ 

® В @ {x}, (G, <) = B@ {x] @{A ~ {x}) so that (<c,;c. < ^ ' ^ < ) e ^ . Thus 
{<с,ху <? < ^ ' ' ' ) e ^ holds for no cut < e ^ and, therefore, {<c,x^ ^c,x^ 1̂  ^ p^jj. 
of consecutive elements in (^, ^й). 

Note that 5.4 implies that (^, '^j is never dense. 

5.5. Notation. Let (G, C) be a cyclically ordered set. Denote ^^ = { < G ^ ; < is 
a gap} u {<c,x'­> X e G}; the elements of ^^ will be called regular cuts. 

^y thus contains all jumps and all gaps in (G, C) and from Dedekind cuts it contains 
only those which have the least element. As a subset of ^ , (^^, ^ ) is a cycHcally 
ordered set and by 4.5, x ­> <c^ is an isomorphic embedding of (G, C) into (^^, ^ ) . 

5.6. Theorem. Le^ (G, C) be a cyclically ordered set. Then the cyclically ordered 

set (^^, ^ ) /s complete. 

Proof. Let < be a cut on (^^, ^ ) . This cut in a natural way determines a cut on 
(^, ^ ) , which we denote by the same symbol ­< : any cut from ^ — ^^ is of the form 
^c,x.  l'зjj.  g^зj^  ^  ^^^  ^g  py|.  ^ ^ ^  ^  <*^''';  if  J  6 G,  J Ф X, then <c,y < K^'"" о 

<=> <c,y  <  <c,x. <^''' <  <c,y  ­^  <c,x  <  <c,y,  <^''  < <^''' о  <c,x  <  <c,y and 
for < G ^ , which is a gap, we put < ­< < ^ ' ' ' o < ­< <c,x^ ^c,x ^ ^ ^^ <c,x< <• 
It is not difficult to show that ­< is indeed a cut on (^, ^ ) . By 5.2 there exists a cut 
< G ^ which is either the least or the greatest element in (^, ­<). If < G ^^, then ^^ 
has either the least or the greatest element. If < G ^^, then < == <^' ' ' for some 
xe G. In this case, by 5.4, {<c,x^ <^''') is a pair of consecutive elements in (^, ^ ) 
andby 3.5 we have: (l) either <^' ' ' is the least and <c,x the greatest element in (^, •<), 
(2) or <^'^ covers <c,x ^^ (^' "<)• If ( 0 ^olds, then <c,x is the greatest element in 
(^^, ­<). If (2) holds, then <^'.'' cannot be the least element in (^, ­<), for it covers 
<c,x' Therefore <^''^ is the greatest element in (^, ­<) and then <c,x is the greatest 
element in (^^, < ) . Thus no cut on (^^, ^ ) is a gap and (^^, ^ )̂ is complete. 

If (G, C) is a cycHcally ordered set, then (^^, ^ ) wiU be called its completion by 

cuts. 

5.7. Theorem. Let (G, C) be a cyclically ordered set. If (G, C) is dense, then 

(^^, <̂ ) is dense. 
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Proof. Let < i , <2 e ^r? < i + <2­ If < i = <c,x5 <i = <c,y for some x,y eG^ 

then X Ф j ; and by the assumption, there exists ZÇ:G such that (x, z, j^) e C. Then 
4.4 yields ( < i , <c,z^ < 2 ) e ^ . Assume now that at least one of the cuts < i , <2 is 
a gap. By 3.6 there exist nonempty disjoint subsets A,B oï G with Л u J5 = G, 
< i U == < 2 U < i |Я  "" ^A^  ^"^  (G,  < i )  ­ л e  Я,  (G,  <2)  =  Я e л .  ТЬе  subset 
У4 is  necessarily  infinite:  otherwise A  would  have  both  the  least  and  the  greatest  ele­
ment  and  then  (G, <^  would  have  the  least,  (G,  <2)  the  greatest  element.  Choose 
any element xeA  which is neither  its least  nor  its greatest element  and  put  <  =  <c,x­
Then A = A^@{A­ A^  and  by  3.10  we  have  (G, <^ = A^®{A­ A^  0  B, 
(G, <)=­{A~A^@B@ A^,  (G,  <2)  =  JB e  Л^ e  (Л  ­ A^,  This  implies  ( <  i, 
< ,  <2)  e ^ .  Thus  (^„ '€)  is  dense. 

5.8. Definition.  A  cychcally  ordered  set  (G,  C)  is  called continuous  iff  any  cut  on 
(G, C)  is  Dedekind. 

In  other  words,  (G,  C) is continuous  iff  it  is dense  and  complete.  From  5.6  and  5.7 
we  directly  obtain 

5.9. Theorem. Let  (G,  C) be a dense cyclically ordered set. Then its completion 

by cuts  (^^,  ^ ) is continuous. 

5.10. Corollary. For any dense cyclically ordered set  (G, C) there exists a con­

tinuous cyclically ordered set (Я, D) and an isomorphic embedding of (G, C) into 

(Я, D). 

5.11. Definition. Let (G, C) be a cyclically ordered set, let H ^ G. H is called dense 

in (G, C ) iff for any elements x, y e G, x ф j there exists z e H with (x, z, y) e C. 

Note that if (G, C) contains a dense subset, then (G, C) itself is dense. 
Let (G, C) be a cyclically ordered set, let (^,., ^ ) be its completion by cuts. Let us 

identify the set G with its image by the canonical isomorphism given in 4.5, i.e. let us 
identify the element xe G with the element <c,x ^ ^v Thus any cyclically ordered 
set is a subset of a complete cyclically ordered set. 

5.12. Theorem. Let (G, C) be a dense cyclically ordered set. Then G is dense 

in ( ^ „ ^ ) . i  О 

Proof.  In  the proof  of  5.7 we have  shown  that  for  any distinct  elements  <  j ,  <2  e 
G ^ê^  there  exists xeG  such  that  ( < i , <c,x^ <2) ^^^  i­̂ ­̂   ^^er  identifying  the  ele­
ments y E G with  the  cuts <c,y^ ( < i ,  ^,  <2)  ^ ^­  Thus  G is dense  in  (^^,  ^ ) . 
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